JPH08309348A - Deodorizing apparatus of ion exchange pure water - Google Patents

Deodorizing apparatus of ion exchange pure water

Info

Publication number
JPH08309348A
JPH08309348A JP12112095A JP12112095A JPH08309348A JP H08309348 A JPH08309348 A JP H08309348A JP 12112095 A JP12112095 A JP 12112095A JP 12112095 A JP12112095 A JP 12112095A JP H08309348 A JPH08309348 A JP H08309348A
Authority
JP
Japan
Prior art keywords
exchange resin
resin layer
pure water
cation exchange
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12112095A
Other languages
Japanese (ja)
Inventor
Muneyuki Iwabuchi
宗之 岩渕
Hiroshi Shimizu
博 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N G K FUIRUTETSUKU KK
NGK Insulators Ltd
Original Assignee
N G K FUIRUTETSUKU KK
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N G K FUIRUTETSUKU KK, NGK Insulators Ltd filed Critical N G K FUIRUTETSUKU KK
Priority to JP12112095A priority Critical patent/JPH08309348A/en
Priority to US08/625,149 priority patent/US5942122A/en
Priority to EP96302446A priority patent/EP0736492A3/en
Priority to TW085103951A priority patent/TW363942B/en
Publication of JPH08309348A publication Critical patent/JPH08309348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE: To provide a deodorizing system removing an offensive smell substance in ion exchange pure water. CONSTITUTION: The upper part of one ion exchange column is packed with the regenerated mixed resin bed of a mixed bed type pure water making part and the lower part thereof is packed with a strongly acidic cation exchange resin polisher part regenerated to a hydrogen type and raw water is passed through the upper bed to make ion exchange pure water which is, in turn, passed through the lower bed to remove an offensive smell substance in pure water to obtain odorless pure water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、混床式純水製造装置で
原水を処理して得られるイオン交換純水中に含まれる臭
気物質を除去するためのイオン交換純水の脱臭システム
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deodorizing system for ion-exchanged pure water for removing odorous substances contained in ion-exchanged pure water obtained by treating raw water with a mixed bed type pure water producing apparatus. Is.

【0002】[0002]

【従来の技術】従来から、上水道水等の原水を強酸性カ
チオン交換樹脂と強塩基性アニオン交換樹脂との混合物
層を通過させる構成の混床式純水製造装置で処理して純
水を得ることが、食品製造やその他の分野において広く
行われている。
2. Description of the Related Art Conventionally, pure water is obtained by treating raw water such as tap water with a mixed bed type pure water producing apparatus configured to pass a mixture layer of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. Is widely practiced in food manufacturing and other fields.

【0003】これらの混床式純水製造装置では、処理後
のイオン交換純水中に強塩基性アニオン交換樹脂より漏
出する臭気物質を含んでいるため、食品製造等の分野で
は製品に臭気がつく等の不具合があるため大きな問題で
あった。この問題を解決するため、従来は例えば「活性
炭水処理技術と管理」,日刊工業新聞社(1978),130
頁において開示されているように、活性炭を用いてイオ
ン交換純水を処理して脱臭する方法が行われている。
In these mixed bed type pure water producing apparatuses, since the odorous substance leaking from the strongly basic anion exchange resin is contained in the ion-exchanged pure water after the treatment, the product has an odor in the field of food production and the like. It was a big problem because of problems such as. In order to solve this problem, in the past, for example, “Activated Carbon Water Treatment Technology and Management”, Nikkan Kogyo Shimbun (1978), 130
As disclosed in the page, a method for deodorizing treated ion-exchanged pure water with activated carbon is performed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した活性
炭を用いた従来法には、以下の(1)〜(3)のような
欠点があった。 (1)塩分やアルカリ分による処理水の汚染:イオン交
換純水を活性炭で処理する際、活性炭より塩分やアルカ
リ分等の不純物が処理水中に溶出して処理水を汚染し、
脱イオンしたイオン交換純水の電気伝導率を著しく増大
させ、またpHを中性よりアルカリ性にして、純度を著し
く低下させる。したがって、活性炭は混床式純水製造装
置で得られる高純度純水の脱臭処理には全く使用出来な
い。 (2)微生物による処理水の汚染:活性炭は多孔質構造
を有し、微生物の絶好の住居となるため、活性炭中では
多くの微生物が繁殖する。したがって、活性炭でイオン
交換純水を処理すると、処理水中にこれらの微生物が混
入して汚染されるため、その処理水は不衛生なものとな
り、食品製造などの用途には使用出来ない。 (3)煩雑な活性炭の回生処理や殺菌処理等の必要性:
活性炭の臭気除去能力を回復し、また活性炭中で繁殖し
た微生物を殺菌するためには、活性炭を焼成したり、高
温スチームで処理するなどの必要があり、かつそれらの
回性処理や殺菌処理は頻繁に行う必要がある。
However, the conventional method using the above-mentioned activated carbon has the following drawbacks (1) to (3). (1) Contamination of treated water with salt and alkali: When ion-exchanged pure water is treated with activated carbon, impurities such as salt and alkali are eluted from the activated carbon into the treated water to contaminate the treated water.
It significantly increases the electrical conductivity of deionized deionized pure water and makes the pH more alkaline than neutral to significantly reduce the purity. Therefore, activated carbon cannot be used at all for deodorizing the high-purity pure water obtained by the mixed bed type pure water producing apparatus. (2) Contamination of treated water by microorganisms: Activated carbon has a porous structure and serves as a perfect residence for microorganisms, so many microorganisms propagate in activated carbon. Therefore, when ion-exchanged pure water is treated with activated carbon, these microorganisms are contaminated by contaminating the treated water, and the treated water becomes unsanitary and cannot be used for food production. (3) Necessity of complicated regeneration and sterilization of activated carbon:
In order to restore the odor removing ability of the activated carbon and to sterilize the microorganisms propagated in the activated carbon, it is necessary to bake the activated carbon or treat it with high-temperature steam. Must be done often.

【0005】本発明の目的は上述した課題を解消して、
イオン交換純水中の臭気物質を、水素型強酸性カチオン
交換樹脂層に通水してポリッシング処理することにより
除去して無臭とする混床式イオン交換純水の合理的な脱
臭システムを提供しようとするものである。
The object of the present invention is to solve the above problems,
Let's provide a rational deodorization system for mixed-bed ion-exchange pure water that removes odorous substances in ion-exchange pure water by passing them through a hydrogen-type strongly acidic cation-exchange resin layer and polishing them to eliminate odors. It is what

【0006】[0006]

【課題を解決するための手段】本発明のイオン交換純水
の脱臭システムは、強酸性カチオン交換樹脂と強塩基性
アニオン交換樹脂の混合樹脂塔を有する混床式純水製造
部により生成したイオン交換純水中の臭気物質を、当該
混合樹脂塔の下部に設けた水素型強酸性カチオン交換樹
脂層を有するポリッシング部に通水することにより除去
することを特徴とするものである。なお、上記システム
において、ポリッシング部の強酸性カチオン交換樹脂と
して、沈降速度が混床式純水製造部の強酸性カチオン交
換樹脂より大なるものを使用することが好ましい。本発
明の混床式イオン交換純水の脱臭システムには、次の二
方式がある。 (1)混床式純水製造部の再生済み強酸性カチオン交換
樹脂と、ポリッシング部の再生済み強酸性カチオン交換
樹脂の境界面より気体を導入して混床層を形成させるシ
ステム:ポリッシング部の強酸性カチオン交換樹脂層
を、混床式純水製造部の混合樹脂層の下部に有するシス
テムにおいて、当該システムの再生を行うに当たって、
先ず当該ポリッシング部の強酸性カチオン交換樹脂層の
下部より水を上向流で通水して逆洗することにより、上
部より強塩基性アニオン交換樹脂層、強酸性カチオン交
換樹脂層、及びポリッシング部の強酸性カチオン交換樹
脂層に分離する。次に、強塩基性アニオン交換樹脂は苛
性アルカリ水溶液で再生し、強酸性カチオン交換樹脂の
再生は、鉱酸水溶液を樹脂塔最下部より上向流で通し
て、先ずポリッシング部の強酸性カチオン交換樹脂層、
及び引き続き混床式純水製造部の強酸性カチオン交換樹
脂層に一貫通しで通薬して再生し、次いで再生済み混床
式純水製造部の強酸性カチオン交換樹脂層と再生済みポ
リッシング部の強酸性カチオン交換樹脂層との境界面よ
り空気や窒素等の気体を導入して上方に放散させること
により、当該境界面の上方に混床式純水製造部の混合樹
脂層を、下部にポリッシング部の強酸性カチオン交換樹
脂層の二層を形成させる、混床式イオン交換純水の脱臭
システムである。 (2)上記システムにおいて、樹脂混合用気体の導入を
樹脂塔最下部より行い、下層にポリッシング部、上部に
混床式純水製造部を形成させるシステム:(1)項にお
いて、樹脂混合用気体の導入を、再生済みポリッシング
用強酸性カチオン交換樹脂層最下部より行って上方に放
散させることにより全樹脂層を混合した後、気体導入を
停止して下部のポリッシング層を形成させ、上部に混床
式混合樹脂層を形成させる混床式イオン交換純水の脱臭
システムである。
Means for Solving the Problems The deodorizing system for ion-exchanged pure water of the present invention is an ion produced by a mixed bed type pure water producing section having a mixed resin tower of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. The odorous substance in the exchanged pure water is removed by passing it through a polishing section having a hydrogen-type strongly acidic cation exchange resin layer provided in the lower part of the mixed resin tower. In the above system, it is preferable to use, as the strongly acidic cation exchange resin of the polishing section, one having a sedimentation rate higher than that of the strongly acidic cation exchange resin of the mixed bed type pure water producing section. The mixed bed type ion exchange pure water deodorizing system of the present invention includes the following two methods. (1) System for forming a mixed bed layer by introducing gas from the interface between the regenerated strong acid cation exchange resin in the mixed bed type pure water production section and the regenerated strong acid cation exchange resin in the polishing section: In a system having a strongly acidic cation exchange resin layer below the mixed resin layer of the mixed bed type pure water production unit, in performing the regeneration of the system,
First, water is passed from the lower part of the strong acid cation exchange resin layer of the polishing part in an upward flow to perform backwashing, whereby the strong basic anion exchange resin layer, the strong acid cation exchange resin layer, and the polishing part from the upper part. The strong acid cation exchange resin layer is separated. Next, the strongly basic anion exchange resin is regenerated with a caustic aqueous solution, and the strongly acidic cation exchange resin is regenerated by passing the aqueous mineral acid solution upward from the bottom of the resin tower, and then the strongly acidic cation exchange resin in the polishing section is first used. Resin layer,
Then, it is continuously passed through the strong acid cation exchange resin layer of the mixed bed type pure water production section for regeneration, and then the strong acid cation exchange resin layer of the regenerated mixed bed pure water production section and the regenerated polishing section By introducing a gas such as air or nitrogen from the interface with the strongly acidic cation exchange resin layer and allowing it to diffuse upward, the mixed resin layer of the mixed bed type pure water production unit is provided above the interface and the polishing is performed at the bottom. This is a deodorization system for mixed-bed ion-exchanged pure water, which forms two layers of strong acid cation-exchange resin layer in some parts. (2) In the above system, the resin mixing gas is introduced from the lowermost part of the resin tower, and the polishing part is formed in the lower layer and the mixed bed type pure water producing part is formed in the upper part: In (1), the resin mixing gas Is introduced from the bottom of the regenerated strong acid cation exchange resin layer for polishing and is diffused upward to mix all the resin layers, then gas introduction is stopped to form a polishing layer on the lower side, and mixed with the upper portion. This is a mixed bed type ion exchange pure water deodorizing system for forming a bed type mixed resin layer.

