JP2000196048A - Manufacture of soi wafer - Google Patents

Manufacture of soi wafer

Info

Publication number
JP2000196048A
JP2000196048A JP11353608A JP35360899A JP2000196048A JP 2000196048 A JP2000196048 A JP 2000196048A JP 11353608 A JP11353608 A JP 11353608A JP 35360899 A JP35360899 A JP 35360899A JP 2000196048 A JP2000196048 A JP 2000196048A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
oxide film
soi wafer
layer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11353608A
Other languages
Japanese (ja)
Inventor
Sobun So
相 文 蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of JP2000196048A publication Critical patent/JP2000196048A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Abstract

PROBLEM TO BE SOLVED: To realize a method for manufacturing an SOI wafer for improving uniformity of the thickness of a semiconductor layer, using an oxidizing process and a wet etching process instead of a CMP process. SOLUTION: This method for manufacturing an SOI wafer comprises a stage for providing a base substrate 11 and a semiconductor substrate, a stage for forming an insulating film 12 on the base substrate 11, a stage for forming a boron ion layer in the semiconductor substrate by a prescribed depth from one side face, a stage for bonding the base substrate 11 with the semiconductor substrate for bringing the insulating layer 12 into contact with one side face of the semiconductor substrate, a stage for grinding the other side face of the semiconductor substrate to the part adjacent to the boron ion layer, a stage for etching the ground other side face of the semiconductor substrate for exposing the boron ion layer, a stage for forming an oxide film 12 by thermally oxidizing one part of the semiconductor substrate including the boron ion layer, and a stage for forming a semiconductor layer 21a by etching the oxide film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SOI(Silicon-O
n-Insulator)ウェーハの製造方法に関し、特に半導体層
の厚さの均一度を向上させることができるSOIウェー
ハの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an SOI (Silicon-O
More particularly, the present invention relates to a method for manufacturing an SOI wafer capable of improving the uniformity of the thickness of a semiconductor layer.

【0002】[0002]

【従来の技術】近年、半導体素子の高集積化及び高性能
化に伴い、バルクシリコンからなる単結晶シリコンウェ
ーハの代わりに、SOIウェーハを用いた半導体集積技
術が注目されている。これは、SOIウェーハに集積さ
れた半導体素子が、通常の単結晶シリコンウェーハに集
積された半導体素子と比較して、接合容量(Junction Ca
pacitance)の減少による高速化、しきい電圧(Threshold
Voltage)の減少による低電圧化、及び完全な素子分離
によるラッチ-アップ(Latch-Up)の減少などの利点を持
つためである。
2. Description of the Related Art In recent years, as semiconductor devices become more highly integrated and higher in performance, semiconductor integrated technologies using SOI wafers instead of single-crystal silicon wafers made of bulk silicon have attracted attention. This is because a semiconductor device integrated on an SOI wafer has a larger junction capacitance (Junction Ca) than a semiconductor device integrated on a normal single crystal silicon wafer.
pacitance), threshold voltage (Threshold
This is because there are advantages such as lowering of voltage due to reduction of voltage, and reduction of latch-up due to complete element isolation.

【0003】前述したSOIウェーハは、支持手段のベ
ース基板と、前記ベース基板上に配置されてボンディン
グ媒介体としての機能を行う埋め込み酸化膜と、前記埋
め込み酸化膜上に配置されて活性領域を提供する半導体
層との積層構造からなる。前記SOIウェーハを製造す
る為に、従来はSIMOX(seperation by implantedox
ygen)法及びボンディング法が利用されている。
The SOI wafer described above provides a base substrate for supporting means, a buried oxide film disposed on the base substrate to function as a bonding medium, and an active region provided on the buried oxide film. It has a laminated structure with a semiconductor layer to be formed. Conventionally, in order to manufacture the SOI wafer, SIMOX (seperation by implantedox)
ygen) method and bonding method are used.

