JPH08308564A - 組換えdna法によるトランスグルタミナーゼの効率的製造法 - Google Patents

組換えdna法によるトランスグルタミナーゼの効率的製造法

Info

Publication number
JPH08308564A
JPH08308564A JP7118067A JP11806795A JPH08308564A JP H08308564 A JPH08308564 A JP H08308564A JP 7118067 A JP7118067 A JP 7118067A JP 11806795 A JP11806795 A JP 11806795A JP H08308564 A JPH08308564 A JP H08308564A
Authority
JP
Japan
Prior art keywords
transglutaminase
dnaj
gene encoding
escherichia coli
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7118067A
Other languages
English (en)
Other versions
JP3656277B2 (ja
Inventor
Keiichi Yokoyama
敬一 横山
Takasane Kikuchi
慶実 菊池
Hisashi Yasueda
寿 安枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP11806795A priority Critical patent/JP3656277B2/ja
Priority to US08/649,193 priority patent/US5827712A/en
Priority to EP96107929A priority patent/EP0743365B1/en
Priority to DE69632887T priority patent/DE69632887T2/de
Publication of JPH08308564A publication Critical patent/JPH08308564A/ja
Application granted granted Critical
Publication of JP3656277B2 publication Critical patent/JP3656277B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/104Aminoacyltransferases (2.3.2)
    • C12N9/1044Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/82Proteins from microorganisms
    • Y10S530/825Bacteria

