JPH08293544A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPH08293544A
JPH08293544A JP10136295A JP10136295A JPH08293544A JP H08293544 A JPH08293544 A JP H08293544A JP 10136295 A JP10136295 A JP 10136295A JP 10136295 A JP10136295 A JP 10136295A JP H08293544 A JPH08293544 A JP H08293544A
Authority
JP
Japan
Prior art keywords
substrate
silicon
groove
polishing
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10136295A
Other languages
Japanese (ja)
Inventor
Masaki Matsui
正樹 松井
Hiromi Oba
浩美 大庭
Akinari Fukaya
顕成 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP10136295A priority Critical patent/JPH08293544A/en
Publication of JPH08293544A publication Critical patent/JPH08293544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE: To provide a method of manufacturing a semiconductor substrate which is provided with a flat surface and can be less dispersed in thickness. CONSTITUTION: A first silicon substrate 1 provided with grooves 3 and a second silicon substrate 4 uniform in thickness are joined direct together by pasting, then the surface of the first substrate 1 is removed as thick as a prescribed amount to make the grooves 3 exposed. A silicon oxide film 6 is formed on the inner side of the grooves 3. A polycrystalline silicon 8 is deposited direct on the surface of the first silicon substrate 1 to be filled into the grooves 3. The polycrystalline silicon 8 is ground as far as prescribed to flatten its surface, and furthermore the polycrystalline silicon 8 is polished as much as a prescribed amount to make the surface of the first silicon substrate 1 exposed. The silicon oxide film 6 formed on the side wall of the groove 3 is removed as thick as a desired depth from the surface of the substrate 1. The surface of the substrate 1 and the surface of the polycrystalline silicon 8 inside the grooves 3 are polished at the same time to make the surface of the groove 3 flat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体基板の製造方
法に係り、特に、SOI(Silicon OnInsulor)構
造を有する半導体基板の製造に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor substrate, and more particularly, it is suitable for manufacturing a semiconductor substrate having an SOI (Silicon On Insulor) structure.

【0002】[0002]

【従来の技術】誘電体で絶縁分離された半導体基板(S
OI構造)を製造する方法として、シリコン基板の直接
接合による貼り合わせ法がある。これは、酸化膜(埋め
込み酸化膜)を介してシリコン基板を貼り合わせた後、
埋め込み酸化膜から表面(研磨面)までが所望の厚みに
なるまで研削及び研磨を行うことで製造する方法であ
る。SOI構造は、異なる回路あるいは素子(MOS、
バイポーラ素子、パワー素子等)を、回路単位、CMO
Sのウエル単位、または素子単位で絶縁分離することが
できるため、同一チップ上にこれらの異なる素子等を同
時に形成することができ、これによりチップの多機能化
や小型化はもとより、信頼性を向上させることができ
る。
2. Description of the Related Art A semiconductor substrate (S
As a method of manufacturing the OI structure), there is a bonding method by direct bonding of silicon substrates. This is because after bonding the silicon substrate through the oxide film (buried oxide film),
This is a method of manufacturing by grinding and polishing until the thickness from the buried oxide film to the surface (polished surface) becomes a desired thickness. The SOI structure has different circuits or elements (MOS,
Bipolar element, power element, etc.), circuit unit, CMO
Since it is possible to perform insulation isolation for each S well unit or for each device unit, it is possible to simultaneously form these different devices and the like on the same chip, which not only makes the chip multifunctional and downsized but also improves reliability. Can be improved.

【0003】特にシリコン基板の貼り合わせ技術を使っ
て部分的に埋め込み酸化膜を形成する方法としては、特
開平2−96350号公報に開示されている方法があ
る。この技術を図43〜図49を用いて説明する。
As a method of partially forming a buried oxide film by using a silicon substrate bonding technique, there is a method disclosed in Japanese Patent Laid-Open No. 96350/1990. This technique will be described with reference to FIGS. 43 to 49.

【0004】まず、図43に示すように、2枚のシリコ
ン基板41,42を貼り合わせて貼り合わせ基板43と
する。この際、素子を形成する側の基板が第1シリコン
基板41であり、第1シリコン基板41を支持する基板
が第2シリコン基板42である。又、貼り合わせ基板4
3には溝44,45が形成されるとともに溝44,45
の内面、および基板41と42との間には酸化シリコン
膜46が形成されている。溝44はその横幅が90μm
で深さが20μm、溝45はその横幅が2μmで深さが
15μmとなっている。そして、図44に示すように、
酸化シリコン膜46で分離されたシリコン領域(SOI
層47)を厚み10μmとする場合、まず、図44に示
すように研削を行い、さらに、図45に示すように、研
磨を行う。この際、研削加工で溝44,45を露出させ
ると溝44,45が欠けるために研削工程では基板全面
において溝44,45を露出させてはならない。そのた
めに、図44に示すように、溝44,45よりも上のと
ころで研削を終了させる。溝44,45の深さはRIE
(反応性イオンエッチング)で溝を形成する場合、その
幅が広くなるほど深くなることから、最も幅の広い溝が
研削加工での基準(図43に示した場合では90μm幅
の溝44がこれに対応)となる。研削加工の加工精度、
溝の深さバラツキ、シリコン基板42の厚みバラツキの
ために、研削は溝の露出を防ぐため、加工後の基板厚み
が、溝の深さとシリコン基板42の厚みの和にマージン
を加えた値になるようにして加工をしなればならない。
一般的には最低でも5μmのマージンをとって加工して
いる。
First, as shown in FIG. 43, two silicon substrates 41 and 42 are bonded together to form a bonded substrate 43. At this time, the substrate on which the element is formed is the first silicon substrate 41, and the substrate supporting the first silicon substrate 41 is the second silicon substrate 42. Also, the bonded substrate stack 4
3, grooves 44 and 45 are formed, and grooves 44 and 45 are formed.
A silicon oxide film 46 is formed on the inner surface of the substrate and between the substrates 41 and 42. The width of the groove 44 is 90 μm
Has a depth of 20 μm, and the groove 45 has a lateral width of 2 μm and a depth of 15 μm. Then, as shown in FIG.
Silicon region separated by the silicon oxide film 46 (SOI
When the layer 47) has a thickness of 10 μm, first, grinding is performed as shown in FIG. 44, and further polishing is performed as shown in FIG. At this time, if the grooves 44 and 45 are exposed by grinding, the grooves 44 and 45 are chipped. Therefore, the grooves 44 and 45 must not be exposed on the entire surface of the substrate in the grinding process. Therefore, as shown in FIG. 44, the grinding is finished at a position above the grooves 44 and 45. The depth of the grooves 44 and 45 is RIE.
When a groove is formed by (reactive ion etching), the wider the width, the deeper the groove becomes. Therefore, the widest groove is the reference for the grinding process (in the case shown in FIG. 43, the groove 44 having a width of 90 μm corresponds to this). Correspondence). Processing accuracy of grinding,
Due to the variation in the depth of the groove and the variation in the thickness of the silicon substrate 42, in order to prevent the groove from being exposed during grinding, the substrate thickness after processing is set to a value obtained by adding a margin to the sum of the depth of the groove and the thickness of the silicon substrate 42. It must be processed so that
Generally, the processing is performed with a margin of at least 5 μm.

【0005】図45に示す研磨加工では最も溝幅の小さ
い溝(図43では2μm幅の溝45が対応)を完全に露
出させなければならない。従って、研磨で除去する厚み
は、溝上の厚み(マージン分;5μm)と溝幅の違いに
よる深さの差(5μm)の和となるが、研削加工と同様
に基板全面で溝を完全に露出させるためのマージンを加
えて加工しなければならない(例えば、5μmのマージ
ン)。従って、マージンを5μmとした場合には研磨代
は15μmとなり、通常の研磨代が4〜8μmであるこ
とから、その倍以上の研磨代となる。研磨加工は研磨代
が大きくなるほど、加工精度は悪くなる。従って、図4
5においてt7,t8(<t7)にて示すように、内部
に溝を有する貼り合わせ基板43の研磨加工後のシリコ
ン基板41(SOI層47)の厚みバラツキが大きい。
In the polishing process shown in FIG. 45, the groove having the smallest groove width (corresponding to the groove 45 having a width of 2 μm in FIG. 43) must be completely exposed. Therefore, the thickness to be removed by polishing is the sum of the thickness on the groove (margin; 5 μm) and the difference in depth (5 μm) due to the difference in groove width. It is necessary to add a margin for processing (for example, a margin of 5 μm). Therefore, when the margin is 5 μm, the polishing allowance is 15 μm, and since the normal polishing allowance is 4 to 8 μm, the polishing allowance is more than twice that. In the polishing process, the larger the stock removal, the worse the processing accuracy. Therefore, FIG.
5, as indicated by t7 and t8 (<t7), the thickness variation of the silicon substrate 41 (SOI layer 47) after polishing the bonded substrate 43 having the groove therein is large.

