JPH08307061A - Multilayer wiring board for multichip module and its production - Google Patents

Multilayer wiring board for multichip module and its production

Info

Publication number
JPH08307061A
JPH08307061A JP10449395A JP10449395A JPH08307061A JP H08307061 A JPH08307061 A JP H08307061A JP 10449395 A JP10449395 A JP 10449395A JP 10449395 A JP10449395 A JP 10449395A JP H08307061 A JPH08307061 A JP H08307061A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
wiring board
substrate
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10449395A
Other languages
Japanese (ja)
Inventor
Yoshio Kuromitsu
祥郎 黒光
Seiji Toyoda
誠司 豊田
Kunio Sugamura
邦夫 菅村
Akira Nakabayashi
明 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10449395A priority Critical patent/JPH08307061A/en
Publication of JPH08307061A publication Critical patent/JPH08307061A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE: To produce a multilayer wiring board for multichip module comprising an insulation layer having high insulation resistance, low permittivity, low dielectric loss and high thermal conductivity, and a conductor layer having high conductivity, conveniently at low price, while reducing the total thickness of insulation layer and conductor layer after lamination. CONSTITUTION: The method for producing a multilayer wiring board comprises a step for coating a substrate 11 or a conductor layer 13 with silicon alkoxide solution and firing to form an insulation layer 12 of SiO2 , a step for making through holes 14 in the insulation layer 12, a step for coating the insulation layer 12 formed provided with through holes 14 or the substrate 11 with an organic compound solution and firing to form a conductor layer 13 of Au, and a step for forming a conductor layer 13 of Au, serving as a wiring part, according to a wiring pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度実装用多層配線板
及びその製造方法に関する。更に詳しくはマルチチップ
モジュール(Multi Chip Module-Deposition, 以下MC
M−Dという)に用いられる薄膜の絶縁層と導体層とを
基板上に多層に積層した多層配線板及びその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board for high-density mounting and a method for manufacturing the same. For more details, please refer to Multi Chip Module-Deposition, MC
The present invention relates to a multilayer wiring board in which a thin film insulating layer and a conductor layer used in (MD) are laminated in multiple layers on a substrate, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】電子機器の軽薄短小化のための電子部品
を高密度に実装する技術として、MCM−Dが注目され
てきている。従来、この種のMCM−D用の多層配線板
として、低誘電率で信号伝播速度が大きく絶縁抵抗の高
いポリイミド等の有機材料からなる絶縁層と、シート抵
抗値が低く安価なCuからなる導体層とをセラミック基
板上に多層に積層したものが知られている。この多層配
線板は一般に次の方法により作られる。図3(a)に示
すように、先ず配線部1を形成したセラミック基板2上
にポリイミド溶液をスピンコーティング又はロールコー
ティングしてポリイミドからなる絶縁層3を形成し、次
いで図3(b)に示すようにフォトリソグラフィでスル
ーホール4を形成し、図3(c)に示すようにCuをス
パッタリング法又は蒸着法でコーティングした後、フォ
トリソグラフィでパターンに基づく配線部5を形成し、
図3(d)に示すように再びポリイミド溶液をコーティ
ングしてポリイミドからなる絶縁層6を形成し、スルー
ホール7を形成する。上記図3(c)と図3(d)に示
す工程を繰り返すことにより多層配線板が作られる。図
示しないが、上記製法ではポリイミドからなる絶縁層に
Cuからなる導体層を直接積層すると、ポリイミドとC
uとの密着強度が十分でないため、通常これらの層の間
にCrの層を介在させている。
2. Description of the Related Art MCM-D has been attracting attention as a technique for mounting electronic parts in a high density in order to make electronic devices lighter, thinner and shorter. Conventionally, as a multilayer wiring board for this type of MCM-D, an insulating layer made of an organic material such as polyimide having a low dielectric constant and a high signal propagation speed and a high insulation resistance, and a conductor made of Cu which is inexpensive and has a low sheet resistance value. It is known that a plurality of layers are laminated on a ceramic substrate. This multilayer wiring board is generally manufactured by the following method. As shown in FIG. 3A, first, a polyimide solution is spin-coated or roll-coated on the ceramic substrate 2 on which the wiring portion 1 is formed to form an insulating layer 3 made of polyimide, and then, shown in FIG. 3B. As shown in FIG. 3C, the through hole 4 is formed by photolithography, and Cu is coated by the sputtering method or the vapor deposition method, and then the wiring portion 5 based on the pattern is formed by photolithography.
As shown in FIG. 3D, the polyimide solution is coated again to form the insulating layer 6 made of polyimide, and the through holes 7 are formed. A multilayer wiring board is manufactured by repeating the steps shown in FIGS. 3 (c) and 3 (d). Although not shown, in the above manufacturing method, when a conductor layer made of Cu is directly laminated on an insulating layer made of polyimide, polyimide and C
Since the adhesion strength with u is not sufficient, a Cr layer is usually interposed between these layers.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記多層配線
板には次の問題点があった。 ポリイミドからなる絶縁層は所望の絶縁耐圧を得る
ために、10〜20μmの厚さを必要とする。 絶縁層がポリイミドの有機材料であるため、熱伝導
度が0.00037cal/s・cm・℃以下で低く、
耐熱温度が500℃程度で高くない。このため多層配線
上にLSIを搭載した場合、LSIから発生する熱の放
散性が悪く、熱的信頼性に乏しい。 ポリイミドからなる絶縁層とCuからなる導体層の
間にCr層を必要とし、製造工程が複雑である。
However, the above-mentioned multilayer wiring board has the following problems. The insulating layer made of polyimide requires a thickness of 10 to 20 μm in order to obtain a desired withstand voltage. Since the insulating layer is an organic material of polyimide, the thermal conductivity is low at 0.00037cal / s · cm · ° C or less,
The heat resistance temperature is not high at around 500 ° C. Therefore, when the LSI is mounted on the multilayer wiring, the heat generated from the LSI is poorly dissipated and the thermal reliability is poor. A Cr layer is required between the insulating layer made of polyimide and the conductor layer made of Cu, and the manufacturing process is complicated.