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

(57)【要約】 【構成】 本発明は組換えDNA法により形質転換され
た大腸菌を培養して、目的とするトランスグルタミナー
ゼを製造する方法において、大腸菌熱ショックタンパク
質(DnaJ)を共生産させることにより、その当該ト
ランスグルタミナーゼの過剰発現に伴う大腸菌体内での
不溶化を抑制し、生理活性を発現しやすい可溶化状態
で、該トランスグルタミナーゼを産生し、取得するとい
う製造法に関する。 【効果】 本発明の組換えDNA法によるトランスグル
タミナーゼの新規製造法は、従来の製造法に比べ、活性
を発揮しやすい形態でのトランスグルタミナーゼを極め
て著量に生産可能とする。この事は、食品産業上利用価
値が高いトランスグルタミナーゼを、大量にかつ安価に
供給する系を提供できるものである。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、組換えDNA法により
形質転換された大腸菌を培養して、目的とするトランス
グルタミナーゼ(以下、TGと略する)を効率的に製造
する方法に関する。より詳細には、本発明はTGの過剰
発現に伴う大腸菌内での不溶化を抑制し、より生理活性
を発現しやすい可溶化状態でTGを産生し、取得すると
いう製造法に関する。
【0002】
【従来の技術】大腸菌を宿主に、組換えDNA技術を用
いて、菌体内に目的ポリペプチドを産生させることは、
現在広く用いられている手法である。しかしながら、目
的ポリペプチドを過剰産生させた多くの場合、その目的
ポリペプチドは、大腸菌体内に、本来の高次構造を持た
ずに、変性状態にて蓄積してしまう。一般には、菌体内
封入体と呼ばれる不溶性顆粒を形成しながら蓄積する
〔Schein, Bio/Technology, 7: 1141-1149(1989)〕。
【0003】この不溶性顆粒から、生理活性を発現しう
る目的ポリペプチドを得る為には、一旦塩酸グアニジン
や尿素といった変性剤を用いた変性溶液中で、その顆粒
を処理し、その顆粒中のポリペプチドを解きほぐした後
に、適当な立体構造再生処理を行うという一連の煩雑な
操作が必須であった〔Kohno et al., in Methods inEnz
ymology vol.185, pp187〕。この立体構造再生処理とし
ては、(1)目的ポリペプチドを含む変性溶液を透析操
作にて、変性剤を徐々にぬき、該ポリペプチドの立体構
造を再生させる方法や、(2)目的ポリペプチドが分子
内ジスルフィド結合を有する場合などは、適当な濃度の
酸化型そして還元型グルタチオンを加えた酸化還元系の
変性剤中で、該ポリペプチドをインキュベートする手法
等が知られている。
【0004】しかしながら、極めて再生効率の低い例や
あるいは、試験管内では立体構造を再生しきれない蛋白
質等もあり、このことは、大腸菌を宿主として組換えD
NA技術を用いても、最終的に正しい立体構造で活性を
発現できる目的ポリペプチドを取得する事が困難であっ
たり、あるいは、その取得の為には、極めて多大な労力
や精製コストが必要になる事を示している。また、組換
えポリペプチドを治療目的で投与する様な場合等は、不
完全に再生されたポリペプチドでは、これが生体中で抗
原性を発現する事になり、極めて大きな問題となってし
まう。
【0005】上述したような不溶性顆粒形成問題の簡便
な解決方法の一つに、目的ポリペプチドを産生する為に
改良された微生物、特に大腸菌の生産培養温度を下げる
という手法が知られている〔Schein, et al., Bio/Tech
nology, 6: 291-294(1988),Kopetzki, et al., Mol.Ge
n.Genet., 216: 149-155 (1989)〕。しかし、この低温
培養の場合、生産宿主である大腸菌の生育速度の低下と
共に、目的ポリペプチドの生産量も低下するという欠点
があった。
【0006】また、別の解決方法としては、目的ポリペ
プチドを大腸菌から分泌させる事で、立体構造を形成さ
せるという手法も報告されている。しかしながら、一般
に、大腸菌を宿主とした、外来ポリペプチドの分泌生産
性は低く、特にその目的ポリペプチドが、本来、非分泌
性のポリペプチドである場合などは、更に生産量は低い
とされる。
【0007】そこで、目的ポリペプチドが可溶化状態
で、且つ、活性発現可能な状態で、菌体内に著量蓄積さ
せる為の技術開発が切望されていた。
【0008】最近の研究によって、分子シャペロンと呼
ばれる一群の熱ショック蛋白質が、試験管内での蛋白質
の立体構造形成に極めて重要な働きをしている事が明ら
かになってきた〔Gething et al., Nature, vol.355, p
p33(1992)〕。それらの分子シャペロンは、各々の受け
持つ蛋白質の立体構造が崩れた時に、一時的に、それら
の蛋白質を安定化し、不適切な変性を防ぐ様に機能する
と考えられている。大腸菌においては、DnaK、Gr
oEL,GroES等が知られている。
【0009】そのような背景の下、蛋白質の立体構造形
成にかかわる補助因子(分子シャペロン)の重要性が、
認識されるようになり、分子シャペロンの過剰発現によ
る目的ポリペプチドの不溶化抑制効果が研究されてき
た。DnaK単独、あるいはGroEL,GroESの
過剰発現による目的ポリペプチドの溶解性改善の成功例
としては、リーらによるプロコラゲナーゼの研究〔Lee,
et al.,J.Biol.Chem.267: 2849-2852 (1992)〕があ
る。
【0010】最近、カスパースらは〔Caspers, et al.,
Cell. mol. Biol., 40: 635-644 (1994)〕プロテイン
チロシンキナーゼの大腸菌での発現の際に、(1)Gr
oELとGroESを同時に、あるいは(2)Dna
K,DnaJ、GrpE全てを同時に、その宿主へ導入
する事で可溶性のキナーゼ量の比率が増えたと報告して
いる。但し、それらのキナーゼは活性を発揮できる状態
かどうかは不明である。更に発現させたキナーゼの総生
産量は低下してしまうと報告している。一般に、蛋白質
合成速度を低下させると、該ポリペプチドの可溶性が増
すとされている為〔Kopetzki, et al., Mol.Gen, Gene
t., 216巻、149-155頁(1989)〕、彼らの報告では、実際
に分子シャペロンの機能効果なのか、分子シャペロンの
量産化の為に起こった宿主大腸菌の機能低下による効果
であるかは不明である。更に、彼らは、分子シャペロン
として、どの分子シャペロンの効果であるかは全く触れ
ていないし、溶解しているキナーゼが実際に、活性を発
揮したかどうかも不明である。
【0011】さて、TGはペプチド鎖内にあるグルタミ
ン残基のγ−カルボキシアミド基のアシル基転移反応を
触媒する酵素である。このTGはアシル受容体としてタ
ンパク質中のリジン残基のεアミノ基が作用すると、分
子内及び分子間にε−(γ−グルタミル)リジン架橋結
合が形成され、また、アシル受容体としてアミノ酸、ア
ミノ酸誘導体等の、一級アミンが存在した時は、それが
タンパク質に導入される。そして水がアシル受容体とし
て機能する時は、グルタミン残基が脱アミド化されグル
タミン酸残基になる反応を進行させる酵素である。
【0012】TGはゲル状食品、ゲル状化粧品をはじめ
としてヨーグルト、ゼリー及びチーズ等を製造する際に
用いられている(特公平1-50382、特開平64ー27471号等
参照)。
【0013】TGは微生物から哺乳類まで、存在する酵
素である。例えば、モルモット由来のもの〔Connellan,
et al., Journal of Biological Chemistry 246巻4
号、1093-1098頁、(1971)〕、ヒトの血液凝固第13因
子〔Takahashi, et al., Proc. Natl. Acad. Sci. USA
83巻、8019-8023頁、(1986)〕、微生物由来のもの(特