【0004】SIMOX法は、シリコンウェーハ内に酸
素イオンを注入し、次に、酸素イオンとシリコンが反応
するように熱処理を行うことにより、前記シリコンウェ
ーハの表面から所定深さに前記シリコンウェーハをベー
ス基板と半導体層に分離させる埋め込み酸化膜を形成す
る。その結果、ベース基板、埋め込み酸化膜、及び半導
体層の積層構造からなるSOIウェーハが得られる。ボ
ンディング法は、二枚のシリコン基板、例えばベース基
板と半導体基板を、前記基板の何れか一つに形成された
埋め込み酸化膜の介在下でボンディングし、次に、前記
半導体基板の一部厚さを研磨工程にて除去して素子が形
成される半導体層が得られ、その結果、ベース基板、埋
め込み酸化膜、及び半導体層の積層構造からなるSOI
ウェーハが得られる。
In the SIMOX method, oxygen ions are implanted into a silicon wafer, and then heat treatment is performed so that the oxygen ions react with the silicon, so that the silicon wafer is formed at a predetermined depth from the surface of the silicon wafer. A buried oxide film to be separated into a substrate and a semiconductor layer is formed. As a result, an SOI wafer having a laminated structure of the base substrate, the buried oxide film, and the semiconductor layer is obtained. In the bonding method, two silicon substrates, for example, a base substrate and a semiconductor substrate are bonded together with a buried oxide film formed on any one of the substrates interposed therebetween. Is removed by a polishing process to obtain a semiconductor layer on which an element is formed. As a result, an SOI having a stacked structure of a base substrate, a buried oxide film, and a semiconductor layer is obtained.
A wafer is obtained.

【0005】ところが、SIMOX法はイオン注入によ
って形成されるため、半導体層の厚さを調節するのが難
しく、かつ、工程時間が長いという欠点があるために、
最近はボンディング法が主に用いられている。
However, since the SIMOX method is formed by ion implantation, it is difficult to adjust the thickness of the semiconductor layer and the process time is long.
Recently, the bonding method has been mainly used.

【0006】図1乃至図4はボンディング法を用いた従
来技術によるSOIウェーハの製造方法を説明するため
の工程断面図である。図1を参照すれば、ベース基板1
を備え、熱酸化工程あるいは化学気相蒸着(Chemical Va
por Deposition:以下、CVD)工程による酸化膜2を
前記ベース基板1上に形成する。
FIGS. 1 to 4 are process sectional views for explaining a conventional method of manufacturing an SOI wafer using a bonding method. Referring to FIG. 1, a base substrate 1
With thermal oxidation process or chemical vapor deposition (Chemical Vapor Deposition).
An oxide film 2 is formed on the base substrate 1 by a por deposition (CVD) process.

【0007】図2を参照すれば、バルクシリコンからな
る半導体基板3を備え、ホウ素イオン層4を、前記半導
体基板3内に公知のイオン注入法によるホウ素イオンの
注入により、前記半導体基板3の一側面から所定深さに
形成する。ここで、前記ホウ素イオン層4は後続工程で
エッチング停止層として用い、特に素子が形成される半
導体層の厚さの均一度が確保される機能を行う。
Referring to FIG. 2, a semiconductor substrate 3 made of bulk silicon is provided, and a boron ion layer 4 is formed in the semiconductor substrate 3 by implanting boron ions by a known ion implantation method. It is formed to a predetermined depth from the side. Here, the boron ion layer 4 is used as an etching stop layer in a subsequent process, and particularly, performs a function of ensuring uniformity of the thickness of a semiconductor layer on which an element is formed.