【0006】またこの後、図46に示すように、熱酸化
等によって基板表面に酸化シリコン膜48を形成し、次
いでLPCVD法により多結晶シリコン49を堆積する
ことで溝44,45を多結晶シリコン49で充填し、図
47に示すように、基板表面の酸化シリコン膜48をス
トッパーにして基板表面に堆積された多結晶シリコン4
9を研磨で除去する。そして、図48に示すように、ス
トッパーとして機能させた酸化シリコン膜48を除去し
た後、図49に示すように、再度研磨を行うことで基板
表面を平坦にする。
After this, as shown in FIG. 46, a silicon oxide film 48 is formed on the surface of the substrate by thermal oxidation or the like, and then polycrystalline silicon 49 is deposited by the LPCVD method to form the grooves 44 and 45 in the polycrystalline silicon film. 47, the polycrystalline silicon 4 deposited on the substrate surface by using the silicon oxide film 48 on the substrate surface as a stopper, as shown in FIG.
9 is removed by polishing. Then, as shown in FIG. 48, after removing the silicon oxide film 48 functioning as a stopper, as shown in FIG. 49, polishing is performed again to flatten the substrate surface.

【0007】[0007]

【発明が解決しようとする課題】図49に示した平坦化
研磨は、除去した酸化膜厚に等しい高さで凸形状になっ
ている溝44,45内の多結晶シリコン49を研磨で平
坦化する工程であるが、シリコン基板41(素子形成領
域)もこのとき同時に研磨される。従って、平坦化研磨
は研磨加工によるダメージ(結晶欠陥)、歪みの発生を
抑えるためにケミカル作用の高い研磨(通常のシリコン
基板の製造で最後に行われている仕上げ研磨と同条件の
研磨)で行う必要がある。しかし、ケミカル作用の高い
研磨のために酸化膜の研磨レートはシリコンに比べて著
しく遅くなり、その結果、溝44,45の側壁での酸化
シリコン膜46の存在により、SOI領域は図49に示
すような研磨ダレが生じる。この研磨ダレは溝44,4
5のパターンの疎密によって異なり、疎なパターン領域
ほど大きくなる。密なパターン領域では研磨ダレは生じ
にくいが、これは溝44,45の側壁での酸化シリコン
膜46が密集していることから、密な領域はシリコン基
板41の研磨がされないことによる。このように研磨ダ
レ、パターンの疎密による研磨量の差により平坦化研磨
後の基板内のシリコン基板41(SOI層47)の厚み
バラツキは溝44,45を露出させる研磨後の状態より
もさらに悪くなる。さらには、溝部表面には酸化膜とシ
リコンの研磨レートの差から段差が発生するといった問
題も生じる。
In the flattening polishing shown in FIG. 49, the polycrystalline silicon 49 in the grooves 44 and 45 which are convex at a height equal to the removed oxide film thickness is flattened by polishing. The silicon substrate 41 (element formation region) is also polished at this time. Therefore, flattening polishing is polishing with high chemical action to suppress damage (crystal defects) and distortion caused by polishing (polishing under the same conditions as the final polishing that is performed at the end of ordinary silicon substrate manufacturing). There is a need to do. However, the polishing rate of the oxide film is significantly slower than that of silicon due to polishing with a high chemical action, and as a result, the SOI region is shown in FIG. 49 due to the presence of the silicon oxide film 46 on the sidewalls of the grooves 44 and 45. Such polishing sagging occurs. This polishing sag has grooves 44, 4
5 depends on the density of the pattern, and becomes larger as the pattern area becomes sparse. Although polishing sag does not easily occur in the dense pattern region, this is because the silicon oxide film 46 on the sidewalls of the trenches 44 and 45 is dense, so that the silicon substrate 41 is not polished in the dense region. As described above, the thickness variation of the silicon substrate 41 (SOI layer 47) in the substrate after flattening and polishing is worse than the state after polishing in which the grooves 44 and 45 are exposed due to the difference in the amount of polishing due to the polishing sag and the density of the pattern. Become. Further, there is a problem that a step is formed on the surface of the groove due to the difference in polishing rate between the oxide film and silicon.

【0008】そこで、この発明の目的は、基板の表面が
平坦で、かつ、厚みバラツキを低減することができる半
導体基板の製造方法を提供するにある。
Therefore, an object of the present invention is to provide a method for manufacturing a semiconductor substrate in which the surface of the substrate is flat and the thickness variation can be reduced.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、シリコン基板の表面において側壁に絶縁膜が形成さ
れ、かつ内部に多結晶シリコンが充填された溝を形成す
る第1工程と、前記溝の側壁の絶縁膜をシリコン基板の
表面から所望の深さまで除去する第2工程と、前記シリ
コン基板の表面と溝内の多結晶シリコンの表面を同時に
研磨して溝部の表面を平坦化する第3工程とを備えた半
導体基板の製造方法をその要旨とする。
According to a first aspect of the present invention, there is provided a first step of forming a groove in which an insulating film is formed on a side wall of a surface of a silicon substrate and which is filled with polycrystalline silicon. A second step of removing the insulating film on the sidewall of the groove from the surface of the silicon substrate to a desired depth, and polishing the surface of the silicon substrate and the surface of polycrystalline silicon in the groove at the same time to flatten the surface of the groove portion. The gist is a method of manufacturing a semiconductor substrate including a third step.

【0010】請求項2に記載の発明は、請求項1に記載
の発明における前記第1工程は、溝を有する第1シリコ
ン基板と厚みバラツキの小さな第2シリコン基板とを直
接接合にて貼り合わせた後に、第1シリコン基板の表面
を所定量除去して前記溝を露出させ、第1シリコン基板
の表面に、直接、多結晶シリコンを堆積するとともに、
当該多結晶シリコンを所定量研削して多結晶シリコンの
表面を平坦化し、さらに、前記多結晶シリコンを所定量
研磨して第1シリコン基板の表面を露出させる工程を含
むものである半導体基板の製造方法をその要旨とする。
According to a second aspect of the invention, in the first step in the first aspect of the invention, the first silicon substrate having a groove and the second silicon substrate having a small thickness variation are directly bonded to each other. After that, a predetermined amount of the surface of the first silicon substrate is removed to expose the groove, and polycrystalline silicon is directly deposited on the surface of the first silicon substrate.
A method for manufacturing a semiconductor substrate, which comprises the steps of grinding a predetermined amount of the polycrystalline silicon to flatten the surface of the polycrystalline silicon and further polishing the polycrystalline silicon by a predetermined amount to expose the surface of the first silicon substrate. The summary will be given.

【0011】請求項3に記載の発明は、請求項1に記載
の発明における前記第2工程において除去する絶縁膜の
深さを第3工程での研磨で除去するシリコン基板の厚み
と等しくした半導体基板の製造方法をその要旨とする。
According to a third aspect of the invention, a semiconductor in which the depth of the insulating film removed in the second step in the first aspect of the invention is equal to the thickness of the silicon substrate removed by polishing in the third step. The gist of the invention is a method of manufacturing a substrate.

【0012】[0012]

【作用】請求項1の発明によれば、第1工程によりシリ
コン基板の表面において溝が形成される。この溝の側壁
に絶縁膜が形成され、かつ内部に多結晶シリコンが充填
されている。第2工程により溝の側壁の絶縁膜がシリコ
ン基板の表面から所望の深さまで除去される。第3工程
によりシリコン基板の表面と溝内の多結晶シリコンの表
面が同時に研磨されて溝部の表面が平坦化される。この
際、研磨は絶縁膜を研磨することなくシリコン基板と多
結晶シリコンの研磨となり、絶縁膜の存在に起因する研
磨ダレによる厚みバラツキが無くなる。よって、基板の
厚みバラツキが小さく抑えられるとともに、基板表面の
溝部領域が平坦になる。
According to the invention of claim 1, a groove is formed in the surface of the silicon substrate by the first step. An insulating film is formed on the side wall of this groove, and the inside thereof is filled with polycrystalline silicon. By the second step, the insulating film on the side wall of the groove is removed from the surface of the silicon substrate to a desired depth. In the third step, the surface of the silicon substrate and the surface of the polycrystalline silicon in the groove are simultaneously polished to flatten the surface of the groove. At this time, the polishing is performed on the silicon substrate and the polycrystalline silicon without polishing the insulating film, and the thickness variation due to the polishing sag due to the existence of the insulating film is eliminated. Therefore, the variation in the thickness of the substrate can be suppressed to be small, and the groove region on the surface of the substrate can be flattened.