【0004】本発明の目的は、高絶縁性、低誘電率、低
誘電損失及び高い熱伝導性を有する絶縁層と、高い導電
性を有する導体層とを備え、絶縁層と導体層の積層後の
全厚が比較的小さくて、簡便かつ安価に製造するマルチ
チップモジュール用多層配線板及びその製造方法を提供
することにある。
An object of the present invention is to provide an insulating layer having a high insulating property, a low dielectric constant, a low dielectric loss and a high thermal conductivity, and a conductor layer having a high conductivity, and after the insulating layer and the conductor layer are laminated, (EN) Provided is a multilayer wiring board for a multi-chip module, which has a relatively small total thickness, and can be simply and inexpensively manufactured, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】図1(e)及び図2
(e)に示すように、本発明のマルチチップモジュール
用多層配線板10は、基板11上に絶縁層12と導体層
13とが積層され、絶縁層12がSiO2からなり、導
体層13がAuからなることを特徴とする。図1(a)
〜(e)に示すように、本発明の第一の製造方法は、導
体層13上にケイ素アルコキシド溶液を塗布して焼成す
ることによりSiO2からなる絶縁層12を形成する工
程と、この絶縁層12にスルーホール14を形成する工
程と、このスルーホール14を形成した絶縁層12上に
Au含有の有機化合物溶液を塗布して焼成することによ
りAuからなる導体層13を形成する工程と、配線パタ
ーンに基づき配線部となるAuからなる導体層13を形
成する工程とを含む方法である。基板11上に多層を形
成する場合、図1(b)〜(e)に示す工程が繰り返さ
れる。
Means for Solving the Problems FIGS. 1 (e) and 2
As shown in (e), in the multilayer wiring board 10 for a multi-chip module of the present invention, an insulating layer 12 and a conductor layer 13 are laminated on a substrate 11, the insulating layer 12 is made of SiO 2 , and the conductor layer 13 is It is characterized by being made of Au. FIG. 1 (a)
As shown in (e) to (e), the first manufacturing method of the present invention includes a step of forming an insulating layer 12 made of SiO 2 by applying a silicon alkoxide solution on the conductor layer 13 and baking the same, and A step of forming a through hole 14 in the layer 12, and a step of forming a conductor layer 13 made of Au by coating an organic compound solution containing Au on the insulating layer 12 in which the through hole 14 is formed and baking the solution. And a step of forming a conductor layer 13 made of Au to be a wiring portion based on the wiring pattern. When forming multiple layers on the substrate 11, the steps shown in FIGS. 1B to 1E are repeated.

【0006】図2(a)〜(e)に示すように、本発明
の第二の製造方法は、導体層13上にケイ素アルコキシ
ド溶液と光感応性配位子を有する有機金属化合物との混
合液を塗布してSiO2前駆体層12aを形成する工程
と、スルーホール14となる部分に紫外線非透過部15
aが形成された第1マスク15をSiO2前駆体層12
aに被覆する工程と、この第1マスク15を被覆したS
iO2前駆体層12aに紫外線を照射する工程と、紫外
線を照射したSiO2前駆体層12aを現像する工程
と、現像したSiO2前駆体層12aを焼成して導体層
13上にスルーホール14を有するSiO2からなる絶
縁層12を形成する工程と、このスルーホール14を有
する絶縁層12上にAu含有の有機化合物溶液と光感応
性配位子を有する有機金属化合物との混合液を塗布して
Au前駆体層13aを形成する工程と、配線パターンに
相応して紫外線非透過部16aが形成された第2マスク
16をAu前駆体層13aに被覆する工程と、この第2
マスク16を被覆したAu前駆体層13aに紫外線を照
射する工程と、紫外線を照射したAu前駆体層13aを
現像する工程と、現像したAu前駆体層13aを焼成し
てスルーホール14を有する絶縁層12上に配線部とな
るAuからなる導体層13を形成する工程とを含む方法
である。基板11上に多層を形成する場合、図2(b)
〜(e)に示す工程が繰り返される。
As shown in FIGS. 2 (a) to 2 (e), in the second production method of the present invention, a silicon alkoxide solution and an organometallic compound having a photosensitive ligand are mixed on the conductor layer 13. The step of applying the liquid to form the SiO 2 precursor layer 12a, and the ultraviolet non-transmissive portion 15 in the portion to be the through hole 14.
a is formed on the first mask 15 by the SiO 2 precursor layer 12
and the step of coating the first mask 15 with S
The step of irradiating the iO 2 precursor layer 12a with ultraviolet rays, the step of developing the SiO 2 precursor layer 12a irradiated with ultraviolet rays, the step of firing the developed SiO 2 precursor layer 12a, and the through holes 14 on the conductor layer 13 A step of forming an insulating layer 12 made of SiO 2 having a hole, and applying a mixed solution of an Au-containing organic compound solution and an organometallic compound having a photosensitive ligand on the insulating layer 12 having the through hole 14. To form the Au precursor layer 13a, and to cover the Au precursor layer 13a with the second mask 16 having the ultraviolet ray non-transmitting portion 16a corresponding to the wiring pattern.
The step of irradiating the Au precursor layer 13a covering the mask 16 with ultraviolet rays, the step of developing the Au precursor layer 13a irradiated with ultraviolet rays, the step of firing the developed Au precursor layer 13a, and the insulation having the through holes 14. And a step of forming a conductor layer 13 made of Au to be a wiring portion on the layer 12. When forming multiple layers on the substrate 11, FIG.
The steps shown in (e) are repeated.