【0007】[0007]

【作用】水素型強酸性カチオン交換樹脂と水酸基型強塩
基性アニオン交換樹脂との混合樹脂層を有する混床式純
水製造部により生成されるイオン交換純水中には、強塩
基性アニオン交換樹脂より発生するアミン類に基づく臭
気物質が存在する。これらの臭気物質は、主として強塩
基性アニオン交換樹脂より漏出する微量の溶出物や、第
四アンモニウム基の分解産物であるアミン類であって、
アミン臭気を発生する。本発明は、当該混合樹脂層の下
部に水素型強酸性カチオン交換樹脂層を有するポリッシ
ング部を設けて、これらのアミン臭気を発生する物質を
イオン交換純水から除去して、イオン交換純水を無臭と
している。
[Function] The ion-exchanged pure water produced by the mixed bed type pure water production section having a mixed resin layer of a hydrogen-type strongly acidic cation exchange resin and a hydroxyl-type strongly basic anion exchange resin has a strong basic anion exchange. There are odorous substances based on amines generated from the resin. These odorous substances are mainly a small amount of eluate leaked from the strongly basic anion exchange resin and amines which are decomposition products of the quaternary ammonium group,
It produces an amine odor. The present invention provides a polishing section having a hydrogen-type strongly acidic cation exchange resin layer below the mixed resin layer, and removes these amine odor-producing substances from the ion exchange pure water to obtain the ion exchange pure water. It is odorless.

【0008】また、ポリッシング部として使用する水素
型強酸性カチオン交換樹脂層は、混合樹脂層を構成する
強酸性カチオン交換樹脂を鉱酸により向流再生する際
に、毎再生毎に必ず新しい鉱酸により処理が優先的にか
つ十分に行われるので、その再生が十分に行われるほ
か、殺菌・消毒を行うことが出来、処理水の微生物汚染
をも防止することができる。
Further, the hydrogen-type strongly acidic cation exchange resin layer used as the polishing section always uses a new mineral acid for each regeneration when the strongly acidic cation exchange resin constituting the mixed resin layer is countercurrently regenerated with the mineral acid. As a result, the treatment is preferentially and sufficiently carried out, so that it can be sufficiently regenerated, sterilization and disinfection can be carried out, and microbial contamination of the treated water can be prevented.

【0009】[0009]

【実施例】図1は本発明のイオン交換純水の脱臭システ
ムの例を原理的に説明するための図である。図1におい
て、上水道水等の原水を、一塔だけのイオン交換塔Tの
上層に充填された再生済み混床式混合樹脂層に通水し
て、イオン交換純水とし、引き続き同一イオン交換塔の
下層に充填された水素型強酸性カチオン交換樹脂を有す
るポリシャー部に通水することにより、脱臭イオン交換
純水を処理水として得るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining in principle an example of a deodorizing system for ion-exchanged pure water according to the present invention. In FIG. 1, raw water such as tap water is passed through a regenerated mixed-bed mixed resin layer filled in the upper layer of only one tower to obtain ion-exchanged pure water, and then the same ion-exchange tower. The deodorized ion-exchanged pure water is obtained as treated water by passing water through the polisher portion having the hydrogen-type strongly acidic cation exchange resin filled in the lower layer.

【0010】図2〜18は本発明の混床式イオン交換純
水の脱臭システムの例を説明するための図であり、図2
〜8は強酸性カチオン交換樹脂と強塩基性アニオン交換
樹脂の部分混合方式を、図9〜11はその全量混合方式を
示し、また図12〜18は強酸性カチオン交換樹脂に沈降速
度の大なるものを含有させた場合の全量混合方式を示
す。
2 to 18 are views for explaining an example of the mixed bed type ion exchange pure water deodorizing system of the present invention.
8 to 8 show a partial mixing method of a strongly acidic cation exchange resin and a strongly basic anion exchange resin, FIGS. 9 to 11 show a total mixing method thereof, and FIGS. 12 to 18 show a strong acid cation exchange resin having a large sedimentation rate. The total amount mixing method in the case of containing one is shown.

【0011】先ず、強酸性カチオン交換樹脂と強塩基性
アニオン交換樹脂の部分混合方式を示す。図2はイオン
交換塔T中のイオン交換樹脂の充填状態を示すが、1は
強酸性カチオン交換樹脂層、2は混床式用強塩基性アニ
オン交換樹脂層である。図3はイオン交換樹脂の再生に
先だって行う逆洗分離中の状態を示すが、1′はカチオ
ン交換樹脂スラリー、2′は強塩基性アニオン交換樹脂
スラリー、Wはイオン交換塔最上部の水層である。図4
は逆洗分離後のイオン交換樹脂の沈降状態を示すが、
1″は強酸性カチオン交換樹脂層、2″は強塩基性アニ
オン交換樹脂層を示す。図5はイオン交換樹脂の再生状
態を示すが、強塩基性アニオン交換樹脂層2′′′は苛
性アルカリ水溶液を下向流で通薬して原水で洗浄し、強
酸性カチオン交換樹脂層1′′′は鉱酸水溶液を上向流
で通薬して純水、または処理無臭純水で洗浄し、それぞ
れを再生する。図6は両イオン交換樹脂の部分混合を示
すが、水素型強酸性カチオン交換樹脂からなるポリシャ
ー部3の上端となるべき位置に設けた部分混合用気体放
散器Aより、空気や窒素等の気体を導入して上方に散気
し、イオン交換塔上方より排気して、両イオン交換樹脂
を攪拌混合して混床式純水製造部の混合樹脂スラリー4
を形成させる。図7は混合後の混合樹脂層の層固定・洗
浄操作を示し、混合後直ちにイオン交換塔上部より原水
を通水してイオン交換塔最下部より排出することによ
り、混合樹脂層を固定し且つ全樹脂層を十分洗浄して、
樹脂塔最下部に再生済み水素型強酸性カチオン交換樹脂
からなるポリシャー部3を設け、その上部に再生済み混
合樹脂層を有する混床式純水製造部5を形成させる。図
8は処理工程を示し、イオン交換塔上部より原水を通水
してイオン交換塔最下部より無臭純水を生成させる。な
お、この際、部分混合用気体放散器Aの位置で、強酸性
カチオン交換樹脂層1を、混床式純水製造部用とポリシ
ャー部用とにネット等で予め区切ることもできる。
First, a partial mixing system of a strongly acidic cation exchange resin and a strongly basic anion exchange resin will be shown. FIG. 2 shows the packed state of the ion exchange resin in the ion exchange tower T. Reference numeral 1 is a strongly acidic cation exchange resin layer, and 2 is a mixed bed type strongly basic anion exchange resin layer. FIG. 3 shows a state during backwash separation which is carried out prior to regeneration of the ion exchange resin. 1'is a cation exchange resin slurry, 2'is a strongly basic anion exchange resin slurry, and W is an uppermost aqueous layer of the ion exchange column. Is. FIG.
Shows the sedimentation state of the ion exchange resin after backwash separation,
1 ″ represents a strongly acidic cation exchange resin layer, and 2 ″ represents a strongly basic anion exchange resin layer. FIG. 5 shows the regenerated state of the ion exchange resin. The strongly basic anion exchange resin layer 2 ′ ″ is a strong acid cation exchange resin layer 1 ′ washed with raw water by passing a caustic aqueous solution in a downward flow. In ″, an aqueous mineral acid solution is passed through in an upward flow and washed with pure water or treated odorless pure water to regenerate each. FIG. 6 shows a partial mixing of both ion exchange resins. A gas such as air or nitrogen is supplied from a partial mixing gas diffuser A provided at a position which should be the upper end of the polisher part 3 made of a hydrogen-type strongly acidic cation exchange resin. Is introduced and diffused upward, and then exhausted from above the ion exchange tower, and both ion exchange resins are mixed by stirring to mix resin slurry 4 in the mixed bed type pure water production section.
To form. FIG. 7 shows a layer fixing / washing operation of the mixed resin layer after mixing, in which raw water is immediately passed from the upper part of the ion exchange tower and discharged from the lowermost part of the ion exchange tower to fix the mixed resin layer and Wash all resin layers thoroughly,
At the bottom of the resin tower, a polisher section 3 made of a regenerated hydrogen-type strongly acidic cation exchange resin is provided, and a mixed bed type pure water producing section 5 having a regenerated mixed resin layer is formed on the polisher section 3. FIG. 8 shows a treatment process in which raw water is passed from the upper part of the ion exchange column to produce odorless pure water from the lowermost part of the ion exchange column. At this time, the strong acid cation exchange resin layer 1 may be divided into a net for the mixed bed type pure water production section and a polisher section in advance at the position of the partial mixing gas diffuser A.