【0013】請求項2の発明によれば、請求項1に記載
の発明の作用に加え、前記第1工程において、溝を有す
る第1シリコン基板と厚みバラツキの小さな第2シリコ
ン基板とが直接接合にて貼り合わされ、貼り合わせ基板
が形成される。さらに、第1シリコン基板の表面が所定
量除去されて溝が露出する。そして、第1シリコン基板
の表面に、直接、多結晶シリコンが堆積されるととも
に、当該多結晶シリコンが所定量研削されて多結晶シリ
コンの表面が平坦化される。この際、貼り合わせ基板の
厚みバラツキが低減する。より詳しくは、貼り合わせ基
板での第2シリコン基板の厚みバラツキが小さくなって
いるので、第1シリコン基板の厚みバラツキ、即ち、絶
縁膜にて絶縁分離されるシリコン領域の厚みバラツキが
低減する。さらに、多結晶シリコンが所定量研磨されて
第1シリコン基板の表面が露出される。この際、多結晶
シリコンとシリコン基板(単結晶シリコン)の研磨レー
トがほぼ等しく研磨後の基板の厚みのバラツキが少な
い。より詳しくは、絶縁膜にて絶縁分離されるシリコン
領域の厚みのバラツキが少ない。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, in the first step, the first silicon substrate having the groove and the second silicon substrate having a small thickness variation are directly bonded. Are bonded together to form a bonded substrate. Further, the surface of the first silicon substrate is removed by a predetermined amount to expose the groove. Then, the polycrystalline silicon is directly deposited on the surface of the first silicon substrate, and the polycrystalline silicon is ground by a predetermined amount to flatten the surface of the polycrystalline silicon. At this time, variation in thickness of the bonded substrate is reduced. More specifically, since the thickness variation of the second silicon substrate in the bonded substrate is small, the thickness variation of the first silicon substrate, that is, the thickness variation of the silicon region that is insulated and separated by the insulating film is reduced. Further, the polycrystalline silicon is polished by a predetermined amount to expose the surface of the first silicon substrate. At this time, the polishing rates of the polycrystalline silicon and the silicon substrate (single crystal silicon) are almost equal, and the variation in the thickness of the substrate after polishing is small. More specifically, there is little variation in the thickness of the silicon region that is insulated and separated by the insulating film.

【0014】請求項3によれば、請求項1に記載の発明
の作用に加え、第2工程において除去する絶縁膜の深さ
が第3工程での研磨で除去するシリコン基板の厚みと等
しくなっているので、絶縁膜を含めた溝部の表面の平坦
化が図られる。
According to the third aspect, in addition to the function of the first aspect, the depth of the insulating film removed in the second step becomes equal to the thickness of the silicon substrate removed by polishing in the third step. Therefore, the surface of the groove including the insulating film can be flattened.

【0015】[0015]

【実施例】【Example】

(第1実施例)以下、この発明を具体化した第1実施例
を図面に従って説明する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.

【0016】図1〜図11は、本実施例の誘電体分離基
板の製造工程順における基板の要部断面構造を示してい
る。本実施例を製造工程順に説明する。
1 to 11 show the cross-sectional structure of the main part of the dielectric isolation substrate of this embodiment in the manufacturing process order. This embodiment will be described in the order of manufacturing steps.

【0017】まず、図1に示すように、少なくとも一方
の面を鏡面研磨した第1シリコン基板1を用意する。そ
して、第1シリコン基板1の鏡面laの一部を化学エッ
チングあるいはRIEにより選択的にエッチングし、深
さ0.05〜2.0μmの凹部2を形成する。さらに、
図2に示すように、第1シリコン基板1における凹部2
の底面での周辺部(凹部2の側壁部)に環状の溝3を、
化学エッチングあるいはRIEにより形成する。この溝
3は幅および深さが大きいものと小さいものの2種類形
成される。
First, as shown in FIG. 1, a first silicon substrate 1 having at least one surface mirror-polished is prepared. Then, a part of the mirror surface la of the first silicon substrate 1 is selectively etched by chemical etching or RIE to form a recess 2 having a depth of 0.05 to 2.0 μm. further,
As shown in FIG. 2, the recess 2 in the first silicon substrate 1
An annular groove 3 in the peripheral portion (side wall portion of the recess 2) on the bottom surface of the
It is formed by chemical etching or RIE. The groove 3 is formed in two types, one having a large width and a small depth and the other having a small depth.

【0018】一方、図3に示すように、第2シリコン基
板4を用意する。第2シリコン基板4は少なくとも一方
の面を鏡面研磨し、厚みバラツキが小さなものである
(例えば平行度で1μm以下)。そして、第1シリコン
基板1と第2シリコン基板4とを、例えば49%の濃度
のフッ酸溶液に浸漬した後、純水に浸漬し、さらにスピ
ン等の乾燥を行い、第1シリコン基板1の鏡面laと第
2シリコン基板4の鏡面4aとを接触させ基板表面に吸
着したシラノール基の水素結合により両者を密着させ
る。
On the other hand, as shown in FIG. 3, a second silicon substrate 4 is prepared. At least one surface of the second silicon substrate 4 is mirror-polished to have a small thickness variation (for example, parallelism of 1 μm or less). Then, the first silicon substrate 1 and the second silicon substrate 4 are immersed in, for example, a hydrofluoric acid solution having a concentration of 49%, then immersed in pure water, and further dried by spin or the like to remove the first silicon substrate 1 The mirror surface la and the mirror surface 4a of the second silicon substrate 4 are brought into contact with each other to bring them into close contact with each other by hydrogen bond of the silanol group adsorbed on the substrate surface.

【0019】そして、図4に示すように、シリコン基板
1,4に対しドライO2 、ウエットO2 、あるいはH2
/O2 混合燃焼気体等の酸化性雰囲気で900℃以上、
1時間以上の熱処理を施し、2枚のシリコン基板1,4
を直接接合して一体化し、貼り合わせ基板5を形成す
る。又、同時に、溝3により前記酸化性雰囲気ガスを導
き、第1シリコン基板1の凹部2および溝3と第2シリ
コン基板4で形成される空洞の表面に酸化シリコン膜6
を形成する。以上の工程を経て基板内部に酸化シリコン
膜6が埋め込まれた貼り合わせ基板(接合基板)5が形
成される。
Then, as shown in FIG. 4, dry O 2 , wet O 2 , or H 2 is applied to the silicon substrates 1 and 4.
900 ° C or higher in an oxidizing atmosphere such as a / O 2 mixed combustion gas,
Two silicon substrates 1 and 4 after heat treatment for 1 hour or more
Are directly bonded and integrated to form a bonded substrate 5. At the same time, the oxidizing atmosphere gas is introduced through the groove 3 and the silicon oxide film 6 is formed on the surface of the recess 2 of the first silicon substrate 1 and the cavity formed by the groove 3 and the second silicon substrate 4.
To form. Through the above steps, a bonded substrate (bonding substrate) 5 in which the silicon oxide film 6 is embedded inside the substrate is formed.

【0020】引き続き、第1シリコン基板1をその表面
lb側から研削を行い、図5に示すように、第1シリコ
ン基板1を所定量除去する。このとき、溝3(酸化シリ
コン膜6)が基板全面において露出することのないよう
に研削する。さらに、図6に示すように、研磨により溝
3を基板全面において露出させる。このとき溝3によっ
て区画されたSOI層7が形成され、このSOI層7の
厚みは最終的なねらい値(目標値)よりも厚くしてお
く。その厚みは後述する多結晶シリコン堆積後の2回の
研磨の研磨代によって決められる。又、この研磨加工後
においてシリコン基板1(SOI層7)の厚みt1,t
2にバラツキが発生する(図6ではt2<t1)。
Subsequently, the first silicon substrate 1 is ground from the surface lb side, and as shown in FIG. 5, the first silicon substrate 1 is removed by a predetermined amount. At this time, grinding is performed so that the groove 3 (silicon oxide film 6) is not exposed on the entire surface of the substrate. Further, as shown in FIG. 6, the groove 3 is exposed on the entire surface of the substrate by polishing. At this time, the SOI layer 7 partitioned by the groove 3 is formed, and the thickness of the SOI layer 7 is made thicker than the final aim value (target value). The thickness is determined by the polishing allowance of two polishing operations after the polycrystalline silicon deposition described later. After the polishing process, the thicknesses t1 and t of the silicon substrate 1 (SOI layer 7) are also
2 varies (t2 <t1 in FIG. 6).