【0008】図3を参照すれば、ベース基板1と半導体
基板3は、前記ベース基板1上に形成された酸化膜2と
前記半導体基板3の一側面がコンタクトされるようにボ
ンディングされ、次に、それら間のボンディング強度が
増大するように熱処理される。続いて、前記半導体基板
3の他側面はホウ素イオン層4に隣接した部分まで研削
され、次に、研削された半導体基板3の他側面は前記ホ
ウ素イオン層4が露出するまでエッチングされる。前記
ホウ素イオン層4は、前述したように、エッチング停止
層としての機能を行い、前記ホウ素イオン層4によって
研削及びエッチング工程を行った半導体基板3における
厚さの均一度が確保される。
Referring to FIG. 3, a base substrate 1 and a semiconductor substrate 3 are bonded so that an oxide film 2 formed on the base substrate 1 and one side of the semiconductor substrate 3 are in contact with each other. Then, heat treatment is performed to increase the bonding strength between them. Subsequently, the other side of the semiconductor substrate 3 is ground to a portion adjacent to the boron ion layer 4, and then the other side of the ground semiconductor substrate 3 is etched until the boron ion layer 4 is exposed. As described above, the boron ion layer 4 functions as an etching stop layer, and the boron ion layer 4 ensures uniformity of the thickness of the semiconductor substrate 3 that has been subjected to the grinding and etching processes.

【0009】図4を参照すれば、ホウ素イオン層4を含
んだ前記半導体基板3は、所定厚さの半導体層3aが得
られるように、化学機械研磨(Chemical Mechanical Pol
ishing:以下、CMP)工程により研磨され、その結
果、ベース基板1、埋め込み酸化膜としての機能を行う
酸化膜2、及び半導体層3aの積層構造からなるSOI
ウェーハ10が製造される。
Referring to FIG. 4, the semiconductor substrate 3 including the boron ion layer 4 is subjected to chemical mechanical polishing (Chemical Mechanical Polishing) so that a semiconductor layer 3a having a predetermined thickness is obtained.
ishing: hereinafter, polished by a CMP) process. As a result, an SOI having a laminated structure of a base substrate 1, an oxide film 2 serving as a buried oxide film, and a semiconductor layer 3a
A wafer 10 is manufactured.

【0010】[0010]

【発明が解決しようとする課題】前記SOIウェーハに
おいて、半導体層は素子の形成される活性領域を提供す
るため、その厚さの均一度が確保されるべきである。と
ころが、従来の方法では、前記半導体層の厚さの均一度
はある程度確保されたが、それでも限界があり、かつC
MP工程により前記半導体層の表面にスクラッチ(Scrat
ch)が発生するため、前記半導体層の厚さの均一度が低
減するという問題点がある。
In the SOI wafer, since the semiconductor layer provides an active region in which a device is formed, uniformity of its thickness should be ensured. However, in the conventional method, the uniformity of the thickness of the semiconductor layer is ensured to some extent, but there is still a limit and C
The surface of the semiconductor layer is scratched by an MP process.
ch) occurs, and thus the uniformity of the thickness of the semiconductor layer is reduced.

【0011】本発明の目的は、CMP工程の代りに酸化
工程とウェットエッチング工程を用いることにより、半
導体層の厚さの均一度を一層向上できるSOIウェーハ
の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing an SOI wafer which can further improve the uniformity of the thickness of a semiconductor layer by using an oxidation step and a wet etching step instead of the CMP step.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、ベース基板及び半導体基板を提供する段
階;前記ベース基板上に絶縁膜を形成する段階;前記半
導体基板内にその一側面より所定深さにホウ素イオン層
を形成する段階;前記絶縁膜と半導体基板の一側面がコ
ンタクトされるように、前記ベース基板と半導体基板を
ボンディングする段階;前記半導体基板の他側面を前記
ホウ素イオン層に隣接した部分まで研削する段階;前記
ホウ素イオン層が露出するように、研磨された半導体基
板の他側面をエッチングする段階;前記ホウ素イオン層
を含めた半導体基板の一部を熱酸化させて酸化膜を形成
する段階;及び前記酸化膜をエッチングして半導体層を
形成する段階を含むことを特徴とする。
To achieve the above object, the present invention provides a base substrate and a semiconductor substrate; a step of forming an insulating film on the base substrate; Forming a boron ion layer at a predetermined depth from a side surface; bonding the base substrate and the semiconductor substrate so that the insulating film contacts one side surface of the semiconductor substrate; Grinding the portion adjacent to the ion layer; etching the other side of the polished semiconductor substrate so that the boron ion layer is exposed; thermally oxidizing a part of the semiconductor substrate including the boron ion layer; Forming an oxide film by etching; and etching the oxide film to form a semiconductor layer.