【0012】次に、上記における全量混合方式を説明す
る。図9は両イオン交換樹脂の全量混合の場合を示す
が、イオン交換塔の最下部に設けた全量混合用気体放散
器A'より、上方に空気や窒素等の気体を導入して上方に
散気し、イオン交換塔上方より排気して、イオン交換樹
脂の全量を攪拌混合して混合樹脂スラリー6を形成させ
る。図10は全量混合後の樹脂の層固定・洗浄操作を示す
が、先ず気体の導入を止めて気体混合操作を停止し、イ
オン交換塔下部に水素型強酸性カチオン交換樹脂からな
るポリシャー部7を形成させた後、直ちにイオン交換塔
上部より原水を通水しイオン交換塔最下部より排出し
て、再生済み混合樹脂層を有する混床式純水製造部8を
固定し且つ洗浄する。図11は処理工程を示し、イオン交
換塔上部より原水を通水してイオン交換塔最下部より無
臭純水を生成させる。
Next, the total amount mixing method described above will be described. Fig. 9 shows the case of total mixing of both ion exchange resins. A gas diffuser A'for total mixing provided at the bottom of the ion exchange tower introduces gas such as air or nitrogen to the upper part to diffuse the gas upward. Then, the mixture is evacuated from above the ion exchange tower, and the whole amount of the ion exchange resin is stirred and mixed to form the mixed resin slurry 6. FIG. 10 shows a layer fixing / washing operation of the resin after mixing the whole amount. First, the gas introduction is stopped to stop the gas mixing operation, and the polisher section 7 made of a hydrogen-type strongly acidic cation exchange resin is provided at the bottom of the ion exchange tower. Immediately after the formation, raw water is passed from the upper part of the ion exchange tower and discharged from the lowermost part of the ion exchange tower, and the mixed bed type pure water producing section 8 having the regenerated mixed resin layer is fixed and washed. FIG. 11 shows a treatment process in which raw water is passed from the upper part of the ion exchange tower and odorless pure water is produced from the lowermost part of the ion exchange tower.

【0013】次に、上記の全量混合方式において、ポリ
シャー部の樹脂として、混床式純水製造部の強酸性カチ
オン交換樹脂より沈降速度の大なる強酸性カチオン交換
樹脂を使用した場合の全量混合方式を説明する。図12は
イオン交換塔中のイオン交換樹脂の充填状態を示すが、
9はポリシャー部となる大沈降速度を有する強酸性カチ
オン交換樹脂層を示し、10は混床式純水製造部の強酸性
カチオン交換樹脂層を示し、また2は既述のように混床
式純水製造部の強塩基性アニオン交換樹脂層を示す。図
13はイオン交換樹脂の再生に先だって行う逆洗分離中の
状態を示すが、9′は逆洗膨張時の大沈降速度強酸性カ
チオン交換樹脂からなるポリシャー部用スラリー、10′
は逆洗膨張時の混床式純水製造部の強酸性カチオン交換
樹脂スラリーを示し、また2′は既述のように逆洗膨張
時の強塩基性アニオン交換樹脂スラリーを示す。図14は
逆洗分離後のイオン交換樹脂の沈降状態を示すが、9″
は大沈降速度強酸性カチオン交換樹脂からなるポリシャ
ー部、10″は混床式純水製造部の強酸性カチオン交換樹
脂層を示し、また2″は既述のように混床式純水製造部
の強塩基性アニオン交換樹脂層を示す。図15はイオン交
換樹脂層の再生操作を示すが、強塩基性アニオン交換樹
脂層2′′′は、既述のように苛性アルカリ水溶液を下
向流で通薬し、原水で洗浄してその層下部より再生排水
をそれぞれ排出させることにより水酸基型に再生し、ま
た混床式純水製造部の強酸性カチオン交換樹脂層1
0′′′とポリシャー部の大沈降速度強酸性カチオン交
換樹脂層9′′′は、鉱酸水溶液をイオン交換塔最下部
より上向流で通薬して、純水または処理無臭純水で洗浄
して10′′′層上部より再生排水をそれぞれ排出させる
ことにより、何れも水素型に再生する。図16は全イオン
交換樹脂の全量混合を示すが、イオン交換塔の最下部に
設けた全量混合用気体放散器A′より、空気や窒素等の
気体を導入して上方に放散し、イオン交換塔上方より排
気して、全イオン交換樹脂を攪拌混合して混合樹脂スラ
リー11を形成させる。図17は混合後の樹脂層固定・洗浄
操作を示すが、先ず気体の導入を止めて気体混合操作を
停止して、イオン交換塔下部に迅速且つ効率的に大沈降
速度を有する水素型強酸性カチオン交換樹脂からなるポ
リシャー部12を形成させた後、直ちにイオン交換塔上部
より原水を通水しイオン交換塔最下部より排出して、再
生済み混床式純水製造部13を固定し且つ洗浄する。この
ポリシャー部の形成は、図10における通常の沈降速度を
有するポリシャー部の形成に比し迅速且つ効率的に行え
る。その後、直ちにイオン交換塔上部より原水を通水
し、イオン交換塔最下部より排出して、再生済み混床式
純水製造部13を固定し且つ洗浄する。図18は処理工程を
示し、イオン交換塔上部より原水を通水してイオン交換
塔最下部より無臭純水を生成させる。
[0013] Next, in the above total mixing method, the total amount of the strong acidic cation exchange resin having a higher sedimentation rate than the strong acidic cation exchange resin of the mixed bed type pure water production section is used as the resin of the polisher section. The method will be described. Figure 12 shows the state of filling the ion exchange resin in the ion exchange tower,
Reference numeral 9 indicates a strong acidic cation exchange resin layer having a large sedimentation rate which serves as a polisher portion, 10 indicates a strong acid cation exchange resin layer of a mixed bed type pure water producing section, and 2 indicates a mixed bed type as described above. The strongly basic anion exchange resin layer of a pure water manufacturing part is shown. Figure
Reference numeral 13 shows a state during backwash separation which is carried out prior to regeneration of the ion exchange resin. 9'is a large sedimentation rate at the time of backwash expansion, slurry for a polisher part made of a strongly acidic cation exchange resin, 10 '.
Indicates the strongly acidic cation exchange resin slurry in the mixed bed type pure water production section at the time of backwash expansion, and 2'indicates the strongly basic anion exchange resin slurry at the time of backwash expansion as described above. Fig. 14 shows the sedimentation state of the ion exchange resin after backwash separation.
Indicates a large settling speed, a polisher part made of a strong acid cation exchange resin, 10 ″ indicates a strong acid cation exchange resin layer of a mixed bed type pure water producing section, and 2 ″ indicates a mixed bed type pure water producing section as described above. The strongly basic anion exchange resin layer of is shown. FIG. 15 shows a regenerating operation of the ion exchange resin layer. The strong basic anion exchange resin layer 2 ″ ′ is fed with a caustic alkaline aqueous solution in a downward flow as described above, and washed with raw water. Hydrochloric acid type is regenerated by discharging reclaimed wastewater from the bottom of the bed, and strong acid cation exchange resin layer 1 in the mixed bed type pure water production section 1
The large settling rate of 0 ″ ″ and the polisher part The strongly acidic cation exchange resin layer 9 ″ ″ is passed through an aqueous mineral acid solution from the lowermost part of the ion exchange column in an upward flow to obtain pure water or treated odorless pure water. By washing and discharging the drainage water from the upper part of the 10 "layer, they are all regenerated into hydrogen type. FIG. 16 shows the total mixing of all the ion exchange resins. A gas such as air or nitrogen is introduced from the total amount mixing gas diffuser A ′ provided at the bottom of the ion exchange column to diffuse the gas upward and to perform ion exchange. Evacuation is performed from above the tower, and all the ion exchange resins are mixed by stirring to form a mixed resin slurry 11. Fig. 17 shows the resin layer fixing / washing operation after mixing. First, the introduction of gas is stopped to stop the gas mixing operation, and the hydrogen type strong acid having a large sedimentation speed is quickly and efficiently at the bottom of the ion exchange column. Immediately after forming the polisher part 12 made of a cation exchange resin, raw water is passed from the upper part of the ion exchange column and discharged from the lower part of the ion exchange column, fixing and washing the regenerated mixed bed type pure water producing part 13. To do. The formation of the polisher portion can be performed more quickly and efficiently than the formation of the polisher portion having a normal sedimentation rate in FIG. Immediately thereafter, raw water is passed through the upper part of the ion exchange tower and discharged from the lowermost part of the ion exchange tower to fix and wash the regenerated mixed bed type pure water producing section 13. FIG. 18 shows a treatment process in which raw water is passed from the upper part of the ion exchange tower and odorless pure water is produced from the lowermost part of the ion exchange tower.

【0014】以下、本発明で使用する各構成の技術的要
件について詳述する。
The technical requirements of each structure used in the present invention will be described in detail below.

【0015】(1)イオン交換純水:水素型強酸性カチ
オン交換樹脂と水酸基型強塩基性アニオン交換樹脂とを
混合した混床式純水製造部に原水を通水して得られる高
純度純水をいう。
(1) Ion-exchanged pure water: High-purity pure water obtained by passing raw water through a mixed-bed type pure water production section in which a hydrogen type strongly acidic cation exchange resin and a hydroxyl group type strongly basic anion exchange resin are mixed. Refers to water.