開昭64-27471号参照)等が知られている。
【0014】更に最近、我々は、魚類由来のTGの精製
に成功し、その遺伝子cDNAを取得し、構造について
解明した(特開平7-23787号参照)。
【0015】一方、TGの組換えDNA技法による、大
腸菌を宿主とした生産例としては、モルモット肝TGの
例〔Ikura, et al., Eur. J. Biochem. 187巻、705-711
頁(1990)〕やヒト血液凝固第13因子の例〔Board, et
al., Thrombosis and Haemostasis, 63巻2号、235-240
頁(1990)〕が報告されているが、共に、それぞれの抗体
で、その生産量を検定する程度の極めて少量の発現量で
あると言える。
【0016】我々は、先に組換えDNA技術を用い、真
鯛TGの大腸菌を宿主にして、従来は思いもしなかった
大量発現生産に成功している(特開平6−225775
参照)。 しかし、そのTGを生産するように改変され
た大腸菌の培養を37℃で行うと、産生されたTGは、
やはり菌体内に封入体を形成して、不活性体として蓄積
するにとどまっていた。一方、培養温度30℃では、活
性を発揮するTGの生産に至るが、詳細にその蓄積状態
を解析すると、大腸菌の細胞抽出液中に回収されない不
溶性のTGは、生産されたTGの約4/5ある事が判明
した。つまり、培養温度30℃でも、充分な可溶化状態
で該TGが蓄積していない事が判明したのである。
【0017】更に低温側の培養温度にて、該TGの生産
菌を培養したところ、TGの可溶性分子の比率は増加し
たものの、総生産量の顕著な低下がみられ、結局、従来
の方法では、大腸菌を宿主にして目的ポリペプチドであ
るTGを、更に極めて著量に蓄積させる有効な製造方法
がなかった。
【0018】
【発明が解決しようとする課題】食品に馴染みの深い魚
由来TGの食品製造における産業的応用を考えるに、該
TGの大量、かつ安価な製造法の開発は待望されてい
る。その解決の為の中心課題は、量産化目的ポリペプチ
ドの生産宿主菌体内での不溶化阻止あるいは抑制技術の
開発にある。つまり、更なる量産化の為には、菌体内で
の不溶化TGを可溶化し、活性発現可能な立体構造を保
持するTGとして、著量蓄積せしめる技術を開発する事
である。
【0019】
【課題を解決するための手段】本発明者らは、研究当
初、既に公知技術である、GroEL,GroES,そ
してDnaKの過剰産生による、目的ポリペプチドであ
るTGの可溶化能の検討を行った。しかしながら、従
来、報告されてきた、各シャペロンでは、全くその効果
を発揮できず、あるいは、逆に、宿主菌体の生育を阻害
してしまうという結果を得た。
【0020】そこで、本発明者らは上記課題を解決すべ
く、様々なシャペロンの効果を鋭意検討を加えた結果、
従来のGroEL、GroES、やDnaKとは異な
り、全く思いもよらないシャペロンの補助的因子である
ところのDnaJが、目的ポリペプチドであるTGの菌
体内での可溶化蓄積、及び活性発現可能状態での著量蓄
積において、有効な効果を発揮する事を見いだした。更
に解析した結果、そのDnaJが該TGの可溶化に中心
的な役割を果たしており、そこへdnaK遺伝子産物が
追加する事で、よりその可溶化及び活性発現可能な状態
での蓄積効果が安定する事を見いだした。
【0021】つまりは、DnaJ又はDnaJ,Dna
Kの過剰発現大腸菌を用いた宿主において、目的ポリペ
プチドを生産させる事で、目的ポリペプチドを即活性発
現可能な状態の可溶化状態にて著量蓄積させ、そして取
得できる事を発見し、このことにより、目的ポリペプチ
ドであるTGを極めて効率よく、且つ経済的に製造する
方法の開発に成功し、本発明を完成した訳である。
【0022】本発明は全ての種類のTGに適用できる汎
用性の高い技術であるが、特に、魚由来のTGの生産に
は最もふさわしい技術である。本発明により、食品産業
上有益な酵素であるTGを安価に、効率的に、かつ大量
に生産することができる。
【0023】即ち、本発明はDnaJが過剰産生されて
いる大腸菌を宿主としたTGの製造法である。以下に本
発明を詳細に説明する。
【0024】本発明は、上述したように、(1)dna
J遺伝子、又は(2)dnaK遺伝子及びdnaJ遺伝
子の発現を強化した大腸菌宿主を用いたTGの製造法に
関するが、その一例としては、(1)dnaJ遺伝子、
あるいは(2)dnaK遺伝子及びdnaJ遺伝子を含
有するベクター及び目的ポリペプチドであるTGをコー
ドする遺伝子を含有するベクターを保持する大腸菌を培
養し、菌体内に活性発現可能な形態で蓄積した目的TG
を採取する事を特徴とするTGの製造法に関するもので
ある。
【0025】ここに、DnaKとは大腸菌の主要な熱シ
ョックタンパク質のひとつで、熱以外にも様々な環境的
ストレスに対応して合成され、細胞内でのタンパク質の
立体構造形成過程において、重要な役割をもつ。一方、
DnaJは、DnaKの反応を補助する因子として知ら
れている〔Gething, et al., Nature, 355巻, 33-45頁
(1992)〕。
【0026】それらのシャペロン遺伝子の取得方法とし
ては、(1)まず、それらの温度感受性株を用いて、そ
の温度感受性を相補できる遺伝子を、大腸菌の野生株の
染色体からクローニングする方法や、(2)それらシャ
ペロンのDNA塩基配列は公知であるので、PCR法
(ポリメラーゼ連鎖反応法)によるクローニング等が挙
げられる。いずれの方法を用いても構わない。
【0027】(1)dnaJ又は(2)dnaK、dn
aJ遺伝子の発現には、それぞれのプロモーターの利用
でもよいし、あるいは、ベクター上にあるものや大腸菌
由来のものを組み込んでもよい。例えば、trpプロモー
ター、lacプロモーターなどを用いる事もできる。
【0028】これら(1)dnaJ又は(2)dna
K,dnaJ遺伝子を組み込むベクターは市販されてい
るものでも、任意に各人が作製したものでもかまわな
い。しかしながら、一般には、目的ポリペプチドである
TGの大量生産用プラスミドはpBR322由来か、pUC18やp
UC19由来である事が多い為、これらのプラスミドと共存
できるプラスミドベクターである事が望ましいため、pA
CYC184由来やpMW118由来のプラスミド等に代表されるプ
ラスミドベクターを用いるのが一般的である。このよう
に、熱ショック蛋白質のDnaJをコードする遺伝子を
含有するベクターとTGをコードする遺伝子を含有する
ベクターの2種類のベクターを大腸菌内に保持させても
よい。
【0029】また、一方で、これら(1)dnaJ又は
(2)dnaK,dnaJの遺伝子発現系を、目的ポリ
ペプチドであるTGの遺伝子発現プラスミド上に組み込
んでもよい。このように、dnaJをコードする遺伝子
及びTGをコードする遺伝子が同一ベクター上に存在す
るベクターを用いても良い。
【0030】更には、宿主大腸菌の染色体上にある
(1)dnaJ又は(2)dnaK,dnaJ遺伝子の
発現を強化した株を予め作製しておき、これを目的ポリ
ペプチドであるTG生産の宿主としても用いる事もでき
る。
【0031】それらシャペロン発現の強化方法は、該シ
ャペロン遺伝子の上流にlacプロモーター等の強力なプ
ロモーターを接続させたシャペロン発現系を試験管内
で、公知の方法により作製し、これを、元の大腸菌染色
体内の該シャペロン遺伝子と置換する方法や、染色体上
の該シャペロンの遺伝子の数を増幅させる方法による。
即ち、この方法はdnaJ遺伝子の発現が増強された、
又は、dnaJの遺伝子量が増幅された染色体を有し、
かつTGをコードする遺伝子を含有するベクターを保持
する大腸菌を用いる方法である。
【0032】一方、TGの発現プラスミドは公開特許明
細書に記載された方法により取得できる(特開平6-2257
75、欧州出願公開EP-0555649A参照)。
【0033】次に、TG遺伝子を搭載する発現ベクター
や、dnaJ、dnaK等の熱ショックタンパク質遺伝
子を搭載するベクターで形質転換された種々の形質転換