【0007】以下、本発明を詳述する。本発明の基板1
1は、Al23(アルミナ)基板、AlN(窒化アルミ
ニウム)基板、SiC(炭化珪素)基板等の絶縁性セラ
ミック基板、又はタングステン基板、モリブデン基板、
銅基板等の金属基板の中から選ばれる。また本発明のS
iO2からなる絶縁層12は基板11上又は導体層13
上に形成される。このSiO2からなる絶縁層12の厚
さは0.1〜10.0μmが好ましく、1.0〜5.0
μmがより好ましい。絶縁層12の厚さが0.1μm未
満では絶縁耐圧に劣り、10.0μmを超えるとSiO
2にクラックが入り易い。第一の製法ではエチルシリケ
ート等のケイ素アルコキシドを含む溶液をスピンコーテ
ィング、ディップコーティング、スプレーコーティング
等の方法により塗布し、ゾル−ゲル法により薄膜を得た
後、この薄膜を焼成して形成される。第一の製法で作ら
れた絶縁層の所定の部分にイオンプラズマ等による乾式
エッチング又はフッ酸、強アルカリ溶液等による湿式エ
ッチングを行うことによりスルーホール14が形成され
る。第二の製法では上記ケイ素アルコキシド溶液と、オ
ルソニトロベンジルアルコールのような光感応性配位子
を有する有機金属化合物との混合液を第一の製法と同様
に塗布して乾燥することによりSiO2前駆体層を形成
し、第1マスクを被覆し、紫外線を照射し現像した後、
焼成することにより第1マスクの紫外線非透過部でスル
ーホールが形成された絶縁層を得る。
The present invention will be described in detail below. Substrate 1 of the present invention
1 is an insulating ceramic substrate such as an Al 2 O 3 (alumina) substrate, an AlN (aluminum nitride) substrate, a SiC (silicon carbide) substrate, or a tungsten substrate, a molybdenum substrate,
It is selected from metal substrates such as copper substrates. In addition, S of the present invention
The insulating layer 12 made of iO 2 is formed on the substrate 11 or the conductor layer 13
Formed on top. The thickness of the insulating layer 12 made of SiO 2 is preferably 0.1 to 10.0 μm, and 1.0 to 5.0 μm.
μm is more preferred. If the thickness of the insulating layer 12 is less than 0.1 μm, the dielectric strength is poor, and if it exceeds 10.0 μm, SiO 2
2 is easily cracked. In the first production method, a solution containing a silicon alkoxide such as ethyl silicate is applied by a method such as spin coating, dip coating or spray coating, a thin film is obtained by a sol-gel method, and then the thin film is baked to form the film. . The through hole 14 is formed by performing dry etching with ion plasma or the like or wet etching with hydrofluoric acid, a strong alkaline solution or the like on a predetermined portion of the insulating layer formed by the first manufacturing method. In the second production method, a mixed solution of the above-mentioned silicon alkoxide solution and an organometallic compound having a photosensitive ligand such as orthonitrobenzyl alcohol is applied and dried in the same manner as in the first production method to produce SiO 2 After forming the precursor layer, covering the first mask, irradiating with ultraviolet rays and developing,
By baking, an insulating layer in which a through hole is formed in the ultraviolet ray non-transmissive portion of the first mask is obtained.