【0016】混床式純水製造部のイオン交換純水は、電
気伝導率約1μS /cm以下(25℃)、pH約7前後の高純
度のものであるが、その中には強塩基性アニオン交換樹
脂よりの溶出物や第四アンモニウム基の分解により発生
したトリメチルアミンやジメチルエタノールアミンなど
のアミン化合物が含まれるが、それらは隣接する水素型
強酸性カチオン交換樹脂によって大部分が吸着除去され
る。しかし、混床塔の下部に存在する強塩基性アニオン
交換樹脂より生じた溶出物やアミン臭物質は、隣接する
強酸性カチオン交換樹脂と接触する機会と時間が少ない
ので、相当量のアミン臭が処理水中に残存する結果とな
る。
The ion-exchanged pure water in the mixed bed type pure water production section is of high purity with an electric conductivity of about 1 μS / cm or less (25 ° C.) and a pH of about 7, but it is strongly basic. Amine compounds such as trimethylamine and dimethylethanolamine generated by decomposition of anion-exchange resin and decomposition of quaternary ammonium groups are included, but most of them are adsorbed and removed by the adjacent hydrogen-type strongly acidic cation-exchange resin. . However, the eluate and amine odor substance generated from the strongly basic anion exchange resin existing in the lower part of the mixed bed column have few opportunities and time for contact with the adjacent strongly acidic cation exchange resin, so that a considerable amount of amine odor is generated. The result is that it remains in the treated water.

【0017】(2)混床式純水製造部に使用する強酸性
カチオン交換樹脂と強塩基性アニオン交換樹脂:混床式
純水製造部に充填して使用される強酸性カチオン交換樹
脂と強塩基性アニオン交換樹脂は、混床式用の通常のイ
オン交換樹脂が全て使用される。
(2) Strong acidic cation exchange resin and strong basic anion exchange resin used in the mixed bed type pure water production section: Strong acidic cation exchange resin and strong used in the mixed bed type pure water production section As the basic anion exchange resin, all the usual ion exchange resins for mixed beds are used.

【0018】(3)ポリッシング用強酸性カチオン交換
樹脂:ポリッシング用の強酸性カチオン交換樹脂として
は、汎用される通常の混床式純水製造部の強酸性カチオ
ン交換樹脂が全て使用されるが、イオン交換樹脂の全量
混合方式の場合において、ポリシャー部の水素型強酸性
カチオン交換樹脂粒子の沈降速度が、混床式純水製造部
に使用の水素型強酸性カチオン交換樹脂粒子の沈降速度
より大なるものを使用する場合は、混合後の層固定が迅
速かつ効率よく行えるので好ましい。沈降速度の大なる
イオン交換樹脂粒子を選択するには、球形の樹脂粒子を
使用し、樹脂の粒子径が大きいか、または樹脂の母体構
造が例えばスチレンとジビニルベンゼン(DVB)の共重合
物の場合は、架橋度(DVB%)が大きいものを選ぶことが必
要となる。またはそれらの性質を兼ね備えているもの
は、一層沈降速度が大である。沈降速度の大なる強酸性
カチオン交換樹脂の選択の一例を表1に示す。
(3) Strong Acid Cation Exchange Resin for Polishing: As the strong acid cation exchange resin for polishing, all the strong acid cation exchange resins used in a general mixed bed type pure water production unit which are generally used are used. When the total amount of ion-exchange resin is mixed, the sedimentation rate of hydrogen-type strongly acidic cation-exchange resin particles in the polisher is higher than the sedimentation rate of hydrogen-type strongly acidic cation-exchange resin particles used in the mixed bed pure water production section. It is preferable to use the other ones because the layer fixation after mixing can be performed quickly and efficiently. To select ion-exchange resin particles with a high sedimentation rate, use spherical resin particles, and either the resin particle size is large or the resin matrix structure is a copolymer of styrene and divinylbenzene (DVB). In this case, it is necessary to select one with a high degree of crosslinking (DVB%). Alternatively, those having both of these properties have a higher sedimentation rate. Table 1 shows an example of selection of a strongly acidic cation exchange resin having a high sedimentation rate.

【0019】[0019]

【表1】 [Table 1]

【0020】表1のは混床式純水製造部に使用する強
酸性カチオン交換樹脂の例の性質を示したものであり、
は樹脂母体のDVB を8% から10% に増大させて真密度
を約1.26から約1.32に増大させて沈降速度を大とした樹
脂の例を示し、は更にその樹脂粒子を篩分して粒度を
大粒子に揃えて沈降速度を更に大とした樹脂の例を示し
たものである。
Table 1 shows the properties of an example of the strongly acidic cation exchange resin used in the mixed bed type pure water producing section.
Shows an example of a resin in which the DVB of the resin matrix was increased from 8% to 10% and the true density was increased from about 1.26 to about 1.32 to increase the sedimentation rate. This is an example of a resin having a large particle size to further increase the sedimentation rate.

【0021】沈降速度の大なるポリシャー部の水素型強
酸性カチオン交換樹脂を、混床式純水製造部の強酸性カ
チオン交換樹脂と併用して、図2〜8の部分混合方式の
場合に使用することも可能である。
The hydrogen type strong acid cation exchange resin in the polisher part having a high sedimentation rate is used in combination with the strong acid cation exchange resin in the mixed bed type pure water production part to be used in the case of the partial mixing system of FIGS. It is also possible to do so.

【0022】イオン交換樹脂の再生処理や回生処理によ
る微生物の殺菌・消毒:強塩基性アニオン交換樹脂は常
温〜60℃の苛性アルカリ水溶液で、また強酸性カチオン
交換樹脂は常温の鉱酸水溶液で毎再生サイクル処理して
再生され、また吸着アミン臭物質が混床式純水製造部又
はポリシャー部の強酸性カチオン交換樹脂から十分に脱
着出来ないときは、30〜60℃の熱苛性アルカリ水溶液通
薬や熱水洗浄処理などによって回生処理を行うので、か
かる再生処理や回生処理の際、強塩基性アニオン交換樹
脂や強酸性カチオン交換樹脂は殺菌・消毒されるので、
イオン交換純水の無臭化処理水が微生物で汚染される事
を防止する事が出来る。
Sterilization and disinfection of microorganisms by regenerating or regenerating ion exchange resin: Strongly basic anion exchange resin is a caustic alkaline aqueous solution at room temperature to 60 ° C., and strongly acidic cation exchange resin is a mineral acid aqueous solution at ordinary temperature. When the adsorbed amine odor substance cannot be desorbed sufficiently from the strongly acidic cation exchange resin in the mixed bed type pure water production section or the polisher section, it is regenerated by the regeneration cycle treatment, and a hot caustic alkali aqueous solution at 30 to 60 ° C Since regenerative treatment is performed by washing with water or hot water, strong base anion exchange resin and strong acid cation exchange resin are sterilized and disinfected during such regeneration treatment and regeneration treatment.
It is possible to prevent the deodorized water of ion-exchanged pure water from being contaminated with microorganisms.

【0023】以下、実際の例により本発明を更に詳細に
説明する。実施例1 混床式純水製造部及びポリシャー部用の強酸性カチオン
交換樹脂とI型強塩基性アニオン交換樹脂とをイオン交
換塔に充填し、逆洗分離・沈降・再生して部分混合及び
層固定・洗浄を行って、混床式純水製造部の混合樹脂層
を上層とし水素型強酸性カチオン交換樹脂のポリシャー
部を下層に有するシステムを調整し、イオン交換純水の
脱臭処理を行った結果は以下の通りであった。使用した
原水は上水道水とし、混合樹脂層の水洗並びにそれ以降
の脱臭イオン交換純水の製造には、当該上水道水を活性
炭で処理して無臭としたものを無臭原水として使用し
た。
Hereinafter, the present invention will be described in more detail with reference to actual examples. Example 1 An ion exchange column was filled with a strongly acidic cation exchange resin and a type I strongly basic anion exchange resin for a mixed bed type pure water production section and a polisher section, and backwashing separation, sedimentation and regeneration were performed to perform partial mixing and The layer is fixed and washed to prepare a system that has the mixed resin layer of the mixed bed type pure water production section as the upper layer and the polisher part of the hydrogen-type strongly acidic cation exchange resin as the lower layer, and deodorizes the ion-exchanged pure water. The results were as follows. The raw water used was tap water, and in the washing of the mixed resin layer and subsequent production of deodorized ion-exchanged pure water, the tap water was treated with activated carbon to make it odorless and used as odorless raw water.

【0024】(1)イオン交換樹脂の充填:内径50mm、
高さ2,000mm のイオン交換塔を使用し、原水を入れて水
深約1mとし、これに強酸性カチオン交換樹脂として米
国のSybron Chemical 社製のIonacC-249 を投入して下
層に1.00 L(層高51.0cm)を充填し、またI型強塩基性
アニオン交換樹脂として米国のPurolite社製のPurolite
A-400E を投入して上層に1.00L (層高51.0cm)を充填
し、イオン交換樹脂充填量合計を2.00 L(合計層高102.
0 cm)とした。樹脂充填量の測定は標準的方法により、
逆洗・自然沈降を繰り返して行った。
(1) Filling with ion exchange resin: inner diameter 50 mm,
Using a 2,000 mm high ion exchange column, add raw water to a water depth of approximately 1 m, and add Ionac C-249 manufactured by Sybron Chemical Co. of the United States as a strongly acidic cation exchange resin to the lower layer to obtain 1.00 L (layer height). Purolite manufactured by Purolite of the United States as a type I strong basic anion exchange resin.
A-400E is charged to fill the upper layer with 1.00 L (layer height 51.0 cm), and the total ion exchange resin filling amount is 2.00 L (total layer height 102.
0 cm). The resin filling amount is measured by a standard method.
Backwashing and natural sedimentation were repeated.

【0025】(2)逆洗分離と沈降:原水をイオン交換
塔の最下部より導入して、合計樹脂層膨張率が約60% と
なるように20分間逆洗して両イオン交換樹脂スラリーを
分離し、逆洗を停止して両樹脂層を自然沈降させ、上層
にPurolite A-400E の層を、下層にIonac C-249 の層を
分離充填させた。
(2) Separation by backwash and sedimentation: Raw water was introduced from the bottom of the ion exchange column, and backwashed for 20 minutes so that the total expansion rate of the resin layer was about 60%, to remove both ion exchange resin slurries. After separation, backwashing was stopped and both resin layers were allowed to settle spontaneously, and a Purolite A-400E layer was separated as an upper layer and an Ionac C-249 layer was separated as a lower layer.