【0021】次に、図7に示すように、第1シリコン基
板1の溝3が露出した鏡面研磨面にLPCVD法等によ
って多結晶シリコン8を堆積し、溝3の内部をこの多結
晶シリコン8で充填する。このとき堆積する多結晶シリ
コン8の厚みは溝3の幅及び溝3の深さによって決めら
れるが、後工程の研削工程では研削での取り代が大きい
ほど加工が容易であること、またSOI層7の厚みバラ
ツキが大きいほど研削での取り代は大きくしなければな
らないことから、10μm以上堆積することが望まし
い。
Next, as shown in FIG. 7, polycrystalline silicon 8 is deposited on the mirror-polished surface of the first silicon substrate 1 where the groove 3 is exposed by the LPCVD method or the like, and the inside of the groove 3 is filled with the polycrystalline silicon 8. Fill with. The thickness of the polycrystalline silicon 8 deposited at this time is determined by the width of the groove 3 and the depth of the groove 3. In the subsequent grinding step, the larger the machining allowance in grinding is, the easier the processing is. The larger the thickness variation of 7, the larger the stock removal in grinding must be. Therefore, it is desirable to deposit 10 μm or more.

【0022】引き続き、図8に示すように、多結晶シリ
コン8に対し貼り合わせ基板5の他方の面を基準にして
研削する。この際、多結晶シリコン8のみを研削し、か
つ加工精度は平行度で1μm以下にすることが望まし
い。この研削により、貼り合わせ基板5の厚みバラツキ
が小さくなる。
Subsequently, as shown in FIG. 8, the polycrystalline silicon 8 is ground with the other surface of the bonded substrate 5 as a reference. At this time, it is desirable that only the polycrystalline silicon 8 is ground and the processing accuracy is 1 μm or less in parallelism. By this grinding, the thickness variation of the bonded substrate stack 5 is reduced.

【0023】つまり、図6に示すように溝露出後の第1
シリコン基板1(SOI層7)の厚みは基板内でばらつ
くが、基板表面に研磨のストッパーとなる酸化膜は形成
せずに、直接、第1シリコン基板1上および溝3内に多
結晶シリコン8を堆積し、多結晶シリコン8を研削して
多結晶シリコン8の表面における溝3のパターンに対応
した凹凸を除去し平坦化することにより貼り合わせ基板
5の厚みバラツキが低減する。又、この研削加工は基板
の他方の面(裏面)を基準にして、これとできる限り平
行になるように加工するが、その平行度(基板厚みの最
大値と最小値の差)は高精度加工が可能な研削装置を使
用すれば1μm以下にまでできる。第2シリコン基板4
の平行度も1μm以下の基板を使用すれば、研削後の基
板表面の多結晶シリコン厚みは第1シリコン基板1(S
OI層7)が厚い領域(図8の左側の領域)では薄く、
また逆に薄い領域(図8の右側の領域)では厚くなる。
That is, as shown in FIG. 6, the first after the groove is exposed.
Although the thickness of the silicon substrate 1 (SOI layer 7) varies within the substrate, the polycrystalline silicon 8 is directly formed on the first silicon substrate 1 and in the groove 3 without forming an oxide film as a polishing stopper on the substrate surface. Is deposited, and the polycrystalline silicon 8 is ground to remove the unevenness corresponding to the pattern of the grooves 3 on the surface of the polycrystalline silicon 8 to flatten the surface, whereby the thickness variation of the bonded substrate 5 is reduced. In addition, this grinding process is done so that it is as parallel as possible with the other surface (back surface) of the substrate as a reference, but its parallelism (difference between maximum and minimum values of substrate thickness) is highly accurate. If a grinding machine capable of processing is used, it can be reduced to 1 μm or less. Second silicon substrate 4
If the parallelism of the substrate is 1 μm or less, the thickness of the polycrystalline silicon on the surface of the substrate after grinding is the first silicon substrate 1 (S
The area where the OI layer 7) is thick (the area on the left side of FIG. 8) is thin,
On the contrary, the thin area (the area on the right side of FIG. 8) becomes thicker.

【0024】次に、図9に示すように、研削された多結
晶シリコン面を研磨して基板の全面において第1シリコ
ン基板1を露出させる。この研磨では多結晶シリコン8
が最も薄い領域から第1シリコン基板1が露出を始め
て、最も多結晶シリコン8の厚い領域が最後に露出する
ことになる。つまり、研磨加工も研削加工と同様に基板
の裏面を基準にして加工するため、第1シリコン基板1
が厚い領域の第1シリコン基板1の研磨量は大きく(多
結晶シリコン8の研磨量は少)、また薄い領域の研磨量
は少なくなり(多結晶シリコン8の研磨量が大)、これ
により第1シリコン基板1が基板全面で露出した時点で
第1シリコン基板1(SOI層7)の厚みバラツキは小
さくなる。これは多結晶シリコン8と第1シリコン基板
1(単結晶シリコン)の研磨レートがほぼ等しいことに
よる。又、研磨量も5μm以下で十分であり研削で得ら
れた加工精度の悪化も少ない。この研磨では第1シリコ
ン基板1の露出後は溝部側壁の酸化膜6も同時に研磨さ
れることになるため、ケミカル作用の高い研磨よりもメ
カニカル作用の高い研磨を行えば、さらにバラツキは低
減される。
Next, as shown in FIG. 9, the ground polycrystalline silicon surface is polished to expose the first silicon substrate 1 on the entire surface of the substrate. In this polishing, polycrystalline silicon 8
The first silicon substrate 1 starts to be exposed from the thinnest region, and the thickest region of the polycrystalline silicon 8 is finally exposed. That is, since the polishing process is performed with the back surface of the substrate as a reference as in the grinding process, the first silicon substrate 1
The amount of polishing of the first silicon substrate 1 in the thick region is large (the amount of polishing the polycrystalline silicon 8 is small), and the amount of polishing in the thin region is small (the amount of polishing the polycrystalline silicon 8 is large). When the first silicon substrate 1 is exposed on the entire surface of the substrate, the thickness variation of the first silicon substrate 1 (SOI layer 7) becomes small. This is because the polishing rates of the polycrystalline silicon 8 and the first silicon substrate 1 (single crystal silicon) are almost equal. Further, the polishing amount of 5 μm or less is sufficient, and the processing accuracy obtained by grinding is less deteriorated. In this polishing, the oxide film 6 on the side wall of the groove is also simultaneously polished after the first silicon substrate 1 is exposed. Therefore, if the polishing having the mechanical action is higher than the polishing having the high chemical action, the variation is further reduced. .

【0025】さらに、図10に示すように、多結晶シリ
コン8で充填された溝3の側壁に形成された酸化シリコ
ン膜6を、例えばフッ酸溶液で除去する。この除去量は
前述したメカニカル作用の高い研磨で第1シリコン基板
1に発生した加工歪の深さ以上であり、しかも以後に行
う平坦化研磨で除去する厚みと等しくすることが望まし
く、例えば表面から0.5μmとする。
Further, as shown in FIG. 10, the silicon oxide film 6 formed on the side wall of the trench 3 filled with the polycrystalline silicon 8 is removed with, for example, a hydrofluoric acid solution. This amount of removal is equal to or greater than the depth of the processing strain generated in the first silicon substrate 1 by the above-described polishing having a high mechanical action, and is preferably equal to the thickness removed by the flattening polishing performed later, for example, from the surface. 0.5 μm.

【0026】次に、図11に示すように、ケミカル作用
の高い研磨(平坦化研磨)を行うことで研磨歪(基板厚
みのバラツキ)の除去および溝部の平坦化を行う。この
ときの研磨代は少なくとも前工程のエッチングで除去し
た深さ以上とする。
Next, as shown in FIG. 11, polishing with high chemical action (planarization polishing) is performed to remove polishing strain (variation in substrate thickness) and to flatten the groove. The polishing allowance at this time is at least the depth removed by the etching in the previous step.