【0013】本発明及びその実施の形態は、以下の説明
及び図面を参照することによって理解できる。
The present invention and its embodiments can be understood by referring to the following description and drawings.

【0014】[0014]

【発明の実施の形態】以下、添付図面に基づき、本発明
の好適実施例を詳細に説明する。図5乃至図10は本発
明の実施例によるSOIウェーハの製造方法を説明する
ための工程断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 5 to 10 are cross-sectional views illustrating a method of manufacturing an SOI wafer according to an embodiment of the present invention.

【0015】図5を参照すれば、ベース基板11を備
え、SOIウェーハで埋め込み酸化膜として機能を行う
酸化膜12が前記ベース基板11の一側面を熱酸化させ
ることにより、1,000〜20,000Å厚さで形成
される。前記酸化膜12は熱酸化工程の代りにBPSG
膜、SOG膜、O3-TEOS酸化膜、高密度プラズマ酸
化膜から選択される一つのCVD酸化膜を蒸着して形成
してもよい。
Referring to FIG. 5, an oxide film 12 having a base substrate 11 and functioning as a buried oxide film on an SOI wafer is formed by thermally oxidizing one side surface of the base substrate 11 so as to have a thickness of 1,000 to 20,000. It is formed with a thickness of 000 mm. The oxide film 12 is BPSG instead of a thermal oxidation process.
One CVD oxide film selected from a film, an SOG film, an O 3 -TEOS oxide film, and a high-density plasma oxide film may be formed by vapor deposition.

【0016】図6を参照すれば、バルクシリコンからな
る半導体基板21を備え、前記半導体基板21内にホウ
素イオンを注入してから熱処理させることで、前記半導
体基板21の一側面から所定深さにホウ素イオン層22
を形成する。前記ホウ素イオンは50〜500keVの
エネルギーと1.0×1015〜3.0×1016ドーズ/
cm2でイオン注入する。
Referring to FIG. 6, a semiconductor substrate 21 made of bulk silicon is provided. Boron ions are implanted into the semiconductor substrate 21 and then heat-treated to a predetermined depth from one side surface of the semiconductor substrate 21. Boron ion layer 22
To form The boron ions have an energy of 50 to 500 keV and a dose of 1.0 × 10 15 to 3.0 × 10 16 dose /
Ions are implanted in cm 2 .

【0017】図7を参照すれば、ベース基板11と半導
体基板21は、各基板11、21のボンディング面に存
在するパーティクル(particle)が除去され、かつ、前記
ボンディング面が親水性を持つように、NH4OH:H2
2 :H2 Oが1:4:20の体積比で混合された第1
溶液、またはH2SO4:H2 Oが4:1の体積比で混合
された第2溶液から選択される一つの溶液により洗浄さ
れたり、あるいは第1溶液と第2溶液により順次洗浄さ
れる。続いて、ベース基板11と半導体基板21は、前
記ベース基板11上に形成された酸化膜12と前記半導
体基板21の一側面がコンタクトされるように、7.5
×10-1〜7.5×10-4Torrの真空下でボンディ
ングされ、次に、ボンディングされたベース基板11と
半導体基板21は、それら間のボンディング強度が増大
するように、窒素(N2)又は酸素(O2)雰囲気下で700
〜1,200℃で30〜120分の間に熱処理される。
Referring to FIG. 7, the base substrate 11 and the semiconductor substrate 21 are formed such that particles existing on the bonding surfaces of the substrates 11 and 21 are removed and the bonding surfaces are hydrophilic. , NH 4 OH: H 2
A first mixture of O 2 : H 2 O in a volume ratio of 1: 4: 20.
The solution is washed with one solution selected from a solution or a second solution in which H 2 SO 4 : H 2 O is mixed at a volume ratio of 4: 1, or is washed sequentially with the first solution and the second solution. . Subsequently, the base substrate 11 and the semiconductor substrate 21 are connected to each other so that the oxide film 12 formed on the base substrate 11 is in contact with one side surface of the semiconductor substrate 21.
The base substrate 11 and the semiconductor substrate 21 which have been bonded under a vacuum of × 10 -1 to 7.5 × 10 -4 Torr are bonded with nitrogen (N 2) so that the bonding strength between them is increased. ) Or oxygen (O 2 ) atmosphere
Heat treated at ~ 1200C for 30-120 minutes.