【0026】(3)再生:再生は通常の混床式純水製造
部の再生法に準じて行った。上層のPurolite A-400E
は、下向流で再生液として50℃の5% NaOHをSV 3/hで1.
5 時間通薬し、50℃の原水をSV 3/hで20分間通水して再
生液を置換し、50℃の原水でSV 20/h で90分間洗浄して
再生した。下層のIonac C-249 は、上向流で再生液とし
て常温の5%HClをSV 3/hで1時間通薬し、常温の処理無
臭純水を用いて、SV 3/hで20分間通水して再生液を置換
し、引き続きSV20/hで60分間洗浄して再生した。両イオ
ン交換樹脂の再生排水は、常法により両イオン交換樹脂
層の境界面に設けたコレクターを経由してイオン交換塔
外に排出した。
(3) Regeneration: Regeneration was carried out according to the usual regeneration method of the mixed bed type pure water producing section. Upper Purolite A-400E
Is a downward flow of 5% NaOH at 50 ℃ as a regenerant at SV 3 / h 1.
After replenishing for 5 hours, raw water at 50 ° C was passed for 20 minutes at SV 3 / h to replace the regenerating solution, and the raw water at 50 ° C was washed for 90 minutes at SV 20 / h for regeneration. Ionac C-249 in the lower layer was treated with 5% HCl at room temperature for 1 hour at SV 3 / h as a regenerant in an upward flow, and then treated with odorless pure water at room temperature for 20 minutes at SV 3 / h. The regenerated liquid was replaced with water to replace the regenerated liquid, followed by washing with SV20 / h for 60 minutes to regenerate. The regenerated waste water of both ion exchange resins was discharged to the outside of the ion exchange tower via a collector provided on the boundary surface of both ion exchange resin layers by a conventional method.

【0027】(4)部分混合:両イオン交換樹脂層上の
水位を約30cmとし、下層のIonac C-249 層の低部より約
27cm上部に設けた部分混合用気体放散器に圧縮空気を導
入して、空気を上方に約3分間放散させてイオン交換塔
上部より排気することにより、Ionac C-249 の層低部よ
り約27cm上部にあるIonac C-249 の層部分とその上部に
あるPurolite A-400E の層の全部を混合する。この際、
気体放散器より下層のIonac C-249 の層は、混合するこ
となく水素型強酸性カチオン交換樹脂のポリシャー部と
なる。
(4) Partial mixing: The water level on both ion exchange resin layers was set to about 30 cm, and the water level on the lower side of the lower Ionac C-249 layer was adjusted to about 30 cm.
Compressed air was introduced into the gas dissipator for partial mixing installed at the top of 27 cm, and the air was diffused upward for about 3 minutes and exhausted from the top of the ion-exchange tower. Mix the top layer of Ionac C-249 with the entire top layer of Purolite A-400E. On this occasion,
The layer of Ionac C-249 below the gas diffuser becomes the polisher part of the hydrogen-type strongly acidic cation exchange resin without mixing.

【0028】(5)層固定・洗浄:上記の混合操作を停
止し、直ちにイオン交換塔最下部より排水しつつ無臭原
水をイオン交換塔上部より40 L/hで通水して、混床式製
造部の混合樹脂層を固定し、引き続き当該無臭原水を同
一流量で通水して混床式製造部の混合樹脂層と下層のポ
シリャー部を洗浄し、イオン交換塔最下部よりの排水の
電気伝導率が0.5 μS/cm(25℃) 未満となるようにし
た。約30分を要した。
(5) Layer fixing / washing: The above mixing operation was stopped, and odorless raw water was immediately drained from the bottom of the ion exchange tower while passing 40 L / h of water from the top of the ion exchange tower. Fix the mixed resin layer of the production department, and then pass the odorless raw water at the same flow rate to wash the mixed resin layer of the mixed bed type production department and the lower layer of the posi- rier unit, and discharge electricity from the bottom of the ion exchange tower. The conductivity was adjusted to less than 0.5 μS / cm (25 ° C). It took about 30 minutes.

【0029】(6)無臭イオン交換純水の製造:イオン
交換塔に無臭原水を40 L/h(混床層に対しSV 27/h、ポ
リシャー層に対しSV 80/h )で通水して、イオン交換塔
最下部より処理水として脱臭イオン交換純水を採取し
た。イオン交換純水及び、ポリシャー層を通過した脱臭
イオン交換純水等の処理結果を以下の表2に示す。
(6) Production of odorless ion exchange pure water: Odorless raw water was passed through the ion exchange tower at 40 L / h (SV 27 / h for mixed bed layer, SV 80 / h for polisher layer). Deodorized ion-exchanged pure water was collected as treated water from the bottom of the ion-exchange tower. Table 2 below shows the treatment results of ion-exchanged pure water and deodorized ion-exchanged pure water that has passed through the polisher layer.

【0030】[0030]

【表2】 [Table 2]

【0031】表2の結果から、I型強塩基性アニオン交
換樹脂を使用して製造した混床式イオン交換純水は、魚
臭的アミン臭を有していたが、水素型強酸性カチオン交
換樹脂ポリシャー部による処理により、かかるアミン臭
が全て除去されて無臭となり、また電気伝導率(導電
率)はイオン交換純水の0.17〜0.18μS/cm(25℃)が0.
15μS/cm(25℃)に低下して安定し、良質の無臭純水が
一本のイオン交換塔を使用するだけで容易にかつ安定し
て得られることが分かった。
From the results shown in Table 2, the mixed-bed ion-exchanged pure water produced by using the type I strongly basic anion exchange resin had a fishy amine odor, but the hydrogen type strongly acidic cation exchange was used. By the treatment with the resin polisher, all such amine odors are removed to make it odorless, and the electric conductivity (conductivity) is 0.17 to 0.18 μS / cm (25 ° C) of ion-exchanged pure water.
It was found that the odorless pure water of good quality can be easily and stably obtained by using only one ion-exchange tower.

【0032】実施例2 実施例1において、混床式純水製造部に使用する強塩基
性アニオン交換樹脂として、I型でなくII型のものを使
用した場合の実施例を示す。その他のイオン交換樹脂及
び実施操作法は実施例1と同様である。
Example 2 An example in which a type II type instead of type I type is used as the strongly basic anion exchange resin used in the mixed bed type pure water producing section in Example 1. The other ion exchange resins and the operating procedure are the same as in Example 1.

【0033】(1)イオン交換樹脂の充填:実施例1と
同様なイオン交換塔を使用し、II型強塩基性アニオン交
換樹脂としては米国のSybron Chemical 社製のIonac AS
B-2HP を使用し、強酸性カチオン交換樹脂は実施例1と
同じIonac C-249 を使用した。それぞれのイオン交換樹
脂の充填数量や充填方法等は実施例1と同じである。
(1) Packing with ion exchange resin: An ion exchange column similar to that used in Example 1 was used, and as the type II strong basic anion exchange resin, Ionac AS manufactured by Sybron Chemical Co. of the United States was used.
B-2HP was used, and as the strongly acidic cation exchange resin, the same Ionac C-249 as in Example 1 was used. The filling quantity and filling method of each ion-exchange resin are the same as in Example 1.

【0034】(2)逆洗分離と沈降:実施例1と同様な
方法で両イオン交換樹脂を逆洗分離し、上層にIonac AS
B 2HP の層を、下層にIonac C-249 の層を分離充填させ
た。
(2) Backwash separation and sedimentation: Both ion exchange resins were backwashed and separated in the same manner as in Example 1, and Ionac AS was added to the upper layer.
The B 2 HP layer and the lower layer, the Ionac C-249 layer, were separately packed.

【0035】(3)再生:両イオン交換樹脂の再生方法
や再生装置などは、実施例1の場合と同様であるが、Io
nac ASB-2HP の再生液は35℃の5% NaOH とし、SV 3/h
で1.0 時間通薬し、35℃の原水をSV 3/hで20分間通水し
て再生液を置換し、35℃の原水でSV20/hで90分間洗浄し
て再生した点が異なる。
(3) Regeneration: The method and apparatus for regenerating both ion exchange resins are the same as in Example 1, but Io
The regenerated liquid of nac ASB-2HP was 5% NaOH at 35 ℃, and SV 3 / h
The difference is that the raw water at 35 ° C was passed for 20 minutes at SV 3 / h for 20 minutes to replace the regenerating solution, and the raw water at 35 ° C was washed for 90 minutes at SV20 / h for regeneration.

【0036】(4)部分混合:実施例1と同様な方法で
行ったが、上層にPurolite A-400E の代わりにIonacASB
-2HP が存在する点だけが異なる。
(4) Partial mixing: The same procedure as in Example 1 was used, but Ionac ASB was used instead of Purolite A-400E in the upper layer.
-2HP is the only difference.

【0037】(5)層固定・洗浄:実施例1と同様にし
て行った。
(5) Layer fixing / washing: The same procedure as in Example 1 was carried out.

【0038】(6)無臭イオン交換純水の製造:実施例
1と同様にして行った。イオン交換純水及び、ポリシャ
ー部を通過した脱臭イオン交換純水等の処理結果を以下
の表3に示す。
(6) Production of odorless ion-exchanged pure water: The same procedure as in Example 1 was carried out. Table 3 below shows the treatment results of ion-exchanged pure water and deodorized ion-exchanged pure water that has passed through the polisher section.

【0039】[0039]

【表3】 [Table 3]

【0040】表3の結果から、II型強塩基性アニオン交
換樹脂を使用して製造した混床式イオン交換純水は、芳
香的アミン臭を有していたが、水素型強酸性カチオン交
換樹脂ポリシャー部による処理により、かかるアミン臭
が全て除去されて無臭となり、また電気伝導率(導電
率)はイオン交換純水の0.22〜0.23μS/cm(25℃)が0.
20μS/cm(25℃)に低下して安定し、良質の無臭純水が
一本のイオン交換塔を使用するだけで容易に且つ安定し
て得られることが分かった。
From the results shown in Table 3, the mixed-bed type ion-exchanged pure water produced by using the type II strong basic anion exchange resin had an aromatic amine odor, but the hydrogen type strong acidic cation exchange resin was used. The treatment with the polisher removes all such amine odors and makes them odorless, and the electrical conductivity (conductivity) is 0.22 to 0.23 μS / cm (25 ° C) of ion-exchanged pure water of 0.
It was found that the odorless pure water of good quality can be easily and stably obtained by using only one ion-exchange tower.