【0027】つまり、前述した研磨でメカニカル作用の
高い研磨を行えば溝部領域の段差は小さく、ほぼ平坦と
なっているが、第1シリコン基板1の研磨面には研磨歪
(ダメージ)が残留する。従って、ケミカル作用の高い
研磨を行うことで、残留歪を除去しなければならない。
しかし、前述したように溝部の側壁酸化膜6の存在によ
り均一な研磨は不可能である。そこで、図10に示した
ように、フッ酸溶液等で側壁酸化膜6だけを基板表面か
らエッチングで所望の深さまで除去する。この処理を平
坦化研磨前に行うことにより、研磨は酸化膜を研磨する
ことなく、第1シリコン基板1と多結晶シリコン8の研
磨となる。従って、研磨ダレあるいはパターンの疎密に
よる研磨量の差による厚みバラツキの問題をなくすこと
ができる。尚、エッチングで除去する側壁酸化膜6の深
さを平坦化研磨で除去する第1シリコン基板1の厚みに
等しくさせることが最も望ましい。この場合、側壁酸化
膜8の上面を研磨のストッパーとして機能させることも
できる(特に、溝のパターンが密な領域)。又、除去す
る酸化膜6の深さが研磨で除去するシリコン基板1の厚
みと等しくすることにより、酸化膜6を含めた溝部の表
面の平坦化が図られる。
That is, when the polishing having a high mechanical action is performed in the above-described polishing, the step in the groove region is small and almost flat, but polishing strain (damage) remains on the polishing surface of the first silicon substrate 1. . Therefore, the residual strain must be removed by polishing with a high chemical action.
However, as described above, uniform polishing is impossible due to the presence of the sidewall oxide film 6 in the groove. Therefore, as shown in FIG. 10, only the sidewall oxide film 6 is removed from the substrate surface by etching to a desired depth with a hydrofluoric acid solution or the like. By performing this process before the flattening polishing, the polishing is performed on the first silicon substrate 1 and the polycrystalline silicon 8 without polishing the oxide film. Therefore, it is possible to eliminate the problem of variation in thickness due to difference in polishing amount due to polishing sag or sparse and dense patterns. It is most desirable to make the depth of the sidewall oxide film 6 removed by etching equal to the thickness of the first silicon substrate 1 removed by planarization polishing. In this case, the upper surface of the sidewall oxide film 8 can also function as a polishing stopper (particularly, a region where the groove pattern is dense). Further, by making the depth of the oxide film 6 to be removed equal to the thickness of the silicon substrate 1 to be removed by polishing, the surface of the groove portion including the oxide film 6 can be flattened.

【0028】このように本実施例では、図9に示すよう
に、シリコン基板としての貼り合わせ基板5の表面にお
いて側壁に酸化シリコン膜6(絶縁膜)が形成され、か
つ内部に多結晶シリコン8が充填された溝3を形成し
(第1工程)、溝3の側壁の酸化シリコン膜6を貼り合
わせ基板5の表面から所望の深さまで除去し(第2工
程)、貼り合わせ基板5の表面と溝3内の多結晶シリコ
ン8の表面を同時に研磨して溝部の表面を平坦化した
(第3工程)。この第3工程において研磨は酸化シリコ
ン膜6を研磨することなく貼り合わせ基板5と多結晶シ
リコン8の研磨となり、酸化シリコン膜6の存在に起因
する研磨ダレによる厚みバラツキが無くなり、基板の厚
みバラツキを小さく抑えることができるとともに、基板
表面の溝部領域を平坦にできる。
As described above, in this embodiment, as shown in FIG. 9, the silicon oxide film 6 (insulating film) is formed on the side wall on the surface of the bonded substrate 5 as a silicon substrate, and the polycrystalline silicon 8 is provided inside. Forming a groove 3 filled with (first step), removing the silicon oxide film 6 on the side wall of the groove 3 from the surface of the bonded substrate 5 to a desired depth (second step), and then the surface of the bonded substrate 5 Then, the surface of the polycrystalline silicon 8 in the groove 3 was simultaneously polished to flatten the surface of the groove (third step). In this third step, the polishing is performed on the bonded substrate 5 and the polycrystalline silicon 8 without polishing the silicon oxide film 6, so that the thickness variation due to the polishing sag due to the presence of the silicon oxide film 6 is eliminated and the thickness variation of the substrate is eliminated. Can be kept small, and the groove region on the substrate surface can be made flat.

【0029】特に、第2工程において除去する酸化シリ
コン膜6の深さを第3工程での研磨で除去する貼り合わ
せ基板5の厚みと等しくしたので、酸化シリコン膜6を
含めた溝部の表面の平坦化を図ることができる。
Particularly, since the depth of the silicon oxide film 6 removed in the second step is made equal to the thickness of the bonded substrate 5 removed by polishing in the third step, the surface of the groove portion including the silicon oxide film 6 is removed. Planarization can be achieved.

【0030】又、前記第1工程においては、溝3を有す
る第1シリコン基板1と厚みバラツキの小さな第2シリ
コン基板4とを直接接合にて貼り合わせた後に、第1シ
リコン基板1の表面を所定量除去して溝3を露出させ、
第1シリコン基板1の表面に、直接、多結晶シリコン8
を堆積するとともに、多結晶シリコン8を所定量研削し
て多結晶シリコン8の表面を平坦化し、さらに、多結晶
シリコン8を所定量研磨して第1シリコン基板1の表面
を露出させる工程を含むものとした。よって、多結晶シ
リコン8の表面の平坦化研削、及び研磨において、貼り
合わせ基板5での第2シリコン基板4の厚みバラツキが
小さくなっているので、第1シリコン基板1の厚みバラ
ツキ、即ち、酸化シリコン膜6にて絶縁分離されるSO
I層7(シリコン領域)の厚みバラツキを低減すること
ができる。さらに、多結晶シリコン8の研磨の際に、多
結晶シリコン8と第1シリコン基板1(単結晶シリコ
ン)の研磨レートがほぼ等しく研磨後の基板の厚みのバ
ラツキ(より詳しくは、SOI層7)の厚みのバラツキ
を少なくすることができる。
In the first step, the first silicon substrate 1 having the groove 3 and the second silicon substrate 4 having a small thickness variation are directly bonded to each other, and then the surface of the first silicon substrate 1 is removed. Remove a predetermined amount to expose the groove 3,
The polycrystalline silicon 8 is directly formed on the surface of the first silicon substrate 1.
And a step of grinding the polycrystalline silicon 8 by a predetermined amount to flatten the surface of the polycrystalline silicon 8 and further polishing the polycrystalline silicon 8 by a predetermined amount to expose the surface of the first silicon substrate 1. I decided. Therefore, in the flattening grinding and polishing of the surface of the polycrystalline silicon 8, since the thickness variation of the second silicon substrate 4 in the bonded substrate stack 5 is small, the thickness variation of the first silicon substrate 1, that is, the oxidation. SO isolated by the silicon film 6
It is possible to reduce the thickness variation of the I layer 7 (silicon region). Further, in polishing the polycrystalline silicon 8, the polishing rates of the polycrystalline silicon 8 and the first silicon substrate 1 (single crystal silicon) are almost equal, and the variation in the thickness of the substrate after polishing (more specifically, the SOI layer 7) The thickness variation can be reduced.

【0031】尚、絶縁膜として、酸化膜の他にも窒化膜
を用いてもよい。 (第2実施例)次に、第2実施例を第1実施例との相違
点を中心に説明する。
As the insulating film, a nitride film may be used instead of the oxide film. (Second Embodiment) Next, the second embodiment will be described focusing on the differences from the first embodiment.

【0032】図12〜図19は本実施例の誘電体分離基
板の製造工程順における基板の要部断面構造を示してい
る。本実施例を製造工程順に説明する。
12 to 19 show the cross-sectional structure of the main part of the dielectric isolation substrate of this embodiment in the manufacturing process order. This embodiment will be described in the order of manufacturing steps.

【0033】まず、図12に示すように、少なくとも一
方の面を鏡面研磨した第1シリコン基板9の鏡面9aの
一部を化学エッチングあるいはRIEにより選択的にエ
ッチングすることで溝10を形成する。その後、熱酸化
により鏡面9a及び溝10の側壁(表面)に酸化シリコ
ン膜11を形成する。
First, as shown in FIG. 12, a part of the mirror surface 9a of the first silicon substrate 9 having at least one surface mirror-polished is selectively etched by chemical etching or RIE to form a groove 10. After that, a silicon oxide film 11 is formed on the mirror surface 9a and the side wall (surface) of the groove 10 by thermal oxidation.

【0034】一方、図13に示すように、第2シリコン
基板12を用意する。この第2シリコン基板12は少な
くとも一方の面を鏡面研磨した厚みバラツキの小さな基
板である(例えば平行度で1μm以下)。そして、第1
シリコン基板9の鏡面9aと第2シリコン基板12の鏡
面12aとを接合して貼り合わせ基板13を形成する。
尚、第2シリコン基板12にも接合前に酸化膜を形成し
ておいてもよい。
On the other hand, as shown in FIG. 13, a second silicon substrate 12 is prepared. The second silicon substrate 12 is a substrate having a small thickness variation in which at least one surface is mirror-polished (for example, parallelism is 1 μm or less). And the first
The mirror surface 9a of the silicon substrate 9 and the mirror surface 12a of the second silicon substrate 12 are joined to form a bonded substrate 13.
An oxide film may be formed on the second silicon substrate 12 before bonding.