【0018】図8を参照すれば、半導体基板21の他側
面は、ホウ素イオン層22に隣接した部分まで研削さ
れ、次に、研削された半導体基板21の他側面は前記ホ
ウ素イオン層22が露出するように、前記ホウ素イオン
層22をエッチング停止層とするウェットエッチング工
程によりエッチングされる。ここで、前記ウェットエッ
チング工程はNH4OH:H22 :H2 Oが1〜2:
0.01〜0.02:1〜5の体積比で混合された溶液
で行う。また、NH4OH溶液の代りにKOH溶液を用
いる事も出来る。
Referring to FIG. 8, the other side of the semiconductor substrate 21 is ground to a portion adjacent to the boron ion layer 22, and then the other side of the ground semiconductor substrate 21 is exposed to the boron ion layer 22. Thus, the etching is performed by a wet etching process using the boron ion layer 22 as an etching stop layer. Here, the wet etching process is NH 4 OH: H 2 O 2 : H 2 O is 1 to 2:
It is performed with a solution mixed at a volume ratio of 0.01 to 0.02: 1 to 5. Also, a KOH solution can be used instead of the NH 4 OH solution.

【0019】図9を参照すれば、ホウ素イオン層を含め
た半導体基板21の一部は水素及び酸素雰囲気下で80
0〜950℃で所定時間の間に熱酸化されることで、熱
酸化膜30が形成される。前記熱酸化工程は半導体基板
の残存部分が後続工程で形成される半導体層と同じ厚さ
となるまで行われる。
Referring to FIG. 9, a part of the semiconductor substrate 21 including the boron ion layer is exposed to hydrogen under an atmosphere of hydrogen and oxygen.
The thermal oxide film 30 is formed by being thermally oxidized at a temperature of 0 to 950 ° C. for a predetermined time. The thermal oxidation process is performed until the remaining portion of the semiconductor substrate has the same thickness as a semiconductor layer formed in a subsequent process.

【0020】図10を参照すれば、熱酸化膜はフッ酸
(HF)溶液を用いたウェットエッチング工程により除去
され、その結果、ベース基板11、埋め込み酸化膜とし
て機能を行う酸化膜12、及び半導体層21aの積層構
造からなるSOIウェーハ40が製造される。ここで、
前記半導体層21aは向上された厚さの均一度を持つ。
詳しくは、熱酸化膜は、通常均一な厚さで形成されるた
め、前記熱酸化膜を除いた残りの半導体基板部分の厚さ
は均一になる。よって、熱酸化膜の除去により得られる
半導体層21aの厚さの均一度はCMP工程により得ら
れるそれと比較して向上し、かつ前記半導体層の表面に
スクラッチが発生することも防止する。従って、前記半
導体層21aは滑らかな表面を持つことになり、厚さの
均一度は一層向上する。
Referring to FIG. 10, the thermal oxide film is made of hydrofluoric acid.
An SOI wafer 40 having a stacked structure of the base substrate 11, the oxide film 12 functioning as a buried oxide film, and the semiconductor layer 21a is manufactured by the wet etching process using the (HF) solution. here,
The semiconductor layer 21a has improved thickness uniformity.
More specifically, since the thermal oxide film is usually formed with a uniform thickness, the thickness of the remaining semiconductor substrate portion excluding the thermal oxide film becomes uniform. Therefore, the uniformity of the thickness of the semiconductor layer 21a obtained by removing the thermal oxide film is improved as compared with that obtained by the CMP process, and the generation of scratches on the surface of the semiconductor layer is also prevented. Therefore, the semiconductor layer 21a has a smooth surface, and the uniformity of the thickness is further improved.