【0008】また本発明のAuからなる導体層13は絶
縁層12上又は基板11上に形成される。このAuから
なる導体層13の厚さは0.01〜1.0μmが好まし
く、0.2〜0.5μmがより好ましい。導体層13の
厚さが0.01μm未満ではシート抵抗値が高く(導電
性が低く)なり、1.0μmを超えるとAuが導体膜に
なり難い。第一の製法ではAu含有の有機化合物溶液を
スピンコーティング、ディップコーティング、スプレー
コーティング等の方法により塗布して乾燥した後、焼成
することにより形成される。第二の製法では上記Au含
有の有機化合物溶液と、オルソニトロベンジルアルコー
ルのような光感応性配位子を有する有機金属化合物との
混合液を第一の製法と同様に塗布して乾燥することによ
りAu前駆体層を形成し、第2マスクを被覆し、紫外線
を照射し現像した後、焼成することにより第2マスクの
紫外線非透過部で配線部となるAuからなる導体層を得
る。上記有機化合物溶液に含有するAuは溶液中に15
〜75重量%含まれることが好ましい。20〜50重量
%がより好ましい。Auの含有量が15重量%未満では
連続した緻密な薄膜が得難く、75重量%を超えると絶
縁層又は基板に対する密着力が劣るようになる。本発明
の有機化合物溶液はAuが粉末の状態でなく、有機成分
と化合物を形成し、液状になっているため、1μm以下
の厚さの連続した薄膜が得られる。この有機化合物に例
えばα−テレピネオール、エチルセルロース等の有機物
を添加して溶液化する。この有機物は溶液に粘性を付与
して塗工性を高めるとともに、焼成後のバインダとして
の機能を有する。
The conductor layer 13 of Au of the present invention is formed on the insulating layer 12 or the substrate 11. The thickness of the conductor layer 13 made of Au is preferably 0.01 to 1.0 μm, more preferably 0.2 to 0.5 μm. If the thickness of the conductor layer 13 is less than 0.01 μm, the sheet resistance value is high (the conductivity is low), and if it exceeds 1.0 μm, it is difficult for Au to become a conductor film. In the first manufacturing method, an Au-containing organic compound solution is applied by a method such as spin coating, dip coating, or spray coating, dried, and then baked. In the second production method, a mixed solution of the above-mentioned Au-containing organic compound solution and an organometallic compound having a photosensitive ligand such as orthonitrobenzyl alcohol is applied and dried in the same manner as in the first production method. To form a Au precursor layer, cover the second mask, irradiate with ultraviolet rays to develop, and then bake to obtain a conductor layer made of Au to be a wiring portion in the ultraviolet ray non-transmissive portion of the second mask. The Au contained in the organic compound solution is 15 in the solution.
It is preferably contained in an amount of ˜75 wt%. 20 to 50% by weight is more preferable. If the content of Au is less than 15% by weight, it is difficult to obtain a continuous and dense thin film, and if it exceeds 75% by weight, the adhesion to the insulating layer or the substrate becomes poor. In the organic compound solution of the present invention, Au is not in a powder state but forms a compound with an organic component and is in a liquid state, so that a continuous thin film having a thickness of 1 μm or less can be obtained. An organic substance such as α-terpineol or ethyl cellulose is added to this organic compound to form a solution. This organic substance imparts viscosity to the solution to enhance the coatability and has a function as a binder after firing.

【0009】[0009]

【作用】本発明の製造方法によれば、絶縁層も導体層も
ともに湿式プロセスにより成膜することができるため、
簡便で安価に製造でき、しかも層厚が薄くてもピンホー
ル等の欠陥が発生し難く、かつ絶縁層に形成するスルー
ホールの孔径も小さくすることができる。
According to the manufacturing method of the present invention, both the insulating layer and the conductor layer can be formed by a wet process.
It is simple and can be manufactured at low cost, and defects such as pinholes are less likely to occur even if the layer thickness is thin, and the hole diameter of the through hole formed in the insulating layer can be reduced.

【0010】[0010]

【実施例】次に本発明を実施例に基づいて説明する。 <実施例1>図2(a)に示すように、先ず厚さ1.0
mmのアルミナ焼結体11を50mm×50mmの正方
形に切り出し、表面研磨した後、焼結体11の全表面に
0.3μm厚のAu導体層13を形成した。具体的には
市販のAu18重量%含有の有機化合物ペースト(エヌ
・イー・ケムキャット製、商品名:A-4615)をシンナー
で希釈して溶液化し、この溶液を焼結体11上にスピン
コーティング法により塗布し乾燥して120℃で焼成す
ることにより導体層13を形成した。
EXAMPLES Next, the present invention will be explained based on examples. Example 1 First, as shown in FIG. 2A, the thickness is 1.0
The alumina sintered body 11 having a size of 50 mm was cut out into a square of 50 mm × 50 mm, and the surface thereof was polished. Then, the Au conductor layer 13 having a thickness of 0.3 μm was formed on the entire surface of the sintered body 11. Specifically, a commercially available organic compound paste containing 18% by weight of Au (manufactured by NE Chemcat, trade name: A-4615) is diluted with a thinner to form a solution, and the solution is spin-coated on the sintered body 11. Then, the conductor layer 13 was formed by applying, drying and baking at 120 ° C.