【0041】実施例3 実施例2において、混床式イオン交換樹脂部分の部分混
合方式を、全イオン交換樹脂の全量混合方式とした場合
の実施例を示す。全量混合方式の実施操作と混合後の層
固定・洗浄操作の外は、実施例2と全く同じである。
Example 3 An example in which the partial mixing system of the mixed bed type ion exchange resin portion is the total amount mixing system of all the ion exchange resins in Example 2 will be described. The procedure is exactly the same as in Example 2 except for the operation of performing the total amount mixing method and the operation of fixing and washing the layer after mixing.

【0042】(1)全量混合:全イオン交換樹脂層上の
水位を60cmとし、全イオン交換樹脂層の最低部に設けた
全量混合用気体放散器に圧縮空気を導入して、空気を上
方に約3分間放散させてイオン交換塔上部より排気する
ことにより、全イオン交換樹脂をスラリー状に混合す
る。
(1) Total amount mixing: The water level on the total ion exchange resin layer is set to 60 cm, and compressed air is introduced into the total amount mixing gas dissipator provided at the lowest part of the total ion exchange resin layer to move the air upward. All the ion-exchange resins are mixed in a slurry state by being diffused for about 3 minutes and exhausted from the upper part of the ion-exchange tower.

【0043】(2)層固定・洗浄:気体の導入を止め、
樹脂の混合操作を停止して、自然沈降によりイオン交換
塔下部に水素型強酸性カチオン交換樹脂ポリシャー部約
25〜27cmを形成させ、直ちにイオン交換塔最下部より排
水しつつ無臭原水をイオン交換塔上部より40 L/hで通水
して、混床式純水製造部の混合樹脂層を固定し、引き続
き無臭原水を同一流量で通水して混床式純水製造部の混
合樹脂層と下層のポシリャー部を洗浄し、イオン交換塔
最下部よりの排水に電気導電率が1μS/cm(25℃)未満
となるようにした。約30分を要した。
(2) Layer fixing / washing: Stop the introduction of gas,
The resin mixing operation was stopped, and the hydrogen-type strongly acidic cation exchange resin polisher part was
Forming 25-27 cm, while immediately draining from the bottom of the ion exchange tower, odorless raw water is passed at 40 L / h from the top of the ion exchange tower, fixing the mixed resin layer of the mixed bed pure water production section, Then, the odorless raw water is passed at the same flow rate to wash the mixed resin layer of the mixed bed type pure water production section and the lower layer of the posi- ryer section. ) Less than. It took about 30 minutes.

【0044】(3)無臭イオン交換純水の製造:実施例
2と同様にして行った。イオン交換純水及び、ポリシャ
ー部を通過した脱臭イオン交換純水等の処理結果を以下
の表4に示す。
(3) Production of odorless ion-exchanged pure water: The same procedure as in Example 2 was carried out. Table 4 below shows the treatment results of ion-exchanged pure water and deodorized ion-exchanged pure water that has passed through the polisher portion.

【0045】[0045]

【表4】 [Table 4]

【0046】表4の結果から、全量混合方式によるポリ
シャー部の形成と混床式純水製造部の混合樹脂層の形成
を行った結果、II型強塩基性アニオン交換樹脂を使用し
た混床式イオン交換純水は、芳香的アミン臭を有してい
たが、水素型強酸性カチオン交換樹脂ポリシャー部によ
る処理により、かかるアミン臭が全て除去されて無臭と
なり、また電気伝電率(導電率)はイオン交換純水の0.
49〜0.50μS/cm(25℃)が0.44μS/cm(25℃)に低下し
て安定し、良質の無臭純水が一本のイオン交換塔を使用
するだけで容易に且つ安定して得られることが分かっ
た。
From the results shown in Table 4, the formation of the polisher part and the mixed resin layer of the mixed bed type deionized water producing part were carried out by the total mixing method. As a result, the mixed bed type using the type II strong basic anion exchange resin was used. Ion-exchanged pure water had an aromatic amine odor, but by the treatment with the hydrogen type strongly acidic cation exchange resin polisher, all such amine odor was removed to make it odorless, and the electric conductivity (conductivity) Is 0 for ion-exchanged pure water.
49-0.50 μS / cm (25 ° C) drops to 0.44 μS / cm (25 ° C) and stabilizes, and high-quality odorless pure water can be easily and stably obtained by using only one ion exchange tower. I found out that

【0047】実施例4 実施例3において、ポリシャー部の水素型強酸性カチオ
ン交換樹脂として沈降速度の大なるものを選定して使用
し、混床式純水製造部の強酸性カチオン交換樹脂として
は実施例3に使用した通常のものを使用し、全量混合方
式で混合樹脂層を形成させた場合の実施例を示す。その
他の実施操作法は実施例3と同様である。
Example 4 In Example 3, a hydrogen-type strongly acidic cation exchange resin having a large sedimentation rate was selected and used as the hydrogenation type strongly acidic cation exchange resin of the polisher part, and the strongly acidic cation exchange resin of the mixed bed type pure water producing part was used. An example in which the normal resin used in Example 3 is used and the mixed resin layer is formed by the total amount mixing method will be described. Other operating procedures are the same as in Example 3.

【0048】(1)使用イオン交換樹脂と充填:実施例
3と同様なイオン交換塔を使用し、混床式純水製造部用
としては、実施例3と同じII型強塩基性アニオン交換樹
脂Ionac ASB-2HP 1.00L と、強酸性カチオン交換樹脂Io
nac C-249 0.50L を使用し、ポリシャー部用の強酸性カ
チオン交換樹脂としては、沈降速度が大きいIonac Impa
ct CS-399Cの篩分品 0.50Lを使用して充填した。Ionac
C-249 の沈降速度に関する数値は、粒度が16〜40 ASTM
mesh(粒子−1.18 +0.428)、架橋度はDVB 8%で、真
密度約1.26であるのに対し、使用した沈降速度の大なる
ポリシャー部の強酸性カチオン交換樹脂は、表1中の
に示したIonac Impact CS-399Cの篩分品で、沈降速度に
関する数値は、粒度が16〜18 ASTM mesh(粒子径−1.18
mm+1.00mm)と大きく、架橋度はDVB 10% で、真密度約
1.32と大であり、沈降速度を大とする要素である粒子径
と真密度が共に大きいものである。それぞれのイオン交
換樹脂の充填方法は実施例2と同じである。
(1) Ion exchange resin used and packing: The same type II strong basic anion exchange resin as in Example 3 was used for the mixed bed type pure water production section using the same ion exchange column as in Example 3. Ionac ASB-2HP 1.00L and strong acid cation exchange resin Io
Using nac C-249 0.50L, strong acid cation exchange resin for polisher has high sedimentation rate.
It was filled using 0.50 L of the sieve fraction of ct CS-399C. Ionac
C-249 settling velocities are based on particle sizes of 16-40 ASTM
The mesh (particles -1.18 + 0.428), the degree of cross-linking is DVB 8%, and the true density is about 1.26, while the strongly acidic cation-exchange resin in the polisher with a high sedimentation rate is For the Ionac Impact CS-399C sieve product shown, the settling rate values are 16-18 ASTM mesh (particle size -1.18).
mm + 1.00 mm), the degree of cross-linking is DVB 10%, and the true density is approx.
It is as large as 1.32, and both the particle size and the true density, which are factors that increase the sedimentation velocity, are large. The filling method of each ion exchange resin is the same as that of the second embodiment.

【0049】(2)逆洗分離と沈降:実施例3と同様な
方法で、3種類のイオン交換樹脂を合計樹脂層膨張率が
約60% となるように20分間同時に逆洗して、各イオン交
換樹脂をスラリー状で分離した。その後、逆洗を停止し
て各樹脂層を自然沈降させ、上層にIonac ASB-2HP の層
を、中層にIonac C-249 の層を、下層にIonac Impact C
S-399C篩分品層を分離充填させた。
(2) Backwash separation and sedimentation: In the same manner as in Example 3, three types of ion exchange resins were backwashed simultaneously for 20 minutes so that the total resin layer expansion coefficient was about 60%, and The ion exchange resin was separated as a slurry. After that, backwashing was stopped and each resin layer was allowed to spontaneously settle, and the upper layer was the Ionac ASB-2HP layer, the middle layer was the Ionac C-249 layer, and the lower layer was the Ionac Impact C layer.
The S-399C sieve fraction layer was separately packed.

【0050】(3)再生:実施例3と同様に行った。(3) Regeneration: The same as in Example 3.

【0051】(4)全量混合:実施例3と同様に行っ
た。
(4) Total amount mixing: The same as in Example 3.

【0052】(5)層固定・洗浄:実施例3と同様に行
ったが、ポリシャー部の沈降と固定は実施例3の場合よ
り迅速に行われたので、混床式純水製造部の混合樹脂層
の再分離が少なく、良好な混合状態を保って層固定が行
われた。
(5) Layer fixing / washing: The same procedure as in Example 3 was carried out, but the sedimentation and fixing of the polisher portion were carried out more quickly than in the case of Example 3, so that mixing in the mixed bed type pure water producing section was carried out. There was little re-separation of the resin layer, and the layer was fixed while maintaining a good mixed state.

【0053】(6)無臭イオン交換純水の製造:実施例
3と同様にして行い、無臭イオン交換純水が得られた。
イオン交換純水及び、ポリシャー部を通過した脱臭イオ
ン交換純水等の処理結果を以下の表5に示す。
(6) Production of odorless ion-exchanged pure water: Odorless ion-exchanged pure water was obtained in the same manner as in Example 3.
Table 5 below shows the treatment results of ion-exchanged pure water and deodorized ion-exchanged pure water that has passed through the polisher portion.