体について説明する。本発明に於いて形質転換体として
用いられる生物は大腸菌K−12株である。この中でも
Escherichia coliHB101株やJM109株が好まし
い。これら形質転換体を適切な培地中で培養することに
より、真鯛TG遺伝子の発現産物である真鯛由来TGを
細胞内に産生、蓄積させる。尚、形質転換は通常用いら
れる方法により行われる。例えば、カルシウムクロライ
ド法やエレクトロポレーション法等である。もちろん、
他の方法を用いても構わない〔Sambrook, et al., Mole
cular cloning: a Laboratory Manual. ColdSpring Har
bor Laboratory Press, New York(1989)〕。
【0034】最後に、上記の形質転換体を培地中で培養
する事により、組換型TGを製造する方法について説明
する。培養条件は、形質転換体や遺伝子発現系の種類に
応じて当業者が適宜決定し得るものである。また、発現
され細胞内に蓄積された当該TGは、従来から公知の種
々の方法で単離、精製される。例えば、報告されている
天然の真鯛からの精製方法と同様の手法により〔Yasued
a, et al.,Biosci. Biotech. Biochem., 58: 2041-2045
(1994)〕、遺伝子組換型TGも精製できる。
【0035】なお、TGの活性は、ジメチル化カゼイン
とモノダンシルカダベリンを基質として反応を行い、取
り込まれたモノダンシルカダベリンに由来するカゼイン
の蛍光強度増加を測定することにより求める。反応組成
液を以下に記載する。 〈反応組成液〉 1.0mg/ml ジメチル化カゼイン 0.015mM モノダンシルカダベリン 3.0mM ジチオスレイトール 50mM トリス塩酸緩衝液(pH7.5) 5mM 塩化カルシウム なお、後記実施例でも、特段の記載がない限り本条件を
採用している。
【0036】上記反応組成液2.4mlにTG溶液20
から100μl加え、37℃、30分の反応を行った
後、500mMのEDTAを100μl加えて反応を停
止させ、蛍光強度を測定する(島津社製 RFー150
0、励起波長350nm、蛍光波長480nm)。
【0037】
【実施例】以下、本発明を実施例に従って更に詳細に説
明する。尚、本発明は実施例に限定されるものではな
い。
【0038】(実施例1) (真鯛由来トランスグルタミナーゼの製造法) (1)熱ショックタンパク質をコードするdnaK遺伝
子、dnaJ遺伝子、そしてgroESL遺伝子群のク
ローニング 本発明者らは、各種熱ショック蛋白質の遺伝子を大腸菌
の染色体からPCR法によりクローニングした〔Erlic
h, et al., Nature, 331巻、461-462頁(1988)〕。
【0039】各遺伝子、dnaK〔Cowing, et al., Pr
oc.Natl.Acad.Sci.USA, 82巻、2679-2683頁(1985)、Bar
dwell, et al.,Proc. Natl. Acad.Sci.USA, 81巻、848-
852頁(1984)〕、dnaJ〔Ohki, et al., J.Biol. Che
m., 261巻、1778-1781頁 (1986)〕、groESL〔Hem
mingsen, et al., Nature, 333巻、330-334頁(198
8)〕の塩基配列は既に公知である。そこで、各2種の
DNAプライマーを作製した。まず、dnaKについて
は、プライマーDNAK−01(5’−CCTTGAT
GACGTGGTTTACG−3’)(配列番号1)と
DNAK-02(5'-CCTTCGCCCGTGTCAGTATA-3')(配列番号2)
を、dnaJについてはプライマーDNAJ-01(5'-CTGATGG
AATTCGCCCAGCA-3')(配列番号3)とDNAJ-02(5'-CGTGAG
AGGAATTCATCGGC-3')(配列番号4)をgroESLにつ
いては、GROELS-01(5'-GACGTCGATAGCAGGCCAAT-3')(配
列番号5)とGROESL-02(5'-GACGCACTCGCGTCGTCCGT-3')
(配列番号6)を作製した。なお、プライマーDNAJ-01
とDNAJ-02のDNA断片の5'端には制限酵素EcoRI切断認
識配列が組込まれている。
【0040】大腸菌のゲノムDNAを鋳型として、それぞ
れのDNAプライマーを用いて、94℃1分間、37℃2分
間、72℃3分間の反応を25サイクル行う条件にてPC
R増幅を試みたところ、目的の各遺伝子、dnaK、d
naJ、groESLのDNA断片が増幅され、取得する
事ができた。dnaK遺伝子の場合、まず、増幅された
DNA断片の両末端を平滑化した後、市販のプラスミドベ
クターpSTV28(宝酒造)の制限酵素HincII部位へ、公知
の方法により組み入れ、プラスミドpDnaK-01を構築し
た。このプラスミドの複製起点はp15A由来であるため、
pBR322やpUC19等のプラスミドと一つの細胞の中で共存
可能なプラスミドである。
【0041】遺伝子groESLの場合は、PCRにて
増幅させたDNA断片を、公知の方法により、市販のベク
ターpSTV28の制限酵素HincII部位へ組み入れ、pGroESL-
01を構築した。
【0042】遺伝子dnaJの場合は、PCR増幅DNA
断片を、まず制限酵素EcoRIで処理し、そのDNA末端
をEcoRI切断端とした。これを市販されているクローニ
ングベクターpSTV28のEcoRI部位へ挿入する事で、dnaJ
発現プラスミドpDnaJ-01を構築した。
【0043】(2)熱ショック蛋白質DnaK,Dna
Jオペロン遺伝子のクローニング dnaK、dnaJオペロン遺伝子の塩基配列も既に公
知である〔Cowing, etal., Proc.Natl.Acad.Sci.USA, 8
2巻、2679-2683頁(1985)、Bardwell, et al.,Proc. Nat
l. Acad.Sci.USA, 81巻、848-852頁(1984)、Ohki, et a
l., J.Biol. Chem., 261巻、1778-1781頁 (1986)〕。そ
こで、同様に、PCR法により目的遺伝子群をクローニ
ングした。使用したプライマーは、プライマーDNAKJ-0
1: 5'-CCTGGATCCCGTGGTTTACGACCCCATTTAGTAGTC-3'
(配列番号7)及び DNAKJ-02: 5'-TTCACCTGCAGGTTAAAT
CATATCAGGCGTAATAC-3'(配列番号8)であった。なお、
プライマーDNAKJ-01の、及びDNAKJ-02の5'側には、それ
ぞれ、制限酵素BamHI、Sse8387Iの切断認識配列を組み
入れた。また、増幅させる為の鋳型DNAは、大腸菌H
B101株より調製したゲノムである。これに対してP
CR反応を行ったところ、目的遺伝子オペロン断片に相
当する約3.4kbpのDNA断片を得た。なお、PCR条件
は、94℃で90秒間の熱変性後、98℃10秒、68℃5分30秒
を25サイクル、その後、72℃10分間であった。
【0044】これを制限酵素BamHI、Sse8387Iにて処理
し、それぞれの制限酵素切断端を持つPCR増幅断片を
得た。一方、ベクターにはpSTV28を用いた。これを同酵
素にて処理し、ここへ、上記PCR増幅DNA断片をクロ
ーニングする事で、プラスミドpDnaKJ-01を構築した。
【0045】(2)熱ショック蛋白質を過剰生産する大
腸菌宿主中で、真鯛TGを生産する例 真鯛TGの高発現プラスミドpTTG2-22(本プラスミドを
含有する大腸菌HB101株(AJ12742)は、通商産業
省工業技術院生命工学工業技術研究所(以下、生命研と
略する。)に寄託されており、その寄託番号はFERM BP-
4117である。)は、特開平6-225775、欧州出願公開EP-0
555649A に記載されているプラスミドである。
【0046】このTG生産菌に対して、上に記載した各