【0011】一方、次の組成のケイ素アルコキシド溶液
に対してオルソニトロベンジルアルコール(C6H4NO2CH2
OH)を1〜2倍モル添加して混合液を調製した。 ・エチルシリケート(Si(OC2H5)4) 34.8重量% ・エチルアルコール(C2H5OH) 50.0重量% ・0.3%HCl 6.0重量% ・イソプロピルアルコール 9.2重量% 図2(b)に示すように、導体層13上にこの混合液を
スピンコーティング法により塗布してSiO2前駆体層
12aを形成した後、スルーホール14となる部分に紫
外線非透過部15aが形成されたガラスマスク15をS
iO2前駆体層12aに被覆した。続いてマスク15を
被覆したSiO2前駆体層12aに紫外線を照射した。
これによりスルーホール14となる部分以外が感光して
硬化した。2メトキシエタノールとイソプロピルアルコ
ールが重量比で1対1に混合された現像液で感光したS
iO2前駆体層12aを現像した後、300℃で乾燥し
た。上記混合液のスピンコーティングからSiO2前駆
体層12aの現像後の乾燥までの工程を5回繰返し、そ
の後600〜900℃で焼成することにより、図2
(c)に示すように孔径10〜20μmのスルーホール
14を有する厚さ3.0μmのSiO2からなる絶縁層
12を形成した。
On the other hand, a silicon alkoxide solution having the following composition was added to ortho-nitrobenzyl alcohol (C 6 H 4 NO 2 CH 2
OH) was added 1 to 2 times by mole to prepare a mixed solution. Ethyl silicate (Si (OC 2 H 5) 4) 34.8 % by weight ethyl alcohol (C 2 H 5 OH) 50.0 wt%, 0.3% HCl 6.0% by weight Isopropyl alcohol 9.2 2 wt% As shown in FIG. 2 (b), the mixed solution is applied onto the conductor layer 13 by the spin coating method to form the SiO 2 precursor layer 12a. The glass mask 15 on which 15a is formed is S
The iO 2 precursor layer 12a was coated. Subsequently, the SiO 2 precursor layer 12a covering the mask 15 was irradiated with ultraviolet rays.
As a result, the portion other than the portion to be the through hole 14 was exposed and cured. S exposed to a developing solution in which 2-methoxyethanol and isopropyl alcohol were mixed in a weight ratio of 1: 1
After developing the iO 2 precursor layer 12a, it was dried at 300 ° C. By repeating the process from the spin coating of the above mixed solution to the drying after development of the SiO 2 precursor layer 12a five times, and then baking at 600 to 900 ° C.
As shown in (c), an insulating layer 12 made of SiO 2 having a thickness of 3.0 μm having through holes 14 having a hole diameter of 10 to 20 μm was formed.

【0012】次に、市販のAu18重量%含有の有機化
合物ペースト(エヌ・イー・ケムキャット製、商品名:
A-4615)をシンナーで希釈した溶液に対してオルソニト
ロベンジルアルコール(C6H4NO2CH2OH)を1〜2倍モル
添加して混合液を調製した。図2(d)に示すように、
スルーホール14を有する絶縁層12上にこの混合液を
スピンコーティング法により塗布してAu前駆体層13
aを形成した後、配線パターンに相応して紫外線非透過
部16aが形成されたガラスマスク16をAu前駆体層
13aに被覆した。続いてマスク16を被覆したAu前
駆体層13aに紫外線を照射した。これにより配線部が
感光して硬化した。2メトキシエタノールとイソプロピ
ルアルコールが重量比で1対1に混合された現像液で感
光したAu前駆体層13aを現像した後、120℃で乾
燥し、500〜900℃で焼成することにより、図2
(e)に示すように厚さ0.3μmのAuからなる導体
層13を形成した。以下、図2(b)〜図2(e)に示
す工程を繰り返し、導体層−絶縁層−導体層−絶縁層−
導体層の5層からなるマルチチップモジュール用多層配
線板10を得た。
Next, a commercially available organic compound paste containing 18% by weight of Au (manufactured by NE Chemcat, trade name:
A-4615) was prepared ortho-nitrobenzyl alcohol (C 6 H 4 NO 2 CH 2 OH) 1~2 moles added to mixed liquid to the solution diluted with a thinner. As shown in FIG. 2 (d),
The mixed solution is applied onto the insulating layer 12 having the through holes 14 by a spin coating method to form the Au precursor layer 13
After forming a, the Au precursor layer 13a was covered with the glass mask 16 in which the ultraviolet ray non-transmissive portion 16a was formed in accordance with the wiring pattern. Subsequently, the Au precursor layer 13a covering the mask 16 was irradiated with ultraviolet rays. As a result, the wiring portion was exposed and cured. After developing the Au precursor layer 13a exposed with a developing solution in which 2-methoxyethanol and isopropyl alcohol are mixed in a weight ratio of 1: 1, the Au precursor layer 13a is dried at 120 ° C. and baked at 500 to 900 ° C.
As shown in (e), a conductor layer 13 made of Au having a thickness of 0.3 μm was formed. Hereinafter, the steps shown in FIGS. 2B to 2E are repeated, and the conductor layer-insulating layer-conductor layer-insulating layer-
A multi-layer wiring board 10 for a multi-chip module having five conductor layers was obtained.