【0054】[0054]

【表5】 [Table 5]

【0055】表5の結果から、沈降速度の大なる水素型
強酸性カチオン交換樹脂をポリシャー部として使用した
全量混合方式による混床式イオン交換純水の脱臭システ
ム処理を行った結果、II型強塩基性アニオン交換樹脂を
使用した混床式イオン交換純水は、芳香的アミン臭を有
していたが、ポリシャー部による処理により、かかるア
ミン臭は全て除去されて無臭となり、また電気伝導率
(導電率)はイオン交換純水の0.45μS/cm(25℃)が0.
41μS/cm(25℃)に低下して安定し、沈降速度の大き
いポリシャー部を使用しない実施例3の場合より良質の
処理水が一本のイオン交換塔を使用するだけで容易に得
られることが分かった。
From the results of Table 5, as a result of the deodorization system treatment of the mixed bed type ion exchange pure water by the total mixing method using the hydrogen type strongly acidic cation exchange resin having a high sedimentation rate as the polisher part, the strong type II was obtained. The mixed-bed type ion-exchanged pure water using the basic anion exchange resin had an aromatic amine odor, but the treatment with the polisher part removed all the amine odors and made them odorless, and the electric conductivity ( Conductivity) is 0.45μS / cm (25 ℃) of ion-exchanged pure water is 0.
It is stable at 41 μS / cm (25 ° C.) and the treated water of better quality than in the case of Example 3 which does not use the polisher part having a high sedimentation rate can be easily obtained by using only one ion exchange column. I understood.

【0056】[0056]

【発明の効果】以上の説明から明らかなように、本発明
のシステムによれば、水素型強酸性カチオン交換樹脂と
水酸基型強塩基性アニオン交換樹脂との混合樹脂層を有
する混床式純水製造部の下部にポリッシング用水素型強
酸性カチオン交換樹脂層を設けたため、当該混合樹脂層
を有する混床式純水製造装置により生成されるイオン交
換純水中に含まれるアミン臭気を発生する物質を除去し
て、イオン交換純水を無臭にすることができる。
As is apparent from the above description, according to the system of the present invention, a mixed bed type pure water having a mixed resin layer of a hydrogen type strongly acidic cation exchange resin and a hydroxyl group type strongly basic anion exchange resin. Since a hydrogen-type strongly acidic cation exchange resin layer for polishing is provided in the lower part of the production unit, a substance that generates an amine odor contained in ion-exchanged pure water produced by a mixed bed type pure water production apparatus having the mixed resin layer. Can be removed to make the ion-exchanged pure water odorless.

【0057】また、ポリッシング用として使用する水素
型強酸性カチオン交換樹脂層は、混合樹脂層を構成する
強酸性カチオン交換樹脂を鉱酸により向流再生する際
に、再生毎に必ず新しい鉱酸により処理が優先的にかつ
十分に行われるので、その再生が十分に行われるほか、
殺菌・消毒を行うことが出来、処理水の微生物汚染をも
防止することができる。
In addition, the hydrogen-type strongly acidic cation exchange resin layer used for polishing is always regenerated by a new mineral acid at each regeneration when the strongly acidic cation exchange resin constituting the mixed resin layer is countercurrently regenerated with the mineral acid. Since the processing is performed preferentially and sufficiently, the reproduction is sufficiently performed,
Sterilization and disinfection can be performed, and microbial contamination of treated water can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のイオン交換純水の脱臭システムの原理
説明図である。
FIG. 1 is a diagram illustrating the principle of a deodorizing system for ion-exchanged pure water according to the present invention.

【図2】本発明の部分混合方式における樹脂充填の状態
を示す図である。
FIG. 2 is a diagram showing a state of resin filling in the partial mixing system of the present invention.

【図3】本発明の部分混合方式における逆洗分離の状態
を示す図である。
FIG. 3 is a diagram showing a state of backwash separation in the partial mixing system of the present invention.

【図4】本発明の部分混合方式における沈降の状態を示
す図である。
FIG. 4 is a diagram showing a state of sedimentation in the partial mixing system of the present invention.

【図5】本発明の部分混合方式における再生の状態を示
す図である。
FIG. 5 is a diagram showing a state of reproduction in the partial mixing system of the present invention.

【図6】本発明の部分混合方式における部分混合の状態
を示す図である。
FIG. 6 is a diagram showing a state of partial mixing in the partial mixing system of the present invention.

【図7】本発明の部分混合方式における層固定・洗浄の
状態を示す図である。
FIG. 7 is a diagram showing a state of layer fixing / washing in the partial mixing system of the present invention.

【図8】本発明の部分混合方式における処理の状態を示
す図である。
FIG. 8 is a diagram showing a processing state in the partial mixing system of the present invention.

【図9】本発明の全量混合方式における全量混合の状態
を示す図である。
FIG. 9 is a diagram showing a state of total volume mixing in the total volume mixing method of the present invention.

【図10】本発明の全量混合方式における層固定・洗浄
の状態を示す図である。
FIG. 10 is a diagram showing a state of layer fixing and washing in the total volume mixing method of the present invention.

【図11】本発明の全量混合方式における処理の状態を
示す図である。
FIG. 11 is a diagram showing a processing state in the total amount mixing method of the present invention.

【図12】本発明の大沈降速度水素型強酸性カチオン交
換樹脂含有全量混合方式における樹脂充填の状態を示す
図である。
FIG. 12 is a diagram showing a state of resin filling in a total sedimentation rate mixing method with a large sedimentation rate hydrogen type strongly acidic cation exchange resin of the present invention.

【図13】本発明の大沈降速度水素型強酸性カチオン交
換樹脂含有全量混合方式における逆洗分離の状態を示す
図である。
FIG. 13 is a diagram showing a state of backwash separation in a total sedimentation rate system containing a large sedimentation rate hydrogen type strongly acidic cation exchange resin of the present invention.

【図14】本発明の大沈降速度水素型強酸性カチオン交
換樹脂含有全量混合方式における沈降の状態を示す図で
ある。
FIG. 14 is a diagram showing a state of sedimentation in a total sedimentation rate mixing method for a large sedimentation rate hydrogen type strongly acidic cation exchange resin of the present invention.

【図15】本発明の大沈降速度水素型強酸性カチオン交
換樹脂含有全量混合方式における再生の状態を示す図で
ある。
FIG. 15 is a diagram showing a state of regeneration in a total sedimentation rate system containing a large sedimentation rate hydrogen type strongly acidic cation exchange resin of the present invention.

【図16】本発明の大沈降速度水素型強酸性カチオン交
換樹脂含有全量混合方式における全量混合の状態を示す
図である。
FIG. 16 is a diagram showing the state of total volume mixing in the total volume mixing system containing a large sedimentation rate hydrogen type strongly acidic cation exchange resin of the present invention.

【図17】本発明の大沈降速度水素型強酸性カチオン交
換樹脂含有全量混合方式における層固定・洗浄の状態を
示す図である。
FIG. 17 is a diagram showing a state of layer fixation / washing in the large sedimentation rate hydrogen type strongly acidic cation exchange resin-containing total amount mixing method of the present invention.

【図18】本発明の大沈降速度水素型強酸性カチオン交
換樹脂含有全量混合方式における処理の状態を示す図で
ある。
FIG. 18 is a diagram showing the state of treatment in the large sedimentation rate hydrogen type strongly acidic cation exchange resin-containing total amount mixing method of the present invention.

【符号の説明】[Explanation of symbols]

T イオン交換塔、I 樹脂充填時強酸性カチオン交換
樹脂層、2 樹脂充填時混床式用強塩基性アニオン交換
樹脂層、1′逆洗膨張時強酸性カチオン交換樹脂スラリ
ー、2′逆洗膨張時強塩基性アニオン交換樹脂スラリ
ー、W 水層、1″沈降後の強酸性カチオン交換樹脂
層、2″沈降後の強塩基性アニオン交換樹脂層、
1′′′再生後の強酸性カチオン交換樹脂層、2′′′
再生後の強塩基性アニオン交換樹脂層、A 部分混合用
気体放散器、3 水素型強酸性カチオン交換樹脂ポリシ
ャー部、4 部分混合中の混床層用混合樹脂スラリー、
5 再生済み混床式純水製造部、A′全量混合用気体放
散器、6 全量混合中の全樹脂層、7水素型強酸性カチ
オン交換樹脂ポリシャー部、8 再生済み混床式純水製
造部、9 樹脂充填時大沈降速度強酸性カチオン交換樹
脂ポリシャー部、10 樹脂充填時混床式用強酸性カチオ
ン交換樹脂層、9′逆洗膨張時大沈降速度強酸性カチオ
ン交換樹脂ポリシャースラリー、10′逆洗膨張時混床式
用強酸性カチオン交換樹脂スラリー、9″ 沈降後の大
沈降速度強酸性カチオン交換樹脂ポリシャー部、10″
沈降後の混床式用強酸性カチオン交換樹脂層、9′′′
再生後の大沈降速度強酸性カチオン交換樹脂ポリシャー
部、10′′′再生後の混床式用強酸性カチオン交換樹脂
層、11 全量混合中の全樹脂スラリー、12 大沈降速度
水素型強酸性カチオン交換樹脂ポリシャー部、13 再生
済み混床式純水製造部
T Ion exchange tower, I Strongly acidic cation exchange resin layer for resin filling, 2 Strongly basic anion exchange resin layer for mixed bed type for resin filling, 1'Backwash expansion strong acidic cation exchange resin slurry, 2'Backwash expansion When strongly basic anion exchange resin slurry, W water layer, 1 ″ strongly acidic cation exchange resin layer after sedimentation, 2 ″ strongly basic anion exchange resin layer after sedimentation,
1 ″ ″ Strongly acidic cation exchange resin layer after regeneration, 2 ″ ″
Strongly basic anion exchange resin layer after regeneration, gas diffuser for A partial mixing, 3 hydrogen type strongly acidic cation exchange resin polisher part, 4 mixed resin slurry for mixed bed layer during partial mixing,
5 Regenerated mixed bed type pure water production section, A'gas mixture for total volume mixing, 6 All resin layer in total volume mixing, 7 Hydrogen type strong acid cation exchange resin polisher section, 8 Regenerated mixed bed type pure water production section , 9 Large sedimentation rate at resin filling Strong acidic cation exchange resin polisher part, 10 Strong acidic cation exchange resin layer for mixed bed at resin filling, 9'Large sedimentation rate at backwash expansion Great acidic cation exchange resin polisher slurry, 10 ' Strong acid cation exchange resin slurry for mixed bed type during backwash expansion, 9 ″ Large sedimentation rate after sedimentation Strong acidic cation exchange resin polisher part, 10 ″
Strong acid cation exchange resin layer for mixed bed type after settling, 9 ′ ″
Large sedimentation rate after regeneration Strong acidic cation exchange resin polisher part, 10 ″ ″ Regenerated strong acid cation exchange resin layer for mixed bed, 11 Total resin slurry during total mixing, 12 Large sedimentation rate Hydrogen type strong acidic cation Exchange resin polisher, 13 regenerated mixed bed pure water production