【0021】続いて、SOIウェーハ40は、前記半導
体層21aの表面及びその内部に残っているホウ素イオ
ンを除去させ、そして、前述したエッチング工程時に発
生し得る結晶欠陥を回復するため、水素雰囲気下で60
0〜1,200℃で30〜120分の間に熱処理され
る。
Subsequently, the SOI wafer 40 is removed under a hydrogen atmosphere in order to remove boron ions remaining on the surface of the semiconductor layer 21a and the inside thereof and to recover crystal defects that may be generated during the above-described etching process. At 60
Heat treatment is performed at 0 to 1200C for 30 to 120 minutes.

【0022】尚、本発明は本実施例に限られるものでは
ない。本発明の趣旨から逸脱しない範囲内で多様に変更
実施することが可能である。
The present invention is not limited to this embodiment. Various modifications can be made without departing from the spirit of the present invention.

【0023】[0023]

【発明の効果】以上のように、半導体層はCMP工程の
代りに熱酸化工程とウェットエッチング工程によって得
られるため、前記半導体層の厚さの均一度が向上する。
また、表面スクラッチによる半導体層の不均一度も改善
される。従って、SOIウェーハの信頼性は勿論、向上
された厚さの均一度を持つ半導体層に形成された半導体
素子の信頼性も向上する。
As described above, since the semiconductor layer is obtained by the thermal oxidation process and the wet etching process instead of the CMP process, the uniformity of the thickness of the semiconductor layer is improved.
Further, the non-uniformity of the semiconductor layer due to surface scratches is also improved. Therefore, not only the reliability of the SOI wafer but also the reliability of the semiconductor device formed on the semiconductor layer having the improved thickness uniformity are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来におけるSOIウェーハの製造方法を説明
するための工程断面図である。
FIG. 1 is a process cross-sectional view for explaining a conventional SOI wafer manufacturing method.

【図2】従来におけるSOIウェーハの製造方法を説明
するための工程断面図である。
FIG. 2 is a process cross-sectional view for explaining a conventional SOI wafer manufacturing method.

【図3】従来におけるSOIウェーハの製造方法を説明
するための工程断面図である。
FIG. 3 is a process cross-sectional view for describing a conventional method for manufacturing an SOI wafer.

【図4】従来におけるSOIウェーハの製造方法を説明
するための工程断面図である。
FIG. 4 is a process cross-sectional view for explaining a conventional SOI wafer manufacturing method.

【図5】本発明の実施例によるSOIウェーハの製造方
法を説明するための工程断面図である。
FIG. 5 is a process sectional view illustrating a method of manufacturing an SOI wafer according to an embodiment of the present invention.

【図6】本発明の実施例によるSOIウェーハの製造方
法を説明するための工程断面図である。
FIG. 6 is a process sectional view illustrating a method for manufacturing an SOI wafer according to an embodiment of the present invention.

【図7】本発明の実施例によるSOIウェーハの製造方
法を説明するための工程断面図である。
FIG. 7 is a process sectional view illustrating a method of manufacturing an SOI wafer according to an embodiment of the present invention.

【図8】本発明の実施例によるSOIウェーハの製造方
法を説明するための工程断面図である。
FIG. 8 is a process sectional view illustrating a method of manufacturing an SOI wafer according to an embodiment of the present invention.