【0035】この後の工程(図14〜図19)は第1実
施例の図6〜図11と同じである。つまり、図14に示
すように、第1シリコン基板9をその表面9b側から研
削、次いで、研磨を行い、図14に示すように、SOI
層14を形成する。このとき、SOI層14に厚みのバ
ラツキ(図14でt3,t4で示す)が発生する。さら
に、図15に示すように、LPCVD法等によって多結
晶シリコン15を堆積し、溝10の内部をこの多結晶シ
リコン15で充填する。さらに、図16に示すように、
多結晶シリコン15を研削し、引き続き、図17に示す
ように、研磨により基板の全面において第1シリコン基
板9を露出させる。さらに、図18に示すように、例え
ばフッ酸溶液で溝10の側壁に形成された酸化シリコン
膜11を所定量除去し、図19に示すように、ケミカル
作用の高い研磨(平坦化研磨)を行うことで研磨歪の除
去、溝部の平坦化を行う。 (第3実施例)次に、第3実施例を第1実施例との相違
点を中心に説明する。
The subsequent steps (FIGS. 14 to 19) are the same as those in FIGS. 6 to 11 of the first embodiment. That is, as shown in FIG. 14, the first silicon substrate 9 is ground from the front surface 9b side, and then polished, and then, as shown in FIG.
Form the layer 14. At this time, variations in the thickness of the SOI layer 14 (indicated by t3 and t4 in FIG. 14) occur. Further, as shown in FIG. 15, polycrystalline silicon 15 is deposited by the LPCVD method or the like, and the inside of the groove 10 is filled with the polycrystalline silicon 15. Further, as shown in FIG.
The polycrystalline silicon 15 is ground, and subsequently, as shown in FIG. 17, the first silicon substrate 9 is exposed on the entire surface of the substrate by polishing. Further, as shown in FIG. 18, a predetermined amount of the silicon oxide film 11 formed on the side wall of the groove 10 is removed with, for example, a hydrofluoric acid solution, and polishing with high chemical action (planarization polishing) is performed as shown in FIG. By doing so, polishing strain is removed and the groove is flattened. (Third Embodiment) Next, the third embodiment will be described focusing on the differences from the first embodiment.

【0036】図20〜図30は本実施例の誘電体分離基
板の製造工程順における基板の要部断面構造を示してい
る。本実施例を製造工程順に説明する。
20 to 30 show the cross-sectional structure of the main part of the dielectric isolation substrate of this embodiment in the manufacturing process order. This embodiment will be described in the order of manufacturing steps.

【0037】まず、図20に示すように、少なくとも一
方の面を鏡面研磨した第1シリコン基板16の鏡面16
aの一部を化学エッチングあるいはRIEにより選択的
にエッチングすることで溝17を形成する。一方、図2
1に示すように、第2シリコン基板18を用意する。こ
の第2シリコン基板18は少なくとも一方の面を鏡面研
磨した厚みバラツキの小さな基板である(例えば平行度
で1μm以下)。この第2シリコン基板18の鏡面18
aに熱酸化により酸化シリコン膜19を形成し、その
後、この酸化シリコン膜19の形成面と第1シリコン基
板16の鏡面16aとを接合して貼り合わせ基板20を
形成する。
First, as shown in FIG. 20, the mirror surface 16 of the first silicon substrate 16 having at least one surface mirror-polished.
Grooves 17 are formed by selectively etching part of a by chemical etching or RIE. On the other hand, FIG.
As shown in FIG. 1, the second silicon substrate 18 is prepared. The second silicon substrate 18 is a substrate having a small thickness variation in which at least one surface is mirror-polished (for example, parallelism is 1 μm or less). The mirror surface 18 of the second silicon substrate 18
A silicon oxide film 19 is formed on a by thermal oxidation, and then the surface on which the silicon oxide film 19 is formed and the mirror surface 16a of the first silicon substrate 16 are bonded to each other to form a bonded substrate 20.

【0038】さらに、図22に示すように、研削し、次
いで研磨によって溝17を露出させてシリコン酸化膜1
9の上に溝17によって分割されたSOI層21を形成
する。このとき、SOI層21に厚みのバラツキ(図2
2でt5,t6で示す)が発生する。その後、図23に
示すように、溝17の内壁、および第1シリコン基板1
6の表面に熱酸化により酸化シリコン膜22を形成す
る。次いで、酸化シリコン膜22上に多結晶シリコン2
3を堆積し溝17を充填する。
Further, as shown in FIG. 22, the silicon oxide film 1 is formed by exposing the groove 17 by grinding and then polishing.
The SOI layer 21 divided by the groove 17 is formed on the substrate 9. At this time, variations in thickness of the SOI layer 21 (see FIG.
2 indicates t5 and t6). After that, as shown in FIG. 23, the inner wall of the groove 17 and the first silicon substrate 1
A silicon oxide film 22 is formed on the surface of 6 by thermal oxidation. Then, the polycrystalline silicon 2 is formed on the silicon oxide film 22.
3 is deposited and the groove 17 is filled.

【0039】次に、図24に示すように、第1シリコン
基板16の表面に形成された酸化シリコン膜22をスト
ッパーとして機能させることで、溝17内の多結晶シリ
コン23を残して基板表面に堆積された多結晶シリコン
23を研磨で除去する。さらに、図25に示すように、
ストッパーとして機能させた第1シリコン基板16の表
面の酸化シリコン膜23を除去し、ついで図26に示す
ように、再度多結晶シリコン24を堆積する。
Next, as shown in FIG. 24, the silicon oxide film 22 formed on the surface of the first silicon substrate 16 functions as a stopper to leave the polycrystalline silicon 23 in the groove 17 on the substrate surface. The deposited polycrystalline silicon 23 is removed by polishing. Furthermore, as shown in FIG.
The silicon oxide film 23 on the surface of the first silicon substrate 16 functioning as a stopper is removed, and then polycrystalline silicon 24 is deposited again as shown in FIG.

【0040】この後の工程(図27〜図30)は第1実
施例の図8〜図11と同じである。つまり、図27に示
すように、多結晶シリコン24を貼り合わせ基板20の
他方の面を基準にして研削して貼り合わせ基板20の厚
みバラツキを小さくする。そして、図28に示すよう
に、研削された多結晶シリコン面を研磨して基板の全面
において第1シリコン基板16を露出させ溝部を表面に
露出させSOI層21(第1シリコン基板16)の厚み
バラツキを小さくする。さらに、図29に示すように、
例えばフッ酸溶液で溝17の側壁に形成された酸化シリ
コン膜22を所定量除去し、図30に示すように、ケミ
カル作用の高い研磨(平坦化研磨)を行うことで研磨歪
の除去、溝部の平坦化を行う。 (第4実施例)次に、第4実施例を第1実施例との相違
点を中心に説明する。
The subsequent steps (FIGS. 27 to 30) are the same as those in FIGS. 8 to 11 of the first embodiment. That is, as shown in FIG. 27, the polycrystalline silicon 24 is ground with the other surface of the bonded substrate 20 as a reference to reduce the thickness variation of the bonded substrate 20. Then, as shown in FIG. 28, the ground polycrystalline silicon surface is polished to expose the first silicon substrate 16 on the entire surface of the substrate and expose the groove portion on the surface to form the thickness of the SOI layer 21 (first silicon substrate 16). Reduce the variation. Furthermore, as shown in FIG.
For example, a predetermined amount of the silicon oxide film 22 formed on the side wall of the groove 17 is removed with a hydrofluoric acid solution, and as shown in FIG. 30, polishing with a high chemical action (planarization polishing) is performed to remove polishing strains and groove portions. Is flattened. (Fourth Embodiment) Next, the fourth embodiment will be described focusing on the differences from the first embodiment.

【0041】図31〜図36は本実施例の誘電体分離基
板の製造工程順における基板の要部断面構造を示してい
る。本実施例を製造工程順に説明する。
31 to 36 show the cross-sectional structure of the main part of the dielectric isolation substrate of this embodiment in the manufacturing process order. This embodiment will be described in the order of manufacturing steps.

【0042】まず、図31に示すように、半導体素子が
形成される第1シリコン基板25と、第1シリコン基板
25を支持する第2シリコン基板26とを用意し、酸化
シリコン膜27を介して2枚のシリコン基板25,26
を貼り合わせる。このように製造された貼り合わせ基板
(誘電体分離基板)28に対し図32に示すようにその
鏡面28aから酸化シリコン膜27まで到達する溝29
を化学エッチングあるいはRIEにより選択的にエッチ
ングすることで形成する。その後、熱酸化等の方法によ
り貼り合わせ基板28の鏡面28a及び溝29の内壁に
酸化シリコン膜30を形成する。
First, as shown in FIG. 31, a first silicon substrate 25 on which a semiconductor element is formed and a second silicon substrate 26 supporting the first silicon substrate 25 are prepared, and a silicon oxide film 27 is provided therebetween. Two silicon substrates 25, 26
Stick together. With respect to the bonded substrate (dielectric isolation substrate) 28 manufactured in this way, as shown in FIG. 32, a groove 29 reaching from the mirror surface 28a to the silicon oxide film 27.
Are selectively etched by chemical etching or RIE. After that, a silicon oxide film 30 is formed on the mirror surface 28a of the bonded substrate 28 and the inner wall of the groove 29 by a method such as thermal oxidation.