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水素型強酸性カチオン交換樹脂と水酸基型
強塩基性アニオン交換樹脂の混合樹脂層を有する混床式
純水製造部と、該混床式純水製造部の混合樹脂層下部に
ある水素型強酸性カチオン交換樹脂層を有するポリッシ
ング部とに通水して処理することにより、前記混床式純
水製造部より生成したイオン交換純水中に含まれる臭気
物質を除去することを特徴とするイオン交換純水の脱臭
システム。
1. A mixed bed type pure water production section having a mixed resin layer of a hydrogen type strongly acidic cation exchange resin and a hydroxyl group type strongly basic anion exchange resin, and a lower portion of the mixed resin layer of the mixed bed type pure water production section. It is possible to remove odorous substances contained in the ion-exchanged pure water generated from the mixed bed type pure water production unit by treating the polishing unit having a hydrogen-type strongly acidic cation exchange resin layer with water. Characteristic ion exchange pure water deodorization system.
【請求項2】前記ポリッシング部の水素型強酸性カチオ
ン交換樹脂層を、混床式純水製造部の混合樹脂層下部に
有するシステムにおいて、先ず当該ポリッシング部の水
素型強酸性カチオン交換樹脂層の下部より水を上向流で
通水して逆洗することにより、該混合樹脂層の強塩基性
アニオン交換樹脂層を上層に、強酸性カチオン交換樹脂
層を下層に分離し、強塩基性アニオン交換樹脂層に苛性
アルカリを下向流で通薬して再生し、一方強酸性カチオ
ン交換樹脂層には鉱酸をポリッシング部の強酸性カチオ
ン交換樹脂層の下部より上向流で通薬し、引き続き混床
式純水製造部の強酸性カチオン交換樹脂層に通薬するこ
とにより、両強酸性カチオン交換樹脂層を再生し、それ
ぞれの樹脂層を水洗した後、混床式純水製造部の強酸性
カチオン交換樹脂下端面より空気を吹き込んで混床式純
水製造部のカチオン交換樹脂とアニオン交換樹脂部分を
混合することを特徴とする請求項1記載のイオン交換純
水の脱臭システム。
2. A system having the hydrogen type strong acid cation exchange resin layer of the polishing section below the mixed resin layer of the mixed bed type pure water producing section, wherein the hydrogen type strong acid cation exchange resin layer of the polishing section is first prepared. The mixed resin layer is separated into a strong basic anion-exchange resin layer as an upper layer and a strong acidic cation-exchange resin layer as a lower layer by backwashing with water flowing upward from the lower part. The caustic is passed through the exchange resin layer in a downward flow to regenerate it, while the strong acid cation exchange resin layer is passed through with a mineral acid in an upward flow from below the strong acid cation exchange resin layer in the polishing section, Then, by passing through the strongly acidic cation exchange resin layer of the mixed bed type pure water production section to regenerate both strongly acidic cation exchange resin layers and washing each resin layer with water, the mixed bed type pure water production section Strongly acidic cation exchange resin Deodorization system of the ion-exchange purified water according to claim 1, wherein the mixing cation-exchange resin and the anion exchange resin portion of the mixed-bed water purification unit by blowing air from the end face.
【請求項3】前記ポリッシング部の水素型強酸性カチオ
ン交換樹脂層を、混床式純水製造部の混合樹脂層下部に
有するシステムにおいて、先ず当該ポリッシング部の水
素型強酸性カチオン交換樹脂層の下部より水を上向流で
通水して逆洗することにより、該混合樹脂層の強塩基性
アニオン交換樹脂層を上層に、強酸性カチオン交換樹脂
層を下層に分離し、強塩基性アニオン交換樹脂層に苛性
アルカリを下向流で通薬して再生し、一方強酸性カチオ
ン交換樹脂層には鉱酸をポリッシング部の強酸性カチオ
ン交換樹脂層の下部より上向流で通薬し、引き続き混床
式純水製造部の強酸性カチオン交換樹脂層に通薬するこ
とにより、両強酸性カチオン交換樹脂層を再生し、それ
ぞれの樹脂層を水洗した後、全樹脂層最下部より空気を
吹き込んで全イオン交換樹脂層を混合した後、ポリッシ
ング部の水素型強酸性カチオン交換樹脂層が下層に沈降
後、混合樹脂層上部より水を下向流で通水し排出して混
合樹脂層を固定させることを特徴とする請求項1記載の
イオン交換純水の脱臭システム。
3. A system having the hydrogen type strong acid cation exchange resin layer of the polishing section below the mixed resin layer of the mixed bed type pure water producing section, wherein the hydrogen type strong acid cation exchange resin layer of the polishing section is first prepared. The mixed resin layer is separated into a strong basic anion-exchange resin layer as an upper layer and a strong acidic cation-exchange resin layer as a lower layer by backwashing with water flowing upward from the lower part. The caustic is passed through the exchange resin layer in a downward flow to regenerate it, while the strong acid cation exchange resin layer is passed through with a mineral acid in an upward flow from below the strong acid cation exchange resin layer in the polishing section, Continuously, by passing through the strong acid cation exchange resin layer of the mixed bed type pure water production section to regenerate both strong acid cation exchange resin layers and washing each resin layer with water, air is blown from the bottom of all resin layers. Blowing in all Io After mixing the exchange resin layer, after the hydrogen-type strongly acidic cation exchange resin layer of the polishing part has settled to the lower layer, water is allowed to flow downward from the top of the mixed resin layer and discharged to fix the mixed resin layer. The deodorizing system for ion-exchanged pure water according to claim 1.
【請求項4】前記ポリッシング部の水素型強酸性カチオ
ン交換樹脂として、沈降速度が混床式純水製造部の強酸
性カチオン交換樹脂より大なるものを使用することを特
徴とする請求項2または3記載のイオン交換純水の脱臭
システム。
4. The hydrogen-type strongly acidic cation exchange resin used in the polishing section is one having a sedimentation rate higher than that of the strongly acidic cation exchange resin used in the mixed bed type pure water production section. 3. A deodorizing system for ion-exchanged pure water according to 3.
JP12112095A 1995-04-06 1995-05-19 Deodorizing apparatus of ion exchange pure water Pending JPH08309348A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12112095A JPH08309348A (en) 1995-05-19 1995-05-19 Deodorizing apparatus of ion exchange pure water
US08/625,149 US5942122A (en) 1995-04-06 1996-04-01 Method of deodorizing ion-exchanged purified water
EP96302446A EP0736492A3 (en) 1995-04-06 1996-04-04 Method of deodorizing ion-exchanged purified water
TW085103951A TW363942B (en) 1995-04-06 1996-04-05 Method of deodorizing ion-exchanged purified water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12112095A JPH08309348A (en) 1995-05-19 1995-05-19 Deodorizing apparatus of ion exchange pure water

Publications (1)

Publication Number Publication Date
JPH08309348A true JPH08309348A (en) 1996-11-26

Family

ID=14803384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12112095A Pending JPH08309348A (en) 1995-04-06 1995-05-19 Deodorizing apparatus of ion exchange pure water

Country Status (1)

Country Link
JP (1) JPH08309348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024379A (en) * 2013-07-26 2015-02-05 水ing株式会社 Method and apparatus for removing odor originated from anion exchange resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024379A (en) * 2013-07-26 2015-02-05 水ing株式会社 Method and apparatus for removing odor originated from anion exchange resin

Similar Documents

Publication Publication Date Title
US4305826A (en) Method and apparatus for softening and filtering water
JPS6159793B2 (en)
JPH0790219B2 (en) Pure water production apparatus and production method
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
WO2007040266A1 (en) Process and equipment for demineralizing condensate
JPH08309348A (en) Deodorizing apparatus of ion exchange pure water
JPH11352283A (en) Condensate processing method and condensate demineralization device
JPH10137751A (en) Ion exchange method and ion exchange column used for ion exchange method
US5942122A (en) Method of deodorizing ion-exchanged purified water
JP2607534B2 (en) Device for removing odor components in pure water
JPS5815193B2 (en) How to treat boron-containing water
JP3613376B2 (en) Pure water production apparatus and pure water production method
JPH08276180A (en) Method for deodorizing and purifying ion exchange pure water
JPH0443705B2 (en)
JP2546750B2 (en) How to sterilize activated carbon
JP3913379B2 (en) Regeneration method of mixed bed type ion exchange equipment
JP2007075720A (en) Method for treating strong basic anion exchange resin and strong basic anion exchange resin obtained thereby
JPH0768254A (en) Pure water producing apparatus and its regeneration
JP2742975B2 (en) Regeneration method of ion exchange device
JP2003190951A (en) Ultrapure water supply apparatus
JP3417256B2 (en) Regeneration method of anion exchange resin
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP6177039B2 (en) Method and apparatus for removing odor derived from anion exchange resin
JPH0372900A (en) Method for purifying sucrose solution and treating equipment therefor
JPH078948A (en) Subsystem incorporated with apparatus for producing electrically deionized water

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511