【図9】本発明の実施例によるSOIウェーハの製造方
法を説明するための工程断面図である。
FIG. 9 is a process cross-sectional view illustrating a method of manufacturing an SOI wafer according to an embodiment of the present invention.

【図10】本発明の実施例によるSOIウェーハの製造
方法を説明するための工程断面図である。
FIG. 10 is a cross-sectional view illustrating a method of manufacturing an SOI wafer according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 ベース基板 12 酸化膜 21 半導体基板 21a 半導体層 22 ホウ素イオン層 30 熱酸化膜 40 SOIウェーハ DESCRIPTION OF SYMBOLS 11 Base substrate 12 Oxide film 21 Semiconductor substrate 21a Semiconductor layer 22 Boron ion layer 30 Thermal oxide film 40 SOI wafer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ベース基板及び半導体基板を提供する段
階;前記ベース基板上に絶縁膜を形成する段階;前記半
導体基板内に、その一側面より所定深さにホウ素イオン
層を形成する段階;前記絶縁膜と半導体基板の一側面が
コンタクトされるように、前記ベース基板と半導体基板
をボンディングする段階;前記半導体基板の他側面を前
記ホウ素イオン層に隣接した部分まで研削する段階;前
記ホウ素イオン層が露出するように、研磨された半導体
基板の他側面をエッチングする段階;前記ホウ素イオン
層を含めた半導体基板の一部を熱酸化させて酸化膜を形
成する段階;及び、前記酸化膜をエッチングして半導体
層を形成する段階を含むことを特徴とするSOIウェー
ハの製造方法。
Providing a base substrate and a semiconductor substrate; forming an insulating layer on the base substrate; forming a boron ion layer in the semiconductor substrate at a predetermined depth from one side thereof; Bonding the base substrate and the semiconductor substrate such that an insulating film is in contact with one side surface of the semiconductor substrate; grinding the other side surface of the semiconductor substrate to a portion adjacent to the boron ion layer; Etching the other side of the polished semiconductor substrate so that the oxide film is exposed; thermally oxidizing a part of the semiconductor substrate including the boron ion layer to form an oxide film; and etching the oxide film. Forming a semiconductor layer by forming the SOI wafer.
【請求項2】 前記ホウ素イオン層を露出させるための
エッチングは、 NH4 OH:H22 :H2Oが1〜2:0.01〜
0.02:1〜5の体積比で混合された溶液で行うこと
を特徴とする請求項1記載のSOIウェーハの製造方
法。
2. The etching for exposing the boron ion layer is performed using NH 4 OH: H 2 O 2 : H 2 O of 1-2: 0.01-
2. The method for manufacturing an SOI wafer according to claim 1, wherein the method is performed with a solution mixed at a volume ratio of 0.02: 1 to 5.
【請求項3】 前記ホウ素イオン層を露出させるための
エッチングは、 KOH、H22 及びH2 Oの混合溶液で行うことを特
徴とする請求項2記載のSOIウェーハの製造方法。
3. The method as claimed in claim 2, wherein the etching for exposing the boron ion layer is performed using a mixed solution of KOH, H 2 O 2 and H 2 O.
【請求項4】 前記酸化膜を形成するための熱酸化は、 水素及び酸素雰囲気下で800〜950℃で行うことを
特徴とする請求項1記載のSOIウェーハの製造方法。
4. The method according to claim 1, wherein the thermal oxidation for forming the oxide film is performed at 800 to 950 ° C. in an atmosphere of hydrogen and oxygen.
【請求項5】 前記酸化膜のエッチングは、 フッ酸溶液を用いたウェットエッチングで行うことを特
徴とする請求項1記載のSOIウェーハの製造方法。
5. The method according to claim 1, wherein the etching of the oxide film is performed by wet etching using a hydrofluoric acid solution.
【請求項6】 前記酸化膜をエッチングする段階後、熱
処理を行う段階をさらに含むことを特徴とする請求項1
記載のSOIウェーハの製造方法。
6. The method of claim 1, further comprising performing a heat treatment after the step of etching the oxide film.
The manufacturing method of the SOI wafer described in the above.
【請求項7】 前記熱処理は、水素雰囲気下で600〜
1,200℃で30〜120分の間に行うことを特徴と
する請求項6記載のSOIウェーハの製造方法。
7. The heat treatment is performed in a hydrogen atmosphere at 600 to
7. The method for manufacturing an SOI wafer according to claim 6, wherein the method is performed at 1,200 [deg.] C. for 30 to 120 minutes.
JP11353608A 1998-12-24 1999-12-13 Manufacture of soi wafer Pending JP2000196048A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1998/P57983 1998-12-24
KR1019980057983A KR100291515B1 (en) 1998-12-24 1998-12-24 Method for manufacturing silicon on insulator wafer