【0013】<比較例1>実施例1と同一の焼結体2上
に、図3(a)に示すように先ずCuをスパッタリング
して厚さ1.0μmの配線部1を形成した。次いでこの
配線部1と焼結体2を覆うようにポリイミド溶液をスピ
ンコーティングして乾燥し、窒素雰囲気中、400℃で
焼成することにより厚さ15.0μmのポリイミドから
なる絶縁層3を形成した。次に図3(b)に示すように
フォトリソグラフィで孔径20〜100μmのスルーホ
ール4を形成した後、CrをスパッタリングしてCr層
(図示せず)を形成した。続いて図3(c)に示すよう
にCuをスパッタリングした後、フォトリソグラフィで
パターンに基づく厚さ1.0μmの配線部5を形成し
た。図3(d)に示すように再びポリイミド溶液をコー
ティングして厚さ15.0μmポリイミドからなる絶縁
層6を形成し、Cr層を形成した後、図3(b)と同様
にしてスルーホール7を形成した。図3(c)と図3
(d)に示す工程を繰り返し、導体層−絶縁層−導体層
−絶縁層−導体層の5層からなるマルチチップモジュー
ル用多層配線板8を得た。
Comparative Example 1 On the same sintered body 2 as in Example 1, Cu was first sputtered to form a wiring portion 1 having a thickness of 1.0 μm, as shown in FIG. Then, a polyimide solution was spin-coated to cover the wiring portion 1 and the sintered body 2, dried, and baked at 400 ° C. in a nitrogen atmosphere to form an insulating layer 3 made of polyimide having a thickness of 15.0 μm. . Next, as shown in FIG. 3B, through holes 4 having a hole diameter of 20 to 100 μm were formed by photolithography, and then Cr was sputtered to form a Cr layer (not shown). Subsequently, as shown in FIG. 3C, after Cu was sputtered, a wiring portion 5 having a thickness of 1.0 μm was formed based on the pattern by photolithography. As shown in FIG. 3D, a polyimide solution is coated again to form an insulating layer 6 made of polyimide having a thickness of 15.0 μm, and a Cr layer is formed. Then, through holes 7 are formed in the same manner as in FIG. 3B. Was formed. FIG. 3C and FIG.
The step shown in (d) was repeated to obtain a multi-layer wiring board 8 for a multi-chip module consisting of five layers of conductor layer-insulating layer-conductor layer-insulating layer-conductor layer.

【0014】<評価>実施例1と比較例1の各マルチチ
ップモジュール用多層配線板の性能を比較するため、多
層配線板の絶縁耐圧、誘電率、誘電損失及び熱伝導度に
ついて比較試験をした。その結果を表1に示す。
<Evaluation> In order to compare the performances of the multilayer wiring boards for multichip modules of Example 1 and Comparative Example 1, a comparative test was performed on the dielectric strength, dielectric constant, dielectric loss and thermal conductivity of the multilayer wiring boards. . Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から明らかなように、実施例1の多層
配線板10は、比較例1の多層配線板8に比べて、絶縁
層に関しては高絶縁性、低誘電率、低誘電損失及び高い
熱伝導性を有することが判った。また実施例1の絶縁層
と導体層の積層後の全厚が比較例1と比べて約5分の1
であった。
As is clear from Table 1, the multilayer wiring board 10 of Example 1 has a higher insulating property, a lower dielectric constant, a lower dielectric loss and a higher insulating layer than the multilayer wiring board 8 of Comparative Example 1. It was found to have thermal conductivity. Further, the total thickness of the insulating layer and the conductor layer of Example 1 after being laminated is about one fifth of that of Comparative Example 1.
Met.

【0017】[0017]

【発明の効果】以上述べたように、従来のCu/ポリイ
ミドからなる多層配線板に対して、本発明のAu/Si
2からなる多層配線板によれば、次の特長がある。 SiO2からなる絶縁層は所望の絶縁耐圧を得るた
めに、従来の20分の1程度の厚さで済み、これにより
スルーホールの孔径も小さくて済む。 絶縁層がSiO2の無機材料であるため、熱伝導度
が0.0045cal/s・cm・℃と高い上、耐熱温
度が700℃程度で高い。このため多層配線上にLSI
を搭載した場合でも、LSIから発生する熱の放散性が
良好で、熱的信頼性に優れる。 絶縁層がSiO2であっても誘電率がポリイミドと
同程度に低く、かつAuからなる導電層がCuと同程度
に低いシート抵抗値であるため、信号伝播速度が大き
い。 従来のように絶縁層と導体層の間にCr層を必要と
せず、全ての成膜が湿式プロセスで行えるため、製造工
程が簡便で安価である。
As described above, as compared with the conventional multilayer wiring board made of Cu / polyimide, the Au / Si of the present invention is used.
The multilayer wiring board made of O 2 has the following features. The insulating layer made of SiO 2 may have a thickness of about 1/20 of the conventional thickness in order to obtain a desired withstand voltage, and thus the hole diameter of the through hole may be small. Since the insulating layer is an inorganic material of SiO 2 , the thermal conductivity is as high as 0.0045 cal / s · cm · ° C, and the heat resistance temperature is as high as about 700 ° C. Therefore, the LSI is
Even when the IC is mounted, the heat dissipation from the LSI is good and the thermal reliability is excellent. Even if the insulating layer is SiO 2 , the dielectric constant is as low as that of polyimide, and the conductive layer made of Au has a sheet resistance value as low as that of Cu, so that the signal propagation speed is high. A Cr layer is not required between the insulating layer and the conductor layer as in the prior art, and all film formation can be performed by a wet process, so that the manufacturing process is simple and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一のマルチチップモジュール用多層
配線板の製造工程を示す図。
FIG. 1 is a diagram showing a manufacturing process of a first multilayer wiring board for a multi-chip module of the present invention.

【図2】本発明の第二のマルチチップモジュール用多層
配線板の製造工程を示す図。
FIG. 2 is a diagram showing a manufacturing process of a second multilayer wiring board for a multi-chip module of the present invention.

【図3】従来のマルチチップモジュール用多層配線板の
製造工程を示す図。
FIG. 3 is a diagram showing a manufacturing process of a conventional multilayer wiring board for a multichip module.