シャペロン遺伝子発現プラスミドを公知の方法にて大腸
菌に形質転換した。pTTG2-22とpDnaK-01を保持する株と
して、AJ-13098を得た。尚、Escherichia coli
AJ13098は生命研に寄託されており、その寄託番号はFER
M P-14914である。pTTG2-22とpDnaJ-01を保持する株と
して、AJ−13097を得た。尚、Escherichia coli
AJ13097は生命研に寄託されており、その寄託番号はFE
RM P-14913である。また、pTTG2-22とpGroESL-01を保持
する株としてAJ−13099を得た。尚、Escherichi
a coli AJ13099は生命研に寄託されており、その寄託番
号はFERM P-14915である。更に、そして、pTTG2-22とpD
naKJ-01を保持する株としてAJ-13096を得た。
尚、Escherichia coli AJ13096は生命研に寄託されてお
り、その寄託番号はFERM P-14912である。
【0047】取得した各形質転換体のコロニーを、10
0μg/mlのアンピシリンおよび30μg/mlのク
ロラムフエニコールを含む、2xTY培地(1.6%バクト
トリプトン、1%酵母エキス、0.5%NaCl、pH7の組成
よりなる)3mlに植菌し、32℃にて14時間振とう
培養した。
【0048】次に、上記の培養液0.5mlを修正M9カ
ザミノ酸培地(培地1リットルに、燐酸水素2ナトリウ
ム12水15.1g、燐酸2水素カリウム3.0g、カザミノ酸
8.0g、酵母エキス0.2g、L-ロイシン0.2g、L-プロリン0.
2g、ビタミンB1塩酸塩2mg、硫酸マグネシウム7水0.5
g、塩化カルシウム2水14.5mg、グルコース5.0gを含む
組成よりなる)50mlを含む坂口フラスコに接種し、
28℃、32℃並びに37℃で20時間振とう培養し、
菌体を遠心操作にて集菌した。
【0049】集菌した菌体を、30mlの菌体破砕液
(20mM Tris−HCl(pH7.5)、30mM
NaCl、5mM EDTAよりなる)に懸濁し、更
に10mg/ml リゾチーム溶液を2ml加え、氷上
に2時間静置した。その後、菌体懸濁液を超音波破砕し
た。次に、これを遠心処理(20000xgで10分
間)し、菌体破砕上清を調製した。また、同様に、コン
トロールとしてpTTG2−22及びベクターpSTV28を
保持する大腸菌についても菌体破砕し、その後、遠心分
離により菌体破砕上清液を調製した。
【0050】図1には、上記のうち、(1)大腸菌AJ13
096(FERM P-14912)株、(2)大腸菌AJ13097(FERM P-1
4913)株 及び(3)pTTG2-22と pSTV28を保持する大腸
菌HB101株を32℃で培養したものの菌体破砕液の全
画分と遠心上清画分に含まれるタンパク質状態をSDS
ーPAGE(ポリアクリルアミドゲル電気泳動)にて展
開し、解析した結果を示した。この結果から分かるよう
に、pTTG2-22と pSTV28を保持する大腸菌HB101株
の遠心上清画分にはTGタンパク質は認められなかっ
た。
【0051】次に、(1)pTTG2-22及び pSTV28を保持
する大腸菌HB101株、(2)pTTG2-22及びpDnaK-01
を保持する大腸菌AJ13098株(FERM P-14914)、(3)p
TTG2-22及びpGroESL-01を保持する大腸菌AJ13099株(FE
RM P-14915)、(4)pTTG2-22及びpTTG2-22及びpDnaJ-
01を保持する大腸菌AJ13097株(FERM P-14913)及び
(5)pTTG2-22及びpDnaKJー01を保持する大腸菌AJ1309
6株(FERM P-14912)の遠心上清画分中のTG活性につ
いて調べた。その結果を表1に示す。
【0052】
【表1】
【0053】その結果、表1に見られるように、Dna
Jの過剰発現株において、明らかに活性発現可能なトラ
ンスグルタミナーゼが著量産生される事、そして、その
効果は、dnaJとdnaKとの共存により、安定化す
る事が判明した。このような結果は、従来のDnaK、
GroESLといった主要シャペロンの機能からは、全
く予想されなかった事であり、本研究結果により、全く
新規に見いだされた効果である。
【0054】
【発明の効果】TGは特に食品タンパク質の物性改質用
酵素として、利用が益々期待されている酵素である。そ
の酵素の大量生産法として、組換えDNA法による生産
は有効な方法であるが、従来の組換えDNA法の場合、
更なる大量生産を試みると、大腸菌体内に不活性なTG
が蓄積するという問題がある。しかし、本発明の熱ショ
ックタンパク質(1)dnaJ、又は(2)dnaJと
dnaKを用いた方法を用いれば、大量に、可溶化状態
で、目的TGを取得できる。即ち、本発明は従来の製法
でのTG生産量の限界を打破した画期的な製法である。
また、本発明を用いれば、不溶化した目的TGの試験管
内での立体構造再生操作は必要なくなるという利点もあ
る。これ故、本発明を用いれば、極めて大量のTGの供
給が可能となるばかりか、ひいては産業上のTGの利用
範囲も大きく広げるものと考えられる。
【0055】
【配列表】
配列番号:1 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CCTTGATGAC GTGGTTTACG
【0056】 配列番号:2 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CCTTCGCCCG TGTCAGTATA
【0057】配列番号:3 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CTGATGGAAT TCGCCCAGCA
【0058】配列番号:4 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CGTGAGAGGA ATTCATCGGC
【0059】配列番号:5 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GACGTCGATA GCAGGCCAAT
【0060】配列番号:6 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GACGCACTCG CGTCGTCCGT
【0061】配列番号:7 配列の長さ:36 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CCTGGATCCC GTGGTTTACG ACCCCATTTA GTAGTC
【0062】配列番号:8 配列の長さ:35 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TTCACCTGCA GGTTAAATCA TATCAGGCGT AATAC
【図面の簡単な説明】
【図1】 SDS−PAGEでの解析図である。レーン
1はpTTG2-22とpSTV28を保持する大腸菌HB101株の
全画分である。レーン2はpTTG2-22とpSTV28を保持する
大腸菌HB101株の遠心上清画分である。レーン3は
pTTG2-22とpDnaJ-01を保持する大腸菌HB101株(AJ
13097、FERM P-14913)の全画分である。レーン4はpTT
G2-22とpDnaJ-01を保持する大腸菌HB101株(AJ130
97、FERM P-14913)の遠心上清画分である。レーン5は
pTTG2-22とpDnaKJ-01を保持する大腸菌HB101株(A
J13096、FERM P-14912)の全画分である。レーン6はpT
TG2-22とpDnaKJ-01を保持する大腸菌HB101株(AJ13
096、 FERM P-14912)の遠心上清画分である。ま
た、左側の数字は、同時に電気泳動されたタンパク質マ
ーカーの分子量(×1000)を示す。更に、右側の矢印
(→)は真鯛TGの分子量を示す。