Publications (1)

Publication Number Publication Date
JP2000196048A true JP2000196048A (en) 2000-07-14

Family

ID=19565199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11353608A Pending JP2000196048A (en) 1998-12-24 1999-12-13 Manufacture of soi wafer

Country Status (2)

Country Link
JP (1) JP2000196048A (en)
KR (1) KR100291515B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068996A (en) * 2001-08-22 2003-03-07 Sumitomo Mitsubishi Silicon Corp Method for manufacturing laminated silicon substrate
US20140008604A1 (en) * 2011-03-17 2014-01-09 Fudan University Super-Long Semiconductor Nano-Wire Structure and Method of Making

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268705B2 (en) * 2006-04-24 2012-09-18 Shin-Etsu Handotai Co., Ltd. Method for producing SOI wafer
KR100952250B1 (en) * 2007-12-26 2010-04-09 주식회사 동부하이텍 Method for manufacturing silicon wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068996A (en) * 2001-08-22 2003-03-07 Sumitomo Mitsubishi Silicon Corp Method for manufacturing laminated silicon substrate
US20140008604A1 (en) * 2011-03-17 2014-01-09 Fudan University Super-Long Semiconductor Nano-Wire Structure and Method of Making

Also Published As

Publication number Publication date
KR100291515B1 (en) 2001-06-01
KR20000041954A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
JP3684401B2 (en) Manufacturing method of SOI wafer
US6136666A (en) Method for fabricating silicon-on-insulator wafer
JP3324469B2 (en) Method for producing SOI wafer and SOI wafer produced by this method
JPH05251292A (en) Manufacture of semiconductor device
JPS61296709A (en) Manufacture of semiconductor
WO2005074033A1 (en) Method for manufacturing soi wafer
WO2009116227A1 (en) Soi wafer, semiconductor device and method for manufacturing soi wafer
JP2001196566A (en) Semiconductor substrate and method of manufacturing the same
JP5532680B2 (en) Manufacturing method of SOI wafer and SOI wafer
JP3413516B2 (en) Method for manufacturing semiconductor device
US5897362A (en) Bonding silicon wafers
JP2002184960A (en) Manufacturing method of soi wafer and soi wafer
KR100982584B1 (en) Method for producing semiconductor substrate
JP3932442B2 (en) Manufacturing method of SOI substrate
JP3412449B2 (en) Method for manufacturing SOI substrate
KR100602054B1 (en) Process for the production of semiconductor substrate having silicon-on- insulating structure and process for the production of semiconductor device
JP2000196048A (en) Manufacture of soi wafer
KR100549258B1 (en) Method for manufacturing silicon on insulator wafer
JPH05109883A (en) Manufacture of semiconductor device
KR100738460B1 (en) Method of fabricating nano SOI wafer
JP2000223679A (en) Semiconductor substrate and fabrication thereof
KR100286772B1 (en) Method for manufacturing silicon on insulator wafer
JPH09213916A (en) Manufacture of soi substrate
KR100291519B1 (en) Method for manufacturing SOI semiconductor substrate
KR20000040424A (en) Method of manufacturing silicon-on-insulator wafer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051101