【符号の説明】[Explanation of symbols]

10 マルチチップモジュール用多層配線板 11 基板 12 SiO2からなる絶縁層 12a SiO2前駆体層 13 Auからなる導体層 13a Au前駆体層 14 スルーホール 15 第1マスク 15a 紫外線非透過部 16 第2マスク 16a 紫外線非透過部10 multichip multilayer wiring board 11 substrate 12 made of SiO 2 insulating layer 12a SiO 2 precursor layer 13 conductive layer made of Au 13a Au precursor layer 14 through holes 15 UV first mask 15a opaque areas 16 second mask module 16a UV non-transmissive part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中林 明 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Nakabayashi 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Central Research Laboratory, Mitsubishi Materials Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板(11)上に絶縁層(12)と導体層(13)と
が積層されたマルチチップモジュール用多層配線板にお
いて、 前記絶縁層(12)がSiO2からなり、前記導体層(13)が
Auからなることを特徴とするマルチチップモジュール
用多層配線板。
1. A multi-layer wiring board for a multi-chip module comprising an insulating layer (12) and a conductor layer (13) laminated on a substrate (11), wherein the insulating layer (12) is made of SiO 2. A multilayer wiring board for a multichip module, wherein the layer (13) is made of Au.
【請求項2】 SiO2からなる絶縁層(12)の厚さが
0.1〜10.0μmであって、Auからなる導体層(1
3)の厚さが0.01〜1.0μmである請求項1記載の
マルチチップモジュール用多層配線板。
2. The insulating layer (12) made of SiO 2 has a thickness of 0.1 to 10.0 μm and a conductor layer (1) made of Au.
The multilayer wiring board for a multichip module according to claim 1, wherein the thickness of 3) is 0.01 to 1.0 μm.
【請求項3】 基板(11)上に絶縁層(12)と導体層(13)と
を積層するマルチチップモジュール用多層配線板の製造
方法において、 前記基板(11)上又は導体層(13)上にケイ素アルコキシド
溶液を塗布して焼成することによりSiO2からなる絶
縁層(12)を形成する工程と、 前記絶縁層(12)にスルーホール(14)を形成する工程と、 前記スルーホール(14)を形成した絶縁層(12)上又は前記
基板(11)上にAu含有の有機化合物溶液を塗布して焼成
することによりAuからなる導体層(13)を形成する工程
と、 配線パターンに基づき配線部となるAuからなる導体層
(13)を形成する工程とを含むことを特徴とするマルチチ
ップモジュール用多層配線板の製造方法。
3. A method for manufacturing a multi-layer wiring board for a multi-chip module, comprising laminating an insulating layer (12) and a conductor layer (13) on a substrate (11), wherein the substrate (11) or the conductor layer (13) is provided. A step of forming an insulating layer (12) made of SiO 2 by applying a silicon alkoxide solution on the top and baking the step; forming a through hole (14) in the insulating layer (12); A step of forming a conductor layer (13) made of Au by applying an organic compound solution containing Au on the insulating layer (12) having the layer formed thereon or on the substrate (11) and baking the solution; Conductor layer made of Au that becomes the wiring part based on
A method of manufacturing a multilayer wiring board for a multi-chip module, including the step of forming (13).
【請求項4】 スルーホール(14)が乾式エッチング又は
湿式エッチングにより形成される請求項2記載のマルチ
チップモジュール用多層配線板の製造方法。
4. The method for manufacturing a multilayer wiring board for a multi-chip module according to claim 2, wherein the through holes (14) are formed by dry etching or wet etching.
【請求項5】 基板(11)上に絶縁層(12)と導体層(13)と
を積層するマルチチップモジュール用多層配線板の製造
方法において、 前記基板(11)上又は導体層(13)上にケイ素アルコキシド
溶液と光感応性配位子を有する有機金属化合物との混合
液を塗布してSiO2前駆体層(12a)を形成する工程と、 スルーホール(14)となる部分に紫外線非透過部(15a)が
形成された第1マスク(15)を前記SiO2前駆体層(12a)
に被覆する工程と、 前記第1マスク(15)を被覆したSiO2前駆体層(12a)に
紫外線を照射する工程と、 前記紫外線を照射したSiO2前駆体層(12a)を現像する
工程と、 前記現像したSiO2前駆体層(12a)を焼成して前記基板
(11)上又は導体層(13)上にスルーホール(14)を有するS
iO2からなる絶縁層(12)を形成する工程と、 前記スルーホール(14)を有する絶縁層(12)上又は前記基
板(11)上にAu含有の有機化合物溶液と光感応性配位子
を有する有機金属化合物との混合液を塗布してAu前駆
体層(13a)を形成する工程と、 配線パターンに相応して紫外線非透過部(16a)が形成さ
れた第2マスク(16)を前記Au前駆体層(13a)に被覆す
る工程と、 前記第2マスク(16)を被覆したAu前駆体層(13a)に紫
外線を照射する工程と、 前記紫外線を照射したAu前駆体層(13a)を現像する工
程と、 前記現像したAu前駆体層(13a)を焼成して前記スルー
ホール(14)を有する絶縁層(12)上又は前記基板(11)上に
配線部となるAuからなる導体層(13)を形成する工程と
を含むことを特徴とするマルチチップモジュール用多層
配線板の製造方法。
5. A method for manufacturing a multi-layer wiring board for a multi-chip module, comprising laminating an insulating layer (12) and a conductor layer (13) on a substrate (11), wherein the substrate (11) or the conductor layer (13). A step of forming a SiO 2 precursor layer (12a) by applying a mixed solution of a silicon alkoxide solution and an organometallic compound having a photosensitive ligand on top of it, and exposing the portion to be the through hole (14) to ultraviolet light The first mask (15) having the transparent portion (15a) is formed on the SiO 2 precursor layer (12a).
And a step of irradiating the SiO 2 precursor layer (12a) covering the first mask (15) with ultraviolet rays, and a step of developing the SiO 2 precursor layer (12a) irradiated with the ultraviolet rays. The substrate is obtained by baking the developed SiO 2 precursor layer (12a).
S having through hole (14) on (11) or on conductor layer (13)
forming an insulating layer made of iO 2 (12), said insulating layer having a through hole (14) (12) or on said substrate (11) an organic compound of Au-containing on the solution and the light-sensitive ligand Forming a Au precursor layer (13a) by applying a mixed liquid with an organometallic compound having a second mask (16) having an ultraviolet ray non-transmitting portion (16a) formed corresponding to the wiring pattern. Coating the Au precursor layer (13a), irradiating the Au precursor layer (13a) coated with the second mask (16) with ultraviolet light, and irradiating the Au precursor layer (13a) with ultraviolet light ) Is developed, and the developed Au precursor layer (13a) is baked to form a wiring portion on the insulating layer (12) having the through hole (14) or the substrate (11). A method of manufacturing a multilayer wiring board for a multi-chip module, comprising the step of forming a conductor layer (13).
JP10449395A 1995-04-28 1995-04-28 Multilayer wiring board for multichip module and its production Withdrawn JPH08307061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10449395A JPH08307061A (en) 1995-04-28 1995-04-28 Multilayer wiring board for multichip module and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10449395A JPH08307061A (en) 1995-04-28 1995-04-28 Multilayer wiring board for multichip module and its production