【0043】引き続き、図33に示すように、酸化シリ
コン膜30上に多結晶シリコン31を堆積し溝29を多
結晶シリコン31で充填する。さらに、図34に示すよ
うに、研磨により貼り合わせ基板28の鏡面28aに形
成された酸化シリコン膜30をストッパーとして機能さ
せ、基板表面に堆積された多結晶シリコン31を除去す
る。
Subsequently, as shown in FIG. 33, polycrystalline silicon 31 is deposited on the silicon oxide film 30 and the groove 29 is filled with the polycrystalline silicon 31. Further, as shown in FIG. 34, the silicon oxide film 30 formed on the mirror surface 28a of the bonded substrate 28 by polishing functions as a stopper to remove the polycrystalline silicon 31 deposited on the substrate surface.

【0044】次に、図35に示すように、ストッパーと
して機能させた貼り合わせ基板28の表面の酸化シリコ
ン膜30を、例えばフッ酸溶液でエッチングすることで
除去する。この工程において溝29の側壁の酸化シリコ
ン膜30も基板28の表面から所望の深さまで除去す
る。この深さは次工程の平坦化研磨工程の取り代と等し
くすることが望ましい。
Next, as shown in FIG. 35, the silicon oxide film 30 on the surface of the bonded substrate stack 28 functioning as a stopper is removed by etching with a hydrofluoric acid solution, for example. In this step, the silicon oxide film 30 on the sidewall of the groove 29 is also removed from the surface of the substrate 28 to a desired depth. It is desirable to make this depth equal to the stock removal of the flattening polishing step of the next step.

【0045】さらに、図36に示すように、貼り合わせ
基板28と溝29内の多結晶シリコン31を同時にケミ
カル作用の高い研磨を行うことで基板表面の溝部の平坦
化を行う。 (第5実施例)次に、第5実施例を第4実施例との相違
点を中心に説明する。
Further, as shown in FIG. 36, the bonded substrate 28 and the polycrystalline silicon 31 in the groove 29 are simultaneously polished with a high chemical action to flatten the groove portion on the substrate surface. (Fifth Embodiment) Next, the fifth embodiment will be described focusing on the differences from the fourth embodiment.

【0046】図37〜図42は本実施例のシリコン基板
の製造工程順における基板の要部断面構造を示してい
る。本実施例を製造工程順に説明する。
37 to 42 show the cross-sectional structure of the main part of the silicon substrate in the manufacturing process order of this embodiment. This embodiment will be described in the order of manufacturing steps.

【0047】まず、図37に示すように、シリコン基板
32を用意し、図38に示すようにその鏡面32aから
溝33を化学エッチングあるいはRIEにより選択的に
エッチングすることで形成する。その後、熱酸化等の方
法によりシリコン基板32の鏡面32a及び溝33の内
壁に酸化シリコン膜34を形成する。
First, as shown in FIG. 37, a silicon substrate 32 is prepared, and as shown in FIG. 38, a groove 33 is formed by selectively etching the groove 33 from the mirror surface 32a by chemical etching or RIE. After that, a silicon oxide film 34 is formed on the mirror surface 32a of the silicon substrate 32 and the inner wall of the groove 33 by a method such as thermal oxidation.

【0048】引き続き、図39に示すように、多結晶シ
リコン35を堆積し溝33を多結晶シリコン35で充填
する。さらに、図40に示すように、シリコン基板32
の鏡面32aに形成された酸化シリコン膜34をストッ
パーとして機能させることで、基板表面に堆積された多
結晶シリコン35を除去する。
Subsequently, as shown in FIG. 39, polycrystalline silicon 35 is deposited and trench 33 is filled with polycrystalline silicon 35. Furthermore, as shown in FIG.
The polycrystalline silicon film 35 deposited on the substrate surface is removed by causing the silicon oxide film 34 formed on the mirror surface 32a of No. 3 to function as a stopper.

【0049】次に、図41に示すように、ストッパーと
して機能させた酸化シリコン膜34を、例えばフッ酸溶
液でエッチングすることで除去する。この工程において
溝33の側壁の酸化シリコン膜34も基板32の表面か
ら所望の深さまで除去する。この深さは次工程の平坦化
研磨工程の取り代と等しくすることが望ましい。
Next, as shown in FIG. 41, the silicon oxide film 34 functioning as a stopper is removed by etching with a hydrofluoric acid solution, for example. In this step, the silicon oxide film 34 on the sidewall of the groove 33 is also removed from the surface of the substrate 32 to a desired depth. It is desirable to make this depth equal to the stock removal of the flattening polishing step of the next step.

【0050】さらに、図42に示すように、ケミカル作
用の高い研磨を行うことで溝33の平坦化を行う。
Further, as shown in FIG. 42, the groove 33 is flattened by polishing having a high chemical action.

【0051】[0051]

【発明の効果】請求項1に記載の発明によれば、基板の
表面が平坦で、かつ、厚みバラツキを低減することがで
きる。
According to the first aspect of the invention, the surface of the substrate is flat and the variation in thickness can be reduced.

【0052】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加え、絶縁膜にて絶縁分離される
シリコン領域の表面が平坦で、かつ、厚みバラツキを低
減することができる。
According to the invention of claim 2, claim 1
In addition to the effect of the invention described in (1), the surface of the silicon region that is insulated and separated by the insulating film is flat and the thickness variation can be reduced.

【0053】請求項3に記載の発明によれば、請求項1
に記載の発明の効果に加え、絶縁膜を含めた溝部の表面
を平坦化することができる。
According to the invention of claim 3, claim 1
In addition to the effect of the invention described in (1), the surface of the groove including the insulating film can be flattened.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の半導体基板の製造方法を示す断面
図。
FIG. 1 is a sectional view showing a method of manufacturing a semiconductor substrate according to a first embodiment.

【図2】第1実施例の半導体基板の製造方法を示す断面
図。
FIG. 2 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図3】第1実施例の半導体基板の製造方法を示す断面
図。
FIG. 3 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図4】第1実施例の半導体基板の製造方法を示す断面
図。
FIG. 4 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図5】第1実施例の半導体基板の製造方法を示す断面
図。
FIG. 5 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図6】第1実施例の半導体基板の製造方法を示す断面
図。
FIG. 6 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図7】第1実施例の半導体基板の製造方法を示す断面
図。
FIG. 7 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図8】第1実施例の半導体基板の製造方法を示す断面
図。
FIG. 8 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図9】第1実施例の半導体基板の製造方法を示す断面
図。
FIG. 9 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図10】第1実施例の半導体基板の製造方法を示す断
面図。
FIG. 10 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図11】第1実施例の半導体基板の製造方法を示す断
面図。
FIG. 11 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the first embodiment.

【図12】第2実施例の半導体基板の製造方法を示す断
面図。
FIG. 12 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the second embodiment.

【図13】第2実施例の半導体基板の製造方法を示す断
面図。
FIG. 13 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the second embodiment.

【図14】第2実施例の半導体基板の製造方法を示す断
面図。
FIG. 14 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the second embodiment.

【図15】第2実施例の半導体基板の製造方法を示す断
面図。
FIG. 15 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the second embodiment.

【図16】第2実施例の半導体基板の製造方法を示す断
面図。
FIG. 16 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the second embodiment.

【図17】第2実施例の半導体基板の製造方法を示す断
面図。
FIG. 17 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the second embodiment.

【図18】第2実施例の半導体基板の製造方法を示す断
面図。
FIG. 18 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the second embodiment.

【図19】第2実施例の半導体基板の製造方法を示す断
面図。
FIG. 19 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the second embodiment.

【図20】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 20 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図21】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 21 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図22】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 22 is a sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図23】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 23 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図24】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 24 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図25】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 25 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図26】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 26 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図27】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 27 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図28】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 28 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図29】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 29 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図30】第3実施例の半導体基板の製造方法を示す断
面図。
FIG. 30 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the third embodiment.

【図31】第4実施例の半導体基板の製造方法を示す断
面図。
FIG. 31 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fourth embodiment.

【図32】第4実施例の半導体基板の製造方法を示す断
面図。
FIG. 32 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fourth embodiment.

【図33】第4実施例の半導体基板の製造方法を示す断
面図。
FIG. 33 is a sectional view showing the method of manufacturing the semiconductor substrate of the fourth embodiment.

【図34】第4実施例の半導体基板の製造方法を示す断
面図。
FIG. 34 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fourth embodiment.