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 熱ショック蛋白質のDnaJが過剰産生
    されている大腸菌を宿主としたトランスグルタミナーゼ
    の製造法。
  2. 【請求項2】 熱ショック蛋白質のDnaJをコードす
    る遺伝子を含有するベクター及びトランスグルタミナー
    ゼをコードする遺伝子を含有するベクターを保持する大
    腸菌を培養し、該大腸菌体内に蓄積したトランスグルタ
    ミナーゼを採取する事を特徴とするトランスグルタミナ
    ーゼの製造法。
  3. 【請求項3】 熱ショック蛋白質のDnaJをコードす
    る遺伝子及びトランスグルタミナーゼをコードする遺伝
    子が同一ベクター上に存在するベクターを保持する大腸
    菌を培養し、該大腸菌体内に蓄積したトランスグルタミ
    ナーゼを採取する事を特徴とするトランスグルタミナー
    ゼの製造法。
  4. 【請求項4】 熱ショック蛋白質のDnaJをコードす
    る遺伝子の発現が増強された、又は、そのdnaJ遺伝
    子量が増幅された染色体を有し、かつトランスグルタミ
    ナーゼをコードする遺伝子を含有するベクターを保持す
    る大腸菌を培養し、該大腸菌体内に蓄積したトランスグ
    ルタミナーゼを採取する事を特徴とするトランスグルタ
    ミナーゼの製造法。
  5. 【請求項5】 熱ショック蛋白質であるDnaKをコー
    ドする遺伝子を更に、DnaJをコードする遺伝子と共
    に用いることを特徴とする請求項1、2、3又は4記載
    のトランスグルタミナーゼの製造法。
  6. 【請求項6】 トランスグルタミナーゼが魚類由来トラ
    ンスグルタミナーゼである請求項1、2、3、4又は5
    記載のトランスグルタミナーゼの製造法。
  7. 【請求項7】 トランスグルタミナーゼが真鯛由来トラ
    ンスグルタミナーゼである請求項6記載のトランスグル
    タミナーゼの製造法。
JP11806795A 1995-05-17 1995-05-17 組換えdna法によるトランスグルタミナーゼの効率的製造法 Expired - Fee Related JP3656277B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11806795A JP3656277B2 (ja) 1995-05-17 1995-05-17 組換えdna法によるトランスグルタミナーゼの効率的製造法
US08/649,193 US5827712A (en) 1995-05-17 1996-05-17 Process for efficiently producing transglutaminase through DNA recombination
EP96107929A EP0743365B1 (en) 1995-05-17 1996-05-17 Process for efficiently producing transglutaminase through DNA recombination
DE69632887T DE69632887T2 (de) 1995-05-17 1996-05-17 Verfahren zur effizienten Herstellung von Transglutaminase durch DNA-Rekombina tion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11806795A JP3656277B2 (ja) 1995-05-17 1995-05-17 組換えdna法によるトランスグルタミナーゼの効率的製造法