Publications (1)

Publication Number Publication Date
JPH08307061A true JPH08307061A (en) 1996-11-22

Family

ID=14382064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10449395A Withdrawn JPH08307061A (en) 1995-04-28 1995-04-28 Multilayer wiring board for multichip module and its production

Country Status (1)

Country Link
JP (1) JPH08307061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145043A1 (en) * 2012-03-27 2013-10-03 パナソニック株式会社 Built-up substrate, method for manufacturing same, and semiconductor integrated circuit package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145043A1 (en) * 2012-03-27 2013-10-03 パナソニック株式会社 Built-up substrate, method for manufacturing same, and semiconductor integrated circuit package
CN103597916A (en) * 2012-03-27 2014-02-19 松下电器产业株式会社 Built-up substrate, method for manufacturing same, and semiconductor integrated circuit package
US20140124777A1 (en) * 2012-03-27 2014-05-08 Panasonic Corporation Built-up substrate, method for manufacturing same, and semiconductor integrated circuit package
JPWO2013145043A1 (en) * 2012-03-27 2015-08-03 パナソニックIpマネジメント株式会社 Build-up substrate, manufacturing method thereof, and semiconductor integrated circuit package
US9236338B2 (en) 2012-03-27 2016-01-12 Panasonic Intellectual Property Management Co., Ltd. Built-up substrate, method for manufacturing same, and semiconductor integrated circuit package

Similar Documents

Publication Publication Date Title
US9236338B2 (en) Built-up substrate, method for manufacturing same, and semiconductor integrated circuit package
JP3765627B2 (en) Multilayer circuit board and manufacturing method thereof
JPH0213958B2 (en)
GB2274353A (en) Connections for semiconductor devices
CN1574451A (en) Methods for making microwave circuits
JPH02263445A (en) Aluminum nitride substrate and semiconductor using same
JP3677301B2 (en) Ceramic circuit board and method for manufacturing ceramic circuit board
JPH08307061A (en) Multilayer wiring board for multichip module and its production
JP3231987B2 (en) Method for manufacturing multilayer ceramic circuit board
JPH06169173A (en) Method for manufacturing aluminum nitride substrate
JP3025560B2 (en) Ceramic wiring board and method of manufacturing the same
JPH06104578A (en) Multilayer wiring board and production thereof
JP3559310B2 (en) Manufacturing method of multilayer ceramic circuit board
JPH05286785A (en) Formation of insulating film
JP2000323346A (en) Manufacture of high-frequency electronic part
JPH11126971A (en) Manufacture of glass ceramics wiring board
JPH0629660A (en) Manufacture of multilayered wiring board
JP2003304060A (en) Method of manufacturing double-sided circuit board
JP2565351B2 (en) Electronic circuit parts
JPH0424990A (en) Formation of circuit for ceramic substrate
JPH06125152A (en) Aluminum nitride circuit board and manufacture thereof
JP2001284774A (en) Film with metal foil and method for manufacturing ceramic wiring board
JPH06104569A (en) Multilayer wiring board and production thereof
JPS6331197A (en) Manufacture of multilayer circuit board
JP2005045257A (en) Method for fabricating hybrid product comprising several wiring planes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702