【図35】第4実施例の半導体基板の製造方法を示す断
面図。
FIG. 35 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fourth embodiment.

【図36】第4実施例の半導体基板の製造方法を示す断
面図。
FIG. 36 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fourth embodiment.

【図37】第5実施例の半導体基板の製造方法を示す断
面図。
FIG. 37 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fifth embodiment.

【図38】第5実施例の半導体基板の製造方法を示す断
面図。
FIG. 38 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fifth embodiment.

【図39】第5実施例の半導体基板の製造方法を示す断
面図。
FIG. 39 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fifth embodiment.

【図40】第5実施例の半導体基板の製造方法を示す断
面図。
FIG. 40 is a sectional view showing the method of manufacturing the semiconductor substrate of the fifth embodiment.

【図41】第5実施例の半導体基板の製造方法を示す断
面図。
FIG. 41 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fifth embodiment.

【図42】第5実施例の半導体基板の製造方法を示す断
面図。
FIG. 42 is a cross-sectional view showing the method of manufacturing the semiconductor substrate of the fifth embodiment.

【図43】従来の半導体基板の製造方法を示す断面図。FIG. 43 is a cross-sectional view showing the conventional method of manufacturing a semiconductor substrate.

【図44】従来の半導体基板の製造方法を示す断面図。FIG. 44 is a cross-sectional view showing the conventional method of manufacturing a semiconductor substrate.

【図45】従来の半導体基板の製造方法を示す断面図。FIG. 45 is a cross-sectional view showing the conventional method of manufacturing a semiconductor substrate.

【図46】従来の半導体基板の製造方法を示す断面図。FIG. 46 is a cross-sectional view showing the conventional method of manufacturing a semiconductor substrate.

【図47】従来の半導体基板の製造方法を示す断面図。FIG. 47 is a cross-sectional view showing the conventional method of manufacturing a semiconductor substrate.

【図48】従来の半導体基板の製造方法を示す断面図。FIG. 48 is a cross-sectional view showing the conventional method of manufacturing a semiconductor substrate.

【図49】従来の半導体基板の製造方法を示す断面図。FIG. 49 is a cross-sectional view showing the conventional method of manufacturing a semiconductor substrate.

【符号の説明】[Explanation of symbols]

1…第1シリコン基板、3…溝、4…第2シリコン基
板、5…貼り合わせ基板、6…絶縁膜としての酸化シリ
コン膜、8…多結晶シリコン、9…第1シリコン基板、
10…溝、11…絶縁膜としての酸化シリコン膜、12
…第2シリコン基板、13…貼り合わせ基板、15…多
結晶シリコン、16…第1シリコン基板、17…溝、1
8…第2シリコン基板、20…貼り合わせ基板、22…
絶縁膜としての酸化シリコン膜、24…多結晶シリコ
ン、28…貼り合わせ基板、29…溝、30…絶縁膜と
しての酸化シリコン膜、31…多結晶シリコン、32…
シリコン基板、33…溝、34…絶縁膜としての酸化シ
リコン膜、35…多結晶シリコン
DESCRIPTION OF SYMBOLS 1 ... 1st silicon substrate, 3 ... groove | channel, 4 ... 2nd silicon substrate, 5 ... bonded substrate, 6 ... silicon oxide film as an insulating film, 8 ... polycrystalline silicon, 9 ... 1st silicon substrate,
10 ... Groove, 11 ... Silicon oxide film as insulating film, 12
... second silicon substrate, 13 ... bonded substrate, 15 ... polycrystalline silicon, 16 ... first silicon substrate, 17 ... groove, 1
8 ... 2nd silicon substrate, 20 ... Laminated substrate, 22 ...
Silicon oxide film as insulating film, 24 ... Polycrystalline silicon, 28 ... Bonded substrate, 29 ... Groove, 30 ... Silicon oxide film as insulating film, 31 ... Polycrystalline silicon, 32 ...
Silicon substrate, 33 ... Groove, 34 ... Silicon oxide film as insulating film, 35 ... Polycrystalline silicon

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板の表面において側壁に絶縁
膜が形成され、かつ内部に多結晶シリコンが充填された
溝を形成する第1工程と、 前記溝の側壁の絶縁膜をシリコン基板の表面から所望の
深さまで除去する第2工程と、 前記シリコン基板の表面と溝内の多結晶シリコンの表面
を同時に研磨して溝部の表面を平坦化する第3工程とを
備えたことを特徴とする半導体基板の製造方法。
1. A first step of forming a groove in which an insulating film is formed on a side wall of a surface of a silicon substrate and which is filled with polycrystalline silicon, and an insulating film on a side wall of the groove is formed from a surface of the silicon substrate. A semiconductor comprising: a second step of removing to a desired depth; and a third step of simultaneously polishing the surface of the silicon substrate and the surface of the polycrystalline silicon in the groove to flatten the surface of the groove. Substrate manufacturing method.
【請求項2】 前記第1工程は、溝を有する第1シリコ
ン基板と厚みバラツキの小さな第2シリコン基板とを直
接接合にて貼り合わせた後に、第1シリコン基板の表面
を所定量除去して前記溝を露出させ、第1シリコン基板
の表面に、直接、多結晶シリコンを堆積するとともに、
当該多結晶シリコンを所定量研削して多結晶シリコンの
表面を平坦化し、さらに、前記多結晶シリコンを所定量
研磨して第1シリコン基板の表面を露出させる工程を含
むものである請求項1に記載の半導体基板の製造方法。
2. In the first step, a first silicon substrate having a groove and a second silicon substrate having a small thickness variation are directly bonded to each other, and then a predetermined amount of the surface of the first silicon substrate is removed. The groove is exposed, and polycrystalline silicon is directly deposited on the surface of the first silicon substrate.
2. The method according to claim 1, further comprising grinding a predetermined amount of the polycrystalline silicon to flatten the surface of the polycrystalline silicon, and further polishing the polycrystalline silicon by a predetermined amount to expose the surface of the first silicon substrate. Manufacturing method of semiconductor substrate.
【請求項3】 前記第2工程において除去する絶縁膜の
深さを第3工程での研磨で除去するシリコン基板の厚み
と等しくした請求項1に記載の半導体基板の製造方法。
3. The method of manufacturing a semiconductor substrate according to claim 1, wherein the depth of the insulating film removed in the second step is equal to the thickness of the silicon substrate removed by the polishing in the third step.
JP10136295A 1995-04-25 1995-04-25 Manufacture of semiconductor substrate Pending JPH08293544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10136295A JPH08293544A (en) 1995-04-25 1995-04-25 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10136295A JPH08293544A (en) 1995-04-25 1995-04-25 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH08293544A true JPH08293544A (en) 1996-11-05

Family

ID=14298729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10136295A Pending JPH08293544A (en) 1995-04-25 1995-04-25 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH08293544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021008013A (en) * 2019-07-02 2021-01-28 株式会社ディスコ Wafer processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021008013A (en) * 2019-07-02 2021-01-28 株式会社ディスコ Wafer processing method

Similar Documents

Publication Publication Date Title
CN100424850C (en) Method for producing shallow trench isolation structure and semiconductor structure
JP3684401B2 (en) Manufacturing method of SOI wafer
JPH11163120A (en) Formation of element isolating layer of semiconductor element
JPH118295A (en) Semiconductor device and its manufacture
US6060394A (en) Method for forming shallow trench isolation with global planarization
JP2000030998A (en) Manufacture of soi substrate
US6103581A (en) Method for producing shallow trench isolation structure
KR20010046153A (en) Method of manufacturing trench type isolation layer in semiconductor device
JPH08293544A (en) Manufacture of semiconductor substrate
US20140167211A1 (en) Method for amnufacturing a semiconductor device
KR100235972B1 (en) Method of forming a device isolation film of semiconductor device
KR100305145B1 (en) Method of forming shallow trench isolation layer in semiconductor device
JPS61158158A (en) Manufacture of semiconductor device
KR100511903B1 (en) Method of manufacturing SOI substrate
KR20050012584A (en) Method for forming isolation layer of semiconductor device
JPH03265154A (en) Manufacture of semiconductor substrate
KR100511896B1 (en) Method of manufacturing soi substrate
JPH06334028A (en) Manufacture of dielectric isolation substrate
JP3233149B2 (en) Semiconductor device manufacturing method
JP2003324146A (en) Semiconductor device and manufacturing method of the same
KR100303365B1 (en) Method of manufacturing SOI substrate
JPH1174343A (en) Semiconductor device and manufacture thereof
JPH098125A (en) Insulation separation substrate and its manufacturing method
KR20030057886A (en) Method of forming a isolation layer in semiconductor device
JPH0574926A (en) Manufacturing method for semiconductor substrate