Publications (2)

Publication Number Publication Date
JPH08308564A true JPH08308564A (ja) 1996-11-26
JP3656277B2 JP3656277B2 (ja) 2005-06-08

Family

ID=14727195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11806795A Expired - Fee Related JP3656277B2 (ja) 1995-05-17 1995-05-17 組換えdna法によるトランスグルタミナーゼの効率的製造法

Country Status (4)

Country Link
US (1) US5827712A (ja)
EP (1) EP0743365B1 (ja)
JP (1) JP3656277B2 (ja)
DE (1) DE69632887T2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159708A (en) * 1997-06-20 2000-12-12 Hsp Research Institute, Inc. Chaperone expression plasmids
JP2001514623A (ja) * 1997-03-05 2001-09-11 ユニヴェルシテ リブル ドゥ ブリュッセル 移植片拒絶反応またはアレルギーまたは自己免疫反応と関連した病状を治療するための医薬または食品組成物
US7226781B1 (en) 2003-07-24 2007-06-05 Belyaev Alexander S Chaperone expression genomes
KR20190138198A (ko) * 2018-06-04 2019-12-12 상명대학교산학협력단 재조합 단백질 생산용 에스케리키아 속 미생물 및 이의 용도

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821763B2 (en) * 1997-07-04 2004-11-23 Ajinomoto Co., Inc. Process for producing microbial transglutaminase
DK1142990T3 (da) 1998-12-28 2009-07-27 Ajinomoto Kk Fremgangsmåde til fremstilling af transglutaminase
US6495360B1 (en) * 1999-05-28 2002-12-17 Photogen, Inc. Method for enhanced protein stabilization and for production of cell lines useful for production of such stabilized proteins
CN1301852A (zh) * 1999-12-29 2001-07-04 复旦大学 一种新的多肽——转谷氨酰胺酶10和编码这种多肽的多核苷酸
US6762041B2 (en) 2000-05-15 2004-07-13 Ajinomoto Co., Inc. Method for isotope labeling of protein with enzyme
ES2184567B1 (es) * 2000-07-31 2004-09-16 Universitat Autonoma De Barcelona. Procedimiento para la solubilizacion de proteinas.
DE10046960A1 (de) * 2000-09-22 2002-04-11 Roche Diagnostics Gmbh Verfahren zur Herstellung einer aktiven, heterodimeren AMW-RT in prokaryotischen Zellen
US20030068655A1 (en) * 2001-09-12 2003-04-10 Protiveris, Inc. Microcantilever apparatus and methods for detection of enzymes
US6664299B2 (en) * 2002-02-14 2003-12-16 Dow Corning Corporation Masterbatch method for economically and efficiently producing soap dispersions in textile fluids for synthetic fiber treatment
US7101695B2 (en) * 2002-03-01 2006-09-05 Szu-Yi Chou Method of producing transglutaminase having broad substrate activity
US7485438B2 (en) 2002-03-01 2009-02-03 Szu-Yi Chou Method of producing polyvalent antigens
US20030219853A1 (en) * 2002-03-01 2003-11-27 Szu-Yi Chou Method of cross-linking a compound
US7244616B2 (en) 2003-06-27 2007-07-17 Bayer Pharmaceuticals Corporation Use of molecular chaperones for the enhanced production of secreted, recombinant proteins in mammalian cells
US8014936B2 (en) * 2006-03-03 2011-09-06 Inrix, Inc. Filtering road traffic condition data obtained from mobile data sources
US8700296B2 (en) 2006-03-03 2014-04-15 Inrix, Inc. Dynamic prediction of road traffic conditions
US7899611B2 (en) * 2006-03-03 2011-03-01 Inrix, Inc. Detecting anomalous road traffic conditions
US20070208498A1 (en) 2006-03-03 2007-09-06 Inrix, Inc. Displaying road traffic condition information and user controls
US20070208501A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Assessing road traffic speed using data obtained from mobile data sources
US7831380B2 (en) * 2006-03-03 2010-11-09 Inrix, Inc. Assessing road traffic flow conditions using data obtained from mobile data sources
US7813870B2 (en) * 2006-03-03 2010-10-12 Inrix, Inc. Dynamic time series prediction of future traffic conditions
US20070208493A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Identifying unrepresentative road traffic condition data obtained from mobile data sources
US7912627B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Obtaining road traffic condition data from mobile data sources
US7912628B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
US7706965B2 (en) * 2006-08-18 2010-04-27 Inrix, Inc. Rectifying erroneous road traffic sensor data
US7908076B2 (en) * 2006-08-18 2011-03-15 Inrix, Inc. Representative road traffic flow information based on historical data
US20120045546A1 (en) 2009-03-13 2012-02-23 Chr-Hansen A/S Method for producing an acidified milk product
US9257041B2 (en) * 2009-04-22 2016-02-09 Inrix, Inc. Predicting expected road traffic conditions based on historical and current data
US9958280B2 (en) 2011-08-16 2018-05-01 Inrix, Inc. Assessing inter-modal passenger travel options
DK2951309T3 (en) * 2013-02-01 2019-04-23 Selexis Sa INCREASED TRANSGEN EXPRESSION AND PROCESSING

