JPH06334028A - Manufacture of dielectric isolation substrate - Google Patents

Manufacture of dielectric isolation substrate

Info

Publication number
JPH06334028A
JPH06334028A JP12258993A JP12258993A JPH06334028A JP H06334028 A JPH06334028 A JP H06334028A JP 12258993 A JP12258993 A JP 12258993A JP 12258993 A JP12258993 A JP 12258993A JP H06334028 A JPH06334028 A JP H06334028A
Authority
JP
Japan
Prior art keywords
substrate
groove
recess
depth
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12258993A
Other languages
Japanese (ja)
Inventor
Masaki Matsui
正樹 松井
Keimei Himi
啓明 氷見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12258993A priority Critical patent/JPH06334028A/en
Publication of JPH06334028A publication Critical patent/JPH06334028A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To shorten a thermal oxidation time necessary for embedding an oxide film in a recess without changing the width and depth of a groove by forming a non-oxidizable film on the side wall of the groove in an oxidizing atmosphere in the groove and recess formed in a substrate. CONSTITUTION:A recess 2 having a predetermined depth is formed in the principal face to be bonded to another substrate of one substrate 1. Also, a groove 3, of which depth is greater than that of the recess 2, is formed in the principal face to be bonded of one substrate. Further, the groove 3 is formed to have an opening in the edge of the substrate 1. Then, the two substrates are directly bonded into a bonded substrate. In a processing before the bonding, a non- oxidizable film 4 is formed on the side wall of the groove 3 formed in one substrate 1. Thus, the decrease of the area through which an oxidizing gas passes can be prevented so that the oxidizing gas easily reaches the recess 2 through the groove 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は誘電体分離基板の製造方
法に関し、特に基板の貼り合わせ技術を利用したSOI
(Silicon On Insulator)基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a dielectric isolation substrate, and more particularly to an SOI using a substrate bonding technique.
(Silicon On Insulator) A method for manufacturing a substrate.

【0002】[0002]

【従来の技術】半導体集積回路における素子分離法とし
て誘電体分離法が注目されており、その一例として、シ
リコン基板の直接接合技術と熱酸化による酸化膜成長を
用い、基板内部に誘電体埋め込み層として熱酸化シリコ
ンを充填、埋設する方法が提案されている(例えば特開
平2―96350号公報)。
2. Description of the Related Art A dielectric isolation method has been attracting attention as an element isolation method in a semiconductor integrated circuit. As one example, a direct bonding technique for a silicon substrate and an oxide film growth by thermal oxidation are used to form a dielectric embedded layer inside the substrate. As a method, a method of filling and burying thermally oxidized silicon has been proposed (for example, JP-A-2-96350).

【0003】この方法は、図10に示すように表面に浅
い凹部23(図10(a))と前記凹部23と連通する
酸素導入用の溝24(図10(b))を形成した第1半
導体基板21と、第2半導体基板22を直接接合(図1
0(c))した後、酸化性ガス雰囲気中で加熱処理し、
前記溝24に沿って凹部23内にガスを供給することに
より、熱酸化シリコン25を埋め込み(図10
(d))、その後、溝24が表面に露出するまで研削、
ポリッシュする(図10(e))方法であり、熱酸化シ
リコンで電気的に絶縁分離された領域を選択的に形成す
ることができる。
In this method, as shown in FIG. 10, a shallow recess 23 (FIG. 10A) and an oxygen introducing groove 24 (FIG. 10B) communicating with the recess 23 are formed in the first surface. The semiconductor substrate 21 and the second semiconductor substrate 22 are directly bonded (see FIG. 1).
0 (c)), followed by heat treatment in an oxidizing gas atmosphere,
By supplying gas into the recess 23 along the groove 24, the thermal silicon oxide 25 is embedded (see FIG. 10).
(D)) After that, grinding until the groove 24 is exposed on the surface,
This is a method of polishing (FIG. 10E), and it is possible to selectively form a region electrically isolated by thermal oxide silicon.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、凹部内に熱酸化シリコンを埋め込む熱酸
化工程において、凹部への熱酸化シリコンの充填が熱酸
化時間の経過とともに基板端部から中央部に向かって順
次行われていくため、中央部を酸化するのに時間がかか
ってしまう。これを以下に説明する。
However, in the above-mentioned conventional method, in the thermal oxidation step of filling the thermal oxide with silicon oxide in the concave portion, the thermal silicon oxide is filled in the concave portion from the edge of the substrate to the center along with the elapse of thermal oxidation time. It takes time to oxidize the central part because it is performed sequentially toward the parts. This will be explained below.

【0005】凹部への酸化性ガスの供給は、供給口とな
る基板端部に連通した溝を通して行われるものであり、
供給口に近く、従ってガスの供給量が多い基板端部に近
い凹部領域では熱酸化膜の成長速度が速いのに対し、供
給量の少ない基板中央部では成長速度が遅くなる。そし
て、この凹部での熱酸化膜の成長と同様に、溝側壁に成
長する熱酸化膜も、基板端部に近い領域の成長は速い。
従って、熱酸化が進むにつれて基板端部近傍の溝の開口
面積、すなわち溝の幅および深さは小さくなり、基板中
央部へのガスの供給はより一層困難となる。このため基
板中央部まで完全に埋設,充填するまでにかかる熱酸化
時間は、この溝側壁の熱酸化膜の成長によってさらに増
大する。
The oxidizing gas is supplied to the concave portion through a groove communicating with the end portion of the substrate which serves as a supply port.
The growth rate of the thermal oxide film is high in the recessed region near the supply port, and thus in the vicinity of the substrate end where the gas supply amount is large, whereas the growth rate is low in the substrate center where the supply amount is small. Then, similarly to the growth of the thermal oxide film in the concave portion, the thermal oxide film growing on the side wall of the groove also grows rapidly in the region near the edge of the substrate.
Therefore, as thermal oxidation progresses, the opening area of the groove near the edge of the substrate, that is, the width and depth of the groove becomes smaller, and it becomes more difficult to supply the gas to the central portion of the substrate. Therefore, the thermal oxidation time required for completely filling and filling the central portion of the substrate is further increased by the growth of the thermal oxide film on the side wall of the groove.

【0006】このため熱酸化時間を短くするためには、
溝側壁への酸化膜の成長を考慮して、あらかじめ溝の幅
および深さを大きくしておけばよいが、溝幅を広くする
と後工程の多結晶シリコンで溝部を埋設する工程で、そ
の堆積量を増す必要が生じる。これは例えば開口した溝
幅がその溝の深さよりも小さい場合等には、溝幅が埋設
に必要な堆積量を決定することによる。また溝を深く形
成することも溝幅を狭くした場合にはアスペクト比等の
問題で難しい。また研削・ポリッシュで溝を表面に露出
する工程で、研削の段階で溝を露出させると溝部が欠け
るためポリッシュで溝を露出せざるを得ず、このため溝
が深いとポリッシュでの取りしろが大きくなりポリッシ
ュ時間の増大、そして基板の加工精度の悪化をまねく。
以上の問題点は基板を大口径化した場合にさらに顕著と
なる。
Therefore, in order to shorten the thermal oxidation time,
The width and depth of the groove may be increased in advance in consideration of the growth of the oxide film on the side wall of the groove, but if the width of the groove is widened, it is deposited in the later step of filling the groove with polycrystalline silicon. It is necessary to increase the amount. This is because, for example, when the width of the opened groove is smaller than the depth of the groove, the groove width determines the amount of deposition required for burying. It is also difficult to form the groove deep when the groove width is narrowed due to problems such as aspect ratio. Also, in the process of exposing the groove to the surface by grinding / polishing, if the groove is exposed during the grinding step, the groove will be chipped and the groove must be exposed by polishing. This increases the polishing time and deteriorates the processing accuracy of the substrate.
The above problems become more remarkable when the diameter of the substrate is increased.

【0007】本発明は以上のような種々の問題点に着目
し、形成する溝の幅および深さを変えることなく、凹部
内に酸化膜を埋め込むために必要な熱酸化時間を短くで
きる誘電体分離基板の製造方法を提供することを目的と
している。
The present invention pays attention to various problems as described above, and makes it possible to shorten the thermal oxidation time required to fill the oxide film in the recess without changing the width and depth of the groove to be formed. An object is to provide a method for manufacturing a separation substrate.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明による
誘電体分離基板の製造方法は、第1及び第2の半導体基
板を接合して内部に誘電体埋め込み層が形成された半導
体基板を製造する方法であって、該第1半導体基板及び
第2半導体基板のうち、少なくとも一方の基板に於ける
他方の半導体基板との接合主面上で且つ誘電体埋め込み
層形成位置に相当する領域に所定の深さを有する凹部を
形成するとともに、該凹部により形成される空間部に連
通する位置に開口部を有し且つその深さが該凹部の深さ
よりも深くなる様に設定された溝部を該第1と第2の半
導体基板の少なくとも一方の半導体基板の接合主面に形
成すると同時に該溝部は当該半導体基板の基板端面に開
口部を有する様に形成される加工工程、該第1及び第2
の半導体基板を直接接合して接合基板とする接合工程、
少なくとも前記接合工程以前の段階において、前記加工
工程において、該第1および第2の半導体基板の少なく
とも一方に形成された該溝部の側壁に耐酸化性膜を形成
する形成工程とを有することを特徴とする。
That is, in the method of manufacturing a dielectric isolation substrate according to the present invention, the first and second semiconductor substrates are bonded to each other to manufacture a semiconductor substrate having a dielectric buried layer formed therein. A predetermined method in a region corresponding to a dielectric burying layer formation position on at least one of the first semiconductor substrate and the second semiconductor substrate on the main bonding surface with the other semiconductor substrate. A recess having a depth is formed, and a groove having an opening at a position communicating with the space formed by the recess and having a depth set to be deeper than the depth of the recess is provided. A processing step of forming the groove on the main bonding surface of at least one of the first and second semiconductor substrates and at the same time forming the groove so as to have an opening at the substrate end surface of the semiconductor substrate.
Bonding step of directly bonding the semiconductor substrates of
A step of forming an oxidation resistant film on a side wall of the groove formed in at least one of the first and second semiconductor substrates in the processing step at least before the bonding step. And

【0009】[0009]

【作用】本発明によると、第1及び第2の半導体基板を
接合して該第1半導体基板及び第2半導体基板のうち、
少なくとも一方の基板に形成した溝部および凹部を酸化
性雰囲気中において酸化する前工程として、前期溝部の
側壁に耐酸化性膜を形成するようにしているため、前期
酸化性雰囲気中において溝部および凹部を酸化する際
に、前期溝部の側壁が酸化されることはない。従って、
酸化性ガスが溝部を通る面積の減少を防ぐことができ
る。
According to the present invention, the first and second semiconductor substrates are bonded to each other and one of the first and second semiconductor substrates is bonded.
Since the oxidation resistant film is formed on the side wall of the groove in the previous period as a pre-step of oxidizing the groove and the recess formed in at least one of the substrates in the oxidizing atmosphere, the groove and the recess are not formed in the oxidizing atmosphere in the previous period. At the time of oxidation, the sidewall of the groove is not oxidized. Therefore,
It is possible to prevent the reduction of the area where the oxidizing gas passes through the groove.

【0010】[0010]

【実施例】以下、本発明による一実施例を図面に基づい
て説明する。図1〜図9は本発明を適用して製造する誘
電体分離基板の製造工程順における基板の要部断面構造
を示している。本実施例を製造工程順に説明する。まず
図1に示すように少なくとも一方の面を鏡面研磨した第
1半導体基板1の鏡面1aの一部を化学エッチングある
いは反応性イオンエッチング(以下RIEと記す。)に
より選択的にエッチングし、深さ0.05〜2.0μm
の凹部2を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to the drawings. 1 to 9 show a cross-sectional structure of a main part of a dielectric isolation substrate manufactured by applying the present invention in the order of manufacturing steps. This embodiment will be described in the order of manufacturing steps. First, as shown in FIG. 1, a part of the mirror surface 1a of the first semiconductor substrate 1 whose at least one surface is mirror-polished is selectively etched by chemical etching or reactive ion etching (hereinafter referred to as RIE) to obtain a depth. 0.05-2.0 μm
To form the concave portion 2.

【0011】次に図2に示すように凹部2と前記鏡面1
aとの境界に沿い、かつ凹部2に連通し基板端部に開口
する溝3を、化学エッチング、RIEあるいはダイシン
グソーによって形成する。この溝3の形状については、
凹部2の形状、基板サイズ等を考慮して決めるべきもの
であるが少なくともその深さは凹部2の深さよりも大き
くする必要がある。さらに必要に応じ、この第1シリコ
ン基板1を熱酸化した後、この熱酸化によって形成され
た熱酸化膜を例えばふっ化水素水溶液により完全に除去
し、RIE等による前記エッチング工程において基板表
面に生じた結晶のダメージを除去するようにしてもよ
い。
Next, as shown in FIG. 2, the recess 2 and the mirror surface 1 are formed.
A groove 3 is formed by chemical etching, RIE or a dicing saw along the boundary with a and communicating with the recess 2 and opening at the end of the substrate. Regarding the shape of this groove 3,
It should be determined in consideration of the shape of the recess 2, the substrate size, etc., but at least the depth thereof needs to be larger than the depth of the recess 2. Further, if necessary, after thermally oxidizing the first silicon substrate 1, the thermal oxide film formed by this thermal oxidation is completely removed by, for example, an aqueous solution of hydrogen fluoride, and is generated on the substrate surface in the etching step such as RIE. The crystal damage may be removed.

【0012】次に、図3に示すように、第1半導体基板
1の表面に熱酸化膜4を形成する。さらに、この熱酸化
膜4の上に窒化膜5を形成する。次に図4に示すよう
に、RIE等のドライエッチングにより異方性(垂直
性)エッチングを行い、溝3の側壁に形成されている窒
化膜5bを残すかたちでエッチングを行う。このエッチ
ング条件は窒化膜と酸化膜の選択比が大きく、酸化膜が
窒化膜のエッチングにおいてストッパとしてはたらくよ
うな条件で行うことが望ましい。またこの時少なくとも
第1半導体基板1の鏡面1a上に形成された熱酸化膜4
a上の窒化膜5aは完全に除去されてなければならな
い。また凹部側壁の窒化膜5cは残っていてもよいが、
その高さは第1半導体基板の鏡面1aよりも低くしなけ
ればならない。
Next, as shown in FIG. 3, a thermal oxide film 4 is formed on the surface of the first semiconductor substrate 1. Further, a nitride film 5 is formed on this thermal oxide film 4. Next, as shown in FIG. 4, anisotropic (perpendicular) etching is performed by dry etching such as RIE, and etching is performed so that the nitride film 5b formed on the side wall of the groove 3 remains. It is desirable that the etching condition is such that the selection ratio between the nitride film and the oxide film is large and the oxide film acts as a stopper in etching the nitride film. At this time, at least the thermal oxide film 4 formed on the mirror surface 1a of the first semiconductor substrate 1
The nitride film 5a on a must be completely removed. Further, the nitride film 5c on the sidewall of the recess may remain, but
Its height must be lower than the mirror surface 1a of the first semiconductor substrate.

【0013】次に図5に示すように、窒化膜5がエッチ
ングされた領域の熱酸化膜4を、例えばふっ化水素水溶
液により完全に除去する。次に、第1半導体基板1と少
なくとも一方の面を鏡面研磨した第2半導体基板6とを
例えばトリクレン煮沸、アセトン超音波洗浄、NH4
H:H2 2 :H 2 O=1:1:4の混合液による有機
物の除去、HCl:H2 2 :H2 O=1:1:4の混
合液による金属汚染の除去および純水洗浄を順次施すこ
とにより、十分洗浄する。その後、第1半導体基板1の
鏡面1aと第2半導体基板6の鏡面6aの自然酸化膜を
例えばHF:H2 O=1:50の混合液により、除去し
た後、例えばH2 SO4 :H2 2 =3:1の混合液等
の酸性溶液中への浸漬あるいは熱酸化あるいは酸素プラ
ズマ照射等によって基板表面に1〜100nm程度の酸
化層を形成して親水性を持たせ、純水にて洗浄する。次
に乾燥窒素、スピン等の乾燥を行い、基板表面に吸着す
る水分量を制御した後、図6に示すように、これら2枚
の基板1の鏡面1aと基板6の鏡面6aとを密着させ
る。これにより2枚の基板1,6は表面に形成されたシ
ラノール基および表面に吸着した水分子の水素結合によ
り接着される。さらにこの接着した基板1および6を例
えば10Torr以下の真空中にて乾燥させる。このと
き基板1および6の反りを補償するため、30g重/cm
2 以上の荷重を加えるようにしても良い。この後、基板
1、6に例えば窒素、アルゴン等の不活性雰囲気中で1
100℃以上、1時間以上の熱処理を施すことにより、
接着面において脱水縮合反応が起き、2枚の基板1、6
は直接接合されて一体化し、接合基板7が形成される。
ただし、このとき凹部2および溝部3は接合しておらず
空洞となっている。
Next, as shown in FIG. 5, the nitride film 5 is etched.
The thermal oxide film 4 in the exposed region with, for example, hydrogen fluoride aqueous solution.
Remove completely with liquid. Next, the first semiconductor substrate 1
At least the second semiconductor substrate 6 whose one surface is mirror-polished
For example, trichlene boil, acetone ultrasonic cleaning, NHFourO
H: H2O2: H 2Organic with a mixture of O = 1: 1: 4
Removal of substances, HCl: H2O2: H2O = 1: 1: 4 mixture
It is necessary to remove metal contamination by the mixture and wash with pure water sequentially.
Wash thoroughly with. Then, the first semiconductor substrate 1
The natural oxide film on the mirror surface 1a and the mirror surface 6a of the second semiconductor substrate 6 is removed.
For example, HF: H2Remove with a mixture of O = 1: 50
And then, for example, H2SOFour: H2O2= 3: 1 mixture, etc.
Immersion in an acidic solution, thermal oxidation, or oxygen
The surface of the substrate is exposed to an acid of about 1 to 100 nm due to tsuma irradiation or the like.
The layer is made hydrophilic to make it hydrophilic and washed with pure water. Next
Dry nitrogen, spin, etc., and adsorb on the substrate surface
After controlling the amount of water,
The mirror surface 1a of the substrate 1 and the mirror surface 6a of the substrate 6 are brought into close contact with each other.
It As a result, the two substrates 1 and 6 are shielded on the surface.
The hydrogen bond of the water molecules adsorbed on the surface of the ranol group
Glued. Further, this bonded substrates 1 and 6 are taken as an example.
For example, it is dried in a vacuum of 10 Torr or less. This and
30g weight / cm to compensate the warpage of substrates 1 and 6
2You may make it apply the above load. After this, the substrate
1 to 6 in an inert atmosphere such as nitrogen or argon
By performing heat treatment at 100 ° C or higher for 1 hour or longer,
A dehydration condensation reaction occurs on the adhesive surface, and the two substrates 1 and 6
Are directly bonded and integrated to form a bonded substrate 7.
However, at this time, the recess 2 and the groove 3 are not joined.
It is hollow.

【0014】次に、図7に示すように、この基板7を例
えばドライO2 、ウエットO2、あるいはH2 /O2
合燃焼気体等の酸化性雰囲気で900℃以上、1時間以
上の熱処理を施し、溝3を通して接合基板7内部の空洞
部表面を酸化して、熱酸化シリコン層8を形成する。た
だし、この図7に示す酸化工程は、前記凹部2の表面と
基板6の表面から成長形成される熱酸化シリコンによっ
て完全に埋設、充填されるように酸化時間が設定されて
いる。このとき、窒化膜5bの形成されている溝の側壁
には熱酸化膜は形成されないため、溝の酸化性ガスに対
する開口面積は、溝の底部には熱酸化膜9が成長してそ
の面積は減少するものの、側壁での成長はないことによ
りその縮小率は低く、熱酸化時間は窒化膜5bが形成さ
れてない場合よりも短くすることができる。以上の工程
を経て基板内部に誘電体層8が埋め込まれた半導体基板
7が形成される。そしてこの後、図8に示すように、基
板1をその表面1b側から溝3が表面に露出するまで研
削・ポリッシュを行う。この後必要ならば、分離耐圧を
確保するために、側壁に形成された窒化膜5bをリン酸
等で除去した後、熱酸化をすることで側壁に厚い酸化膜
を形成してもよい。次に図9に示すように、開口した溝
3を多結晶シリコン10で埋設し平坦化を行う。
Next, as shown in FIG. 7, the substrate 7 is heat-treated at 900 ° C. or higher for 1 hour or longer in an oxidizing atmosphere such as dry O 2 , wet O 2 or H 2 / O 2 mixed combustion gas. Then, the surface of the cavity inside the bonded substrate 7 is oxidized through the groove 3 to form the thermally oxidized silicon layer 8. However, in the oxidization process shown in FIG. 7, the oxidization time is set so that it is completely buried and filled with thermal silicon oxide grown from the surface of the recess 2 and the surface of the substrate 6. At this time, since the thermal oxide film is not formed on the side wall of the groove in which the nitride film 5b is formed, the opening area of the groove with respect to the oxidizing gas is equal to the area of the opening of the thermal oxide film 9 at the bottom of the groove. Although it decreases, the reduction rate is low because there is no growth on the side wall, and the thermal oxidation time can be made shorter than when the nitride film 5b is not formed. Through the above steps, the semiconductor substrate 7 in which the dielectric layer 8 is embedded inside the substrate is formed. After that, as shown in FIG. 8, the substrate 1 is ground and polished from the front surface 1b side until the groove 3 is exposed on the front surface. Thereafter, if necessary, in order to secure the isolation breakdown voltage, the nitride film 5b formed on the side wall may be removed by phosphoric acid or the like, and then thermal oxidation may be performed to form a thick oxide film on the side wall. Next, as shown in FIG. 9, the opened groove 3 is filled with polycrystalline silicon 10 and flattened.

【0015】このように上記実施例に従い誘電体分離基
板を形成すれば、溝の側壁に形成した窒化膜により酸化
性ガスの通過する経路を確保することができるため、基
板端部と基板中央部との酸化速度の差を縮めることがで
きる。従って、形成する溝の幅および深さを変えること
なく、凹部内に熱酸化シリコンを埋め込むために必要な
熱酸化時間を短くすることができる。
By thus forming the dielectric isolation substrate according to the above-described embodiment, the nitride film formed on the side wall of the groove can secure a path for the oxidizing gas to pass through, so that the substrate end portion and the substrate central portion can be secured. It is possible to reduce the difference in the oxidation rate between and. Therefore, the thermal oxidation time required for embedding the thermal oxide silicon in the recess can be shortened without changing the width and depth of the groove to be formed.

【0016】[0016]

【発明の効果】以上詳述したように、本発明によれば、
酸化性雰囲気中において溝部および凹部を酸化する際
に、前期溝部側壁に形成した耐酸化性膜により、酸化性
ガスの通過する面積の減少を防ぐことができるため、酸
化性ガスが前期溝部を通して前期凹部に到達し易くな
る。従って、基板端部と基板中央部との酸化時間の差を
縮めることができ、形成する溝の幅および深さを変える
ことなく、凹部内に熱酸化シリコンを埋め込むために必
要な熱酸化時間を短くすることができる。
As described in detail above, according to the present invention,
When oxidizing the groove and the recess in an oxidizing atmosphere, the oxidation resistant film formed on the sidewall of the groove can prevent the reduction of the area through which the oxidizing gas passes. It becomes easier to reach the recess. Therefore, it is possible to reduce the difference in the oxidation time between the edge portion of the substrate and the central portion of the substrate, and to reduce the thermal oxidation time required for embedding the thermal oxide silicon in the recess without changing the width and depth of the groove to be formed. Can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例を示す誘電体分離基板の
製造工程図である。
FIG. 1 is a manufacturing process diagram of a dielectric isolation substrate showing an embodiment according to the present invention.

【図2】本発明による一実施例を示す誘電体分離基板の
製造工程図である。
FIG. 2 is a manufacturing process diagram of a dielectric isolation substrate showing an embodiment according to the present invention.

【図3】本発明による一実施例を示す誘電体分離基板の
製造工程図である。
FIG. 3 is a manufacturing process diagram of a dielectric isolation substrate showing an embodiment according to the present invention.

【図4】本発明による一実施例を示す誘電体分離基板の
製造工程図である。
FIG. 4 is a manufacturing process diagram of a dielectric isolation substrate showing an embodiment according to the present invention.

【図5】本発明による一実施例を示す誘電体分離基板の
製造工程図である。
FIG. 5 is a manufacturing process diagram of a dielectric isolation substrate showing an embodiment according to the present invention.

【図6】本発明による一実施例を示す誘電体分離基板の
製造工程図である。
FIG. 6 is a manufacturing process diagram of a dielectric isolation substrate showing an embodiment according to the present invention.

【図7】本発明による一実施例を示す誘電体分離基板の
製造工程図である。
FIG. 7 is a manufacturing process diagram of a dielectric isolation substrate showing an embodiment according to the present invention.

【図8】本発明による一実施例を示す誘電体分離基板の
製造工程図である。
FIG. 8 is a manufacturing process diagram of a dielectric isolation substrate showing an embodiment according to the present invention.

【図9】本発明による一実施例を示す誘電体分離基板の
製造工程図である。
FIG. 9 is a manufacturing process diagram of a dielectric isolation substrate showing an embodiment according to the present invention.

【図10】従来技術における誘電体分離基板の製造工程
図である。
FIG. 10 is a manufacturing process diagram of a dielectric isolation substrate in a conventional technique.

【符号の説明】[Explanation of symbols]

1 第1半導体基板 1a 第1半導体基板の鏡面 2 凹部 3 溝 4 熱酸化膜 4a 第1半導体基板の鏡面上の熱酸化膜 5 窒化膜 5a 第1半導体基板の鏡面上の窒化膜 5b 溝側壁の窒化膜 5c 凹部側壁の窒化膜 6 第2半導体基板 6a 第2半導体基板の鏡面 7 接合基板 8 熱酸化シリコン層 9 溝底部の熱酸化膜 10 多結晶シリコン DESCRIPTION OF SYMBOLS 1 1st semiconductor substrate 1a Mirror surface of 1st semiconductor substrate 2 Recess 3 Groove 4 Thermal oxide film 4a Thermal oxide film on mirror surface of 1st semiconductor substrate 5 Nitride film 5a Nitride film 5b on mirror surface of 1st semiconductor substrate 5b Nitride film 5c Nitride film on sidewall of recess 6 Second semiconductor substrate 6a Mirror surface of second semiconductor substrate 7 Bonding substrate 8 Thermally oxidized silicon layer 9 Thermally oxidized film at groove bottom 10 Polycrystalline silicon

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1及び第2の半導体基板を接合して内
部に誘電体埋め込み層が形成された半導体基板を製造す
る方法であって、 該第1半導体基板及び第2半導体基板のうち、少なくと
も一方の基板に於ける他方の半導体基板との接合主面上
で且つ誘電体埋め込み層形成位置に相当する領域に所定
の深さを有する凹部を形成するとともに、該凹部により
形成される空間部に連通する位置に開口部を有し且つそ
の深さが該凹部の深さよりも深くなる様に設定された溝
部を該第1と第2の半導体基板の少なくとも一方の半導
体基板の接合主面に形成すると同時に該溝部は当該半導
体基板の基板端面に開口部を有する様に形成される加工
工程、 該第1及び第2の半導体基板を直接接合して接合基板と
する接合工程、 少なくとも前記接合工程以前の段階において、前記加工
工程において、該第1および第2の半導体基板の少なく
とも一方に形成された該溝部の側壁に耐酸化性膜を形成
する形成工程、 を有することを特徴とした誘電体分離領基板の製造方
法。
1. A method of manufacturing a semiconductor substrate in which a dielectric-embedded layer is formed by joining a first semiconductor substrate and a second semiconductor substrate, the method comprising the steps of: A recess having a predetermined depth is formed in a region corresponding to a dielectric burying layer formation position on the main bonding surface of at least one substrate with the other semiconductor substrate, and a space formed by the recess. A groove portion having an opening at a position communicating with the groove and the depth of which is set to be deeper than the depth of the recess on the main bonding surface of at least one of the first and second semiconductor substrates. At the same time as forming, the groove is formed so as to have an opening at the substrate end surface of the semiconductor substrate, a joining step of directly joining the first and second semiconductor substrates to form a joined substrate, at least the joining step Previous stage And a step of forming an oxidation resistant film on a side wall of the groove formed in at least one of the first and second semiconductor substrates in the processing step. Substrate manufacturing method.
JP12258993A 1993-05-25 1993-05-25 Manufacture of dielectric isolation substrate Withdrawn JPH06334028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12258993A JPH06334028A (en) 1993-05-25 1993-05-25 Manufacture of dielectric isolation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12258993A JPH06334028A (en) 1993-05-25 1993-05-25 Manufacture of dielectric isolation substrate

Publications (1)

Publication Number Publication Date
JPH06334028A true JPH06334028A (en) 1994-12-02

Family

ID=14839669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12258993A Withdrawn JPH06334028A (en) 1993-05-25 1993-05-25 Manufacture of dielectric isolation substrate

Country Status (1)

Country Link
JP (1) JPH06334028A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330554A (en) * 1995-03-13 1996-12-13 Nec Corp Semiconductor substrate and its manufacture
US5681775A (en) * 1995-11-15 1997-10-28 International Business Machines Corporation Soi fabrication process
JP2006512754A (en) * 2002-12-24 2006-04-13 コミサリヤ・ア・レネルジ・アトミク Composite substrate manufacturing method and structure thus obtained

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330554A (en) * 1995-03-13 1996-12-13 Nec Corp Semiconductor substrate and its manufacture
US5681775A (en) * 1995-11-15 1997-10-28 International Business Machines Corporation Soi fabrication process
JP2006512754A (en) * 2002-12-24 2006-04-13 コミサリヤ・ア・レネルジ・アトミク Composite substrate manufacturing method and structure thus obtained

Similar Documents

Publication Publication Date Title
KR100562437B1 (en) SOI wafer manufacturing method and SOI wafer manufactured by the method
TWI297171B (en) Method for fabricating a germanium on insulator (geoi) type wafer
EP1635396B1 (en) Laminated semiconductor substrate and process for producing the same
US6242320B1 (en) Method for fabricating SOI wafer
US5223450A (en) Method of producing semiconductor substrate having dielectric separation region
JPS61296709A (en) Manufacture of semiconductor
JPH05217826A (en) Semiconductor base body and its manufacture
JPS6340337A (en) Method of isolating integrated circuit
US5918139A (en) Method of manufacturing a bonding substrate
JP3413516B2 (en) Method for manufacturing semiconductor device
JPH05235007A (en) Manufacture of semiconductor substrate
JPH09260620A (en) Manufacture of coupled wafer and coupled wafer manufactured by this method
JPH06334028A (en) Manufacture of dielectric isolation substrate
EP1650158A1 (en) Silicon-on-insulator substrate, its fabrication method and MEMS floating structure formed therein
US6194319B1 (en) Semiconductor processing method of reducing an etch rate of one portion of a doped material relative to another portion, and methods of forming openings
US6261966B1 (en) Method for improving trench isolation
JPH02205339A (en) Manufacture of semiconductor device
JPH0574926A (en) Manufacturing method for semiconductor substrate
JPH06232245A (en) Manufacture of dielectric isolation substrate
JPH0555358A (en) Manufacture of semiconductor device
JP2671828B2 (en) Method for manufacturing semiconductor device
JPH03265154A (en) Manufacture of semiconductor substrate
JPH08181296A (en) Manufacture of semiconductor substrate
KR100533380B1 (en) Method of forming shallow trench isolation layer in semiconductor device
JP2000196048A (en) Manufacture of soi wafer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801