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69116495T2 (de) * 1990-10-19 1996-06-13 Ajinomoto Kk Rekombinante Transglutaminase
DE69333718T2 (de) * 1992-01-14 2005-12-01 Ajinomoto Co., Inc. Gen, das für eine Fisch-Transglutaminase kodiert
WO1993025681A1 (en) * 1992-06-11 1993-12-23 New York University A cytoplasmic chaperonin and methods of making and using it
WO1994023042A1 (en) * 1993-03-29 1994-10-13 E.I. Du Pont De Nemours And Company A method for enhancing the production of biologically active recombinant proteins

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514623A (ja) * 1997-03-05 2001-09-11 ユニヴェルシテ リブル ドゥ ブリュッセル 移植片拒絶反応またはアレルギーまたは自己免疫反応と関連した病状を治療するための医薬または食品組成物
US6159708A (en) * 1997-06-20 2000-12-12 Hsp Research Institute, Inc. Chaperone expression plasmids
US7226781B1 (en) 2003-07-24 2007-06-05 Belyaev Alexander S Chaperone expression genomes
KR20190138198A (ko) * 2018-06-04 2019-12-12 상명대학교산학협력단 재조합 단백질 생산용 에스케리키아 속 미생물 및 이의 용도

Also Published As

Publication number Publication date
EP0743365A3 (en) 1997-12-29
DE69632887D1 (de) 2004-08-19
EP0743365B1 (en) 2004-07-14
EP0743365A2 (en) 1996-11-20
DE69632887T2 (de) 2005-03-17
JP3656277B2 (ja) 2005-06-08
US5827712A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JP3656277B2 (ja) 組換えdna法によるトランスグルタミナーゼの効率的製造法
JP3669390B2 (ja) バチルス属細菌由来のトランスグルタミナーゼ
US7553650B2 (en) Polynucleotide encoding a mutant transglutaminase
EP0889133B1 (en) Process for producing microbial transglutaminase
JP2009529856A (ja) 新規アルドラーゼ及び4−ヒドロキシ−l−イソロイシンの製造方法
AU762951B2 (en) Process for producing transglutaminase
Oza et al. Characterization of recombinant glutathionylspermidine synthetase/amidase from Crithidia fasciculata
JPH1175876A (ja) 新規な微生物トランスグルタミナーゼの製造法
JP2002253272A (ja) 微生物由来トランスグルタミナーゼの改変方法
Thapar et al. Expression, purification, and characterization of the protein repair L-isoaspartyl methyltransferase from Arabidopsis thaliana
US6821763B2 (en) Process for producing microbial transglutaminase
JP4752026B2 (ja) 新規なピリドキサール4−デヒドロゲナーゼ及びその利用
JP2009291158A (ja) ピリドキサミン−ピルビン酸アミノトランスフェラーゼの変異酵素
JP2615090B2 (ja) プラスミド及びそれで形質転換されたエシェリチア・コリ
JPH06225775A (ja) 魚由来トランスグルタミナーゼ遺伝子
JP2011167107A (ja) 光学活性アミノ酸及びアミノ酸誘導体の製造方法
JP5138271B2 (ja) 高活性アミダーゼ酵素液およびその調製方法
JP4815568B2 (ja) 好熱性プロリルエンドペプチダーゼ
RU2140453C1 (ru) Рекомбинантная плазмидная днк p ua bc22, кодирующая модифицированный активатор плазминогена урокиназного типа, нетранслируемый днк-элемент - искусственная межгенная последовательность мгп14 и штамм бактерий escherichia coli - продуцент модифицированного активатора плазминогена урокиназного типа
JP2007089538A (ja) 新規大腸菌及びタウロピンデヒドロゲナーゼの製法
JP6925167B2 (ja) アシルカルニチンエステラーゼ活性を有するタンパク質の利用
JP2602840B2 (ja) プラスミド及びそれで形質転換されたエシェリチア・コリ
JPH06261756A (ja) アミノアシルおよびミスアミノアシルtRNAの製造法
US20060166313A1 (en) Novel glycero kinase, gene thereof and process for producing the glycerol kinase by using the gene
WO1999014229A1 (en) Truncated aspartase enzyme derivatives and uses thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees