JPH0574926A - Manufacturing method for semiconductor substrate - Google Patents

Manufacturing method for semiconductor substrate

Info

Publication number
JPH0574926A
JPH0574926A JP26265891A JP26265891A JPH0574926A JP H0574926 A JPH0574926 A JP H0574926A JP 26265891 A JP26265891 A JP 26265891A JP 26265891 A JP26265891 A JP 26265891A JP H0574926 A JPH0574926 A JP H0574926A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
mirror surface
recess
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26265891A
Other languages
Japanese (ja)
Inventor
Masaki Matsui
正樹 松井
Mitsutaka Katada
満孝 堅田
Kazuhiro Tsuruta
和弘 鶴田
Seiji Fujino
誠二 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP26265891A priority Critical patent/JPH0574926A/en
Publication of JPH0574926A publication Critical patent/JPH0574926A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To bury and fill thermally oxidized silicon in a proper manner when an element isolating layer within a semiconductor substrate is formed. CONSTITUTION:The manufacturing method for a semiconductor substrate is composed of the steps of: forming recesses 3 in a mirror surface 1a of a first semiconductor substrate 1, and forming oxygen introducing grooves 4 which are deeper than the recess, and communicate with the recess; etching the periphery of a mirror surface 2a of a second semiconductor substrate 2, which is to be joined to the first semiconductor substrate, to a predetermined width and depth, resulting in a stepped profile, and the second substrate has a terrace structure; joining the first substrate to the second substrate by heating processes, wherein the mirror surface 1a and the mirror surface 2 have been adhered to each other before the heating processes; and filling and burying a thermally oxidized silicon in a cavity 5 by introducing oxidizing atmospheric gas into the cavity formed between the recess of the first semiconductor substrate and second semiconductor substrate of the joined substrate through the oxygen introducing groove, and by heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板の製造方法
に関し、特に基板内部に選択的に誘電体埋め込み層を形
成した半導体基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor substrate, and more particularly to a method for manufacturing a semiconductor substrate having a dielectric embedded layer selectively formed inside the substrate.

【0002】[0002]

【従来の技術】半導体集積回路における素子分離法とし
て誘電体分離法が注目されており、その一例として、シ
リコン基板の直接接合技術と熱酸化による酸化膜成長を
用い、基板内部に誘電体埋め込み層として熱酸化シリコ
ンを充填、埋設する方法が提案されている(例えば特開
昭61−42154号公報)。
2. Description of the Related Art A dielectric isolation method has been attracting attention as an element isolation method in a semiconductor integrated circuit. As one example, a direct bonding technique for a silicon substrate and oxide film growth by thermal oxidation are used to form a dielectric embedded layer inside the substrate. As a method, a method of filling and burying thermally oxidized silicon has been proposed (for example, JP-A-61-42154).

【0003】この方法は、図7に示すように、表面に酸
素導入用の溝4および上記溝4と連通する浅い凹部3を
形成した第1半導体基板1と(図7(a))、第2半導
体基板2(図7(b))を直接接合した後(図7
(c))、酸化性ガス雰囲気中で加熱処理し、上記溝4
に沿って凹部3内にガスを供給することにより、熱酸化
シリコンを埋め込む方法であり、熱酸化シリコンで電気
的に絶縁分離された領域を選択的に形成することができ
る。
According to this method, as shown in FIG. 7, a first semiconductor substrate 1 having a groove 4 for introducing oxygen and a shallow recess 3 communicating with the groove 4 is formed on the surface (FIG. 7A), 2 After directly bonding the semiconductor substrate 2 (FIG. 7B) (FIG.
(C)), the groove 4 is heat-treated in an oxidizing gas atmosphere.
This is a method of burying thermal silicon oxide by supplying gas into the concave portion 3 along with, and it is possible to selectively form a region electrically insulated and separated by thermal silicon oxide.

【0004】[0004]

【発明が解決しようとする課題】上記従来の方法におい
て、第1半導体基板1表面の凹部3および溝4を形成す
る方法としては、溝4の外径が比較的大きいため化学的
エッチングは不適当であり、反応性イオンエッチングあ
るいはプラズマエッチング等のドライエッチングによっ
て形成することになる。しかしながら、この場合、基板
は外周部を包むように背面より電極で保持する必要があ
り(チャック)、このため基板端部のエッチングが困難
で、基板外周縁まで溝4が形成できないおそれがある。
In the above conventional method, chemical etching is unsuitable as a method for forming the recess 3 and the groove 4 on the surface of the first semiconductor substrate 1 because the outer diameter of the groove 4 is relatively large. Therefore, it is formed by dry etching such as reactive ion etching or plasma etching. However, in this case, the substrate needs to be held by the electrodes from the back surface so as to wrap the outer peripheral portion (chuck), so that it is difficult to etch the end portion of the substrate and the groove 4 may not be formed up to the outer peripheral edge of the substrate.

【0005】この状態で、半導体基板1、2を接合する
と、溝4は図7(c)に示すように接合基板内に埋没し
てしまい、外気に開口しない。従って溝4は酸素の導入
路として機能せず、接合基板内の凹部3へ酸素が十分供
給されないため、熱酸化シリコンの成長が不十分で、基
板内に完全に充填することができないという問題があ
る。
When the semiconductor substrates 1 and 2 are bonded in this state, the groove 4 is buried in the bonded substrate as shown in FIG. 7C and does not open to the outside air. Therefore, the groove 4 does not function as an oxygen introduction path, and oxygen is not sufficiently supplied to the recessed portion 3 in the bonded substrate. Therefore, the growth of thermally oxidized silicon is insufficient and the substrate cannot be completely filled. is there.

【0006】しかして、本発明は、ウエハのチャック
等、装置の制約により酸素導入溝を基板端面に開口する
ことができない場合でも、基板内部へ十分な酸素を供給
することができ、熱酸化シリコンの埋設、充填を良好に
行なうことが可能な半導体基板の製造方法を提供するこ
とを目的とする。
Therefore, the present invention can supply sufficient oxygen to the inside of the substrate even when the oxygen introduction groove cannot be opened to the end face of the substrate due to the restriction of the device such as the chuck of the wafer, and the thermal oxide silicon is used. It is an object of the present invention to provide a method for manufacturing a semiconductor substrate, which can satisfactorily embed and fill the semiconductor substrate.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、少なくとも一方が鏡面研磨された第1
半導体基板の鏡面に凹部を形成し、該凹部に連通する凹
部より深い酸素導入溝を形成する工程と、これと接合さ
れる少なくとも一方が鏡面研磨された第2半導体基板、
あるいは上記第1半導体基板の鏡面周縁部を所定幅、深
さにエッチングして段差を形成し、テラス構造とする工
程と、第1半導体基板の上記鏡面と第2半導体基板の上
記鏡面とを密着し、熱処理することによって接合する工
程と、この接合基板の第1半導体基板の上記凹部と第2
半導体基板とで形成される空洞内に、上記酸素導入溝を
介して酸化性雰囲気ガスを導き、熱処理することによっ
て空洞内に熱酸化シリコンを充填、埋設する工程によっ
て、選択的に絶縁分離された領域を有する半導体基板を
製造する。
In order to solve the above-mentioned problems, in the present invention, at least one is mirror-polished first
A step of forming a concave portion on the mirror surface of the semiconductor substrate and forming an oxygen introduction groove deeper than the concave portion communicating with the concave portion; and a second semiconductor substrate having at least one bonded to the concave groove mirror-polished.
Alternatively, the step of forming a terrace structure by etching the peripheral edge portion of the first semiconductor substrate to a predetermined width and depth to form a terrace structure, and bringing the mirror surface of the first semiconductor substrate and the mirror surface of the second semiconductor substrate into close contact with each other. And a step of joining by heat treatment, and the recess and the second portion of the first semiconductor substrate of the joined substrate.
In the cavity formed with the semiconductor substrate, an oxidizing atmosphere gas is introduced through the oxygen introducing groove, and heat treatment is performed to fill and bury the thermally-oxidized silicon in the cavity, thereby selectively insulating and separating. A semiconductor substrate having a region is manufactured.

【0008】あるいは、少なくとも一方が鏡面研磨さ
れ、かつ第1半導体基板より小径の第2半導体基板を用
い、これと凹部および酸素導入溝を形成した上記第1半
導体基板を接合することにより、上記接合基板を作製し
てもよい。
Alternatively, by using a second semiconductor substrate having at least one of which is mirror-polished and having a diameter smaller than that of the first semiconductor substrate, and bonding the first semiconductor substrate having the recess and the oxygen introducing groove to each other, the bonding is performed. A substrate may be made.

【0009】[0009]

【作用】周縁部に所定幅、深さの段差を形成した第2半
導体基板の鏡面は、これと接合される第1半導体基板の
鏡面より一回り小さく、この状態で両者を接合すると、
第1半導体基板の外周部は接合されないことになる。従
って、酸素導入溝が第1半導体基板の端縁に開口してい
ない場合でも、酸素導入溝は接合基板内に埋没すること
なく、外気に開口する。
The mirror surface of the second semiconductor substrate having a step of a predetermined width and depth formed at the peripheral edge is one size smaller than the mirror surface of the first semiconductor substrate to be bonded thereto, and when both are bonded in this state,
The outer peripheral portion of the first semiconductor substrate is not joined. Therefore, even when the oxygen introducing groove is not opened at the edge of the first semiconductor substrate, the oxygen introducing groove is not buried in the bonding substrate but is opened to the outside air.

【0010】これは、第2半導体基板に代えて、酸素導
入溝および凹部を形成した第1半導体基板の周縁部をエ
ッチングして、テラス構造とした場合も同様であり、所
定幅、深さにエッチングすることにより酸素導入溝は段
差部の端縁に開口し、しかも接合によって閉鎖されるこ
とがない。あるいは第1半導体基板の鏡面より一回り小
さい径を有する第2半導体基板を使用した場合も同様で
あり、酸素導入溝は外気との連通を確保できる。
This is the same as in the case where the terrace structure is formed by etching the peripheral portion of the first semiconductor substrate in which the oxygen introduction groove and the recess are formed instead of the second semiconductor substrate. By etching, the oxygen introducing groove is opened at the edge of the step portion and is not closed by joining. The same is true when a second semiconductor substrate having a diameter slightly smaller than the mirror surface of the first semiconductor substrate is used, and the oxygen introduction groove can ensure communication with the outside air.

【0011】このような状態で熱処理を施せば、外気に
開口している酸素導入溝を介して接合基板内部に十分な
酸化性ガスを導くことができ、酸化反応が良好に進行し
て、空洞内に熱酸化シリコンを完全に埋設、充填するこ
とができる。
If the heat treatment is performed in such a state, a sufficient oxidizing gas can be introduced into the inside of the bonded substrate through the oxygen introduction groove opened to the outside air, the oxidation reaction proceeds well, and the cavity Thermal oxide silicon can be completely embedded and filled in the inside.

【0012】[0012]

【実施例1】以下、本発明の一実施例を図面を参照して
説明する。図1(a)〜(c),図2(d),(e),
図3(f)〜(j),図4(k),(l)は半導体基板
の製造工程を示す断面図、図1(a’)〜(c’),図
2(d’),(e’),図3(h’),(i’)、図4
(l’)は平面図である。
Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings. 1 (a)-(c), 2 (d), (e),
3 (f) to (j), 4 (k), and (l) are cross-sectional views showing the manufacturing process of the semiconductor substrate, FIGS. 1 (a ') to (c'), 2 (d '), and (d). e ′), FIG. 3 (h ′), (i ′), FIG.
(L ') is a plan view.

【0013】まず、図1(a),(a’)の如く、少な
くとも一方の面を鏡面研磨した第1半導体基板1の鏡面
1aの一部を反応性イオンエッチング(以下RIEと称
する)あるいは化学的エッチング等により選択的にエッ
チングし、深さ0.2〜2μmの凹部3を形成する。
First, as shown in FIGS. 1A and 1A ', a part of the mirror surface 1a of the first semiconductor substrate 1 whose at least one surface is mirror-polished is subjected to reactive ion etching (hereinafter referred to as RIE) or chemical etching. By selective etching or the like, the recess 3 having a depth of 0.2 to 2 μm is formed by selective etching.

【0014】次に図1(b),(b’)に示すように、
凹部3の周縁に沿ってあるいは凹部3と交差するように
延びる酸素導入溝4を、RIEあるいはプラズマエッチ
ング等により形成する。ここで、酸素導入溝4の形状
は、上記凹部3の形状、基板サイズ等を考慮して適宜決
められる。また酸素導入溝4の幅、および深さは上記凹
部3の深さより大きい値とする。なお、上記凹部3およ
び酸素導入溝4は、前述した装置の制約等から基板端縁
に開口するように形成されていなくてもよい。
Next, as shown in FIGS. 1 (b) and 1 (b '),
An oxygen introduction groove 4 extending along the periphery of the recess 3 or so as to intersect the recess 3 is formed by RIE or plasma etching. Here, the shape of the oxygen introducing groove 4 is appropriately determined in consideration of the shape of the recess 3 and the substrate size. The width and depth of the oxygen introducing groove 4 are set to values larger than the depth of the recess 3. Note that the recess 3 and the oxygen introducing groove 4 may not be formed so as to open at the edge of the substrate due to the above-mentioned restrictions of the apparatus.

【0015】次に図1(c)に示すように、少なくとも
一方の面を鏡面研磨した第2半導体基板2の鏡面2aに
マスキングテープ、レジスト等により選択エッチングの
ためのマスク21を形成する。このマスク21は
(c’)の如く、基板2の径よりやや小径としてあり、
前記した第1半導体基板1の酸素導入溝4が、接合後に
外気に開口できるような大きさ、形状であればよい。
Next, as shown in FIG. 1C, a mask 21 for selective etching is formed by a masking tape, a resist or the like on the mirror surface 2a of the second semiconductor substrate 2 having at least one surface mirror-polished. The mask 21 has a diameter slightly smaller than that of the substrate 2 as shown in FIG.
The oxygen introduction groove 4 of the first semiconductor substrate 1 may be of any size and shape that can be opened to the outside air after bonding.

【0016】続いて、図2(d),(d’)において、
基板2の周縁部を化学的エッチングあるいはRIEによ
り選択的にエッチングし、周縁部に段差22を形成しテ
ラス構造とする。この段差22は、上記酸素導入溝4の
深さに等しいかあるいはそれ以上の深さを有することが
望ましい。
2 (d) and 2 (d '),
The peripheral edge of the substrate 2 is selectively etched by chemical etching or RIE to form a step 22 on the peripheral edge to form a terrace structure. It is desirable that the step 22 has a depth equal to or greater than the depth of the oxygen introducing groove 4.

【0017】その後、これら基板1,2を、それぞれ、
例えばトリクレン煮沸、アセトン超音波洗浄、NH4
H:H2 2 :H2 O=1:1:4の混合液による有機
物の除去、HCl:H2 2 :H2 O=1:1:4の混
合液による金属汚染の除去、および純水洗浄を順次施す
ことにより、充分洗浄する。
Thereafter, these substrates 1 and 2 are respectively
For example, boiling trichlene, ultrasonic cleaning with acetone, NH 4 O
H: H 2 0 2: H 2 O = 1: 1: removal of organic matter with a mixture of 4, HCl: H 2 0 2 : H 2 O = 1: 1: Removal of metal contamination due to a mixture of 4, and Sufficient cleaning is performed by sequentially performing cleaning with pure water.

【0018】さらに、HF:H2 O=1:50の混合液
等を用いて表面の自然酸化膜を除去した後、例えばH2
SO4 :H2 2 =3:1の混合液により、あるいは熱
酸化、酸素プラズマ照射等によって基板表面に10〜3
0Å程度の酸化層を形成し、親水性を持たせて純水にて
洗浄する。次に、乾燥窒素等による乾燥を行ない、基板
表面に吸着する水分量を制御した後、2枚の基板1,2
の鏡面1a,2aを対向させて密着させる。これによ
り、2枚の基板1,2は表面に形成されたシラノール基
および表面に吸着した水分子の水素結合により強固に接
着する。さらに、この接着した基板1,2を10Torr以
下の真空中で乾燥させる。この時基板1,2の反りを補
償するため、30g重/cm2 以下の荷重を印加してもよ
い。
Further, after removing the natural oxide film on the surface using a mixed solution of HF: H 2 O = 1: 50 or the like, for example, H 2
10 to 3 on the substrate surface by a mixed solution of SO 4 : H 2 0 2 = 3: 1, or by thermal oxidation, oxygen plasma irradiation, etc.
An oxide layer of about 0Å is formed, and hydrophilicity is added to the layer, which is then washed with pure water. Next, after drying with dry nitrogen or the like to control the amount of water adsorbed on the substrate surface, the two substrates 1 and 2 are
The mirror surfaces 1a and 2a of No. 1 are made to face each other and are closely attached. As a result, the two substrates 1 and 2 are firmly bonded by the hydrogen bond of the silanol groups formed on the surface and the water molecules adsorbed on the surface. Further, the bonded substrates 1 and 2 are dried in a vacuum of 10 Torr or less. At this time, in order to compensate the warpage of the substrates 1 and 2, a load of 30 g weight / cm 2 or less may be applied.

【0019】この後、基板1,2を例えば窒素、アルゴ
ン等の不活性ガス雰囲気中であるいは酸化性雰囲気中
で、800℃以上、1時間以上の熱処理を施すことによ
り、接着面において脱水縮合反応が起きてシリコン(S
i)と酸素(O)の結合(Si−O−Si)ができ、さ
らに酸素が基板に拡散してSi原子団どうしの結合がで
きて(Si−Si)、図2(e)に示すように、2枚の
基板1,2が直接接合された接合基板が形成される。な
お図2(e)には(e’)のA−A’断面、B−B’断
面をそれぞれ示す。
Thereafter, the substrates 1 and 2 are subjected to a heat treatment at 800 ° C. or higher for 1 hour or longer in an atmosphere of an inert gas such as nitrogen or argon or in an oxidizing atmosphere, whereby a dehydration condensation reaction occurs on the adhesive surface. Occurs and silicon (S
i) and oxygen (O) are bonded (Si-O-Si), and oxygen diffuses into the substrate to bond Si atomic groups (Si-Si), as shown in Fig. 2 (e). Then, a bonded substrate is formed by directly bonding the two substrates 1 and 2. Note that FIG. 2 (e) shows an AA ′ cross section and a BB ′ cross section of (e ′), respectively.

【0020】ただし、このとき上記凹部3は接合されて
おらず、凹部3と第2半導体基板2の鏡面2aとで空洞
5が形成される(A−A’断面)。また酸素導入溝4
は、基板1の端縁に達していなくても、第2半導体基板
2の周縁部に形成された段差22により外気に開口する
(B−B’断面)。
However, at this time, the recess 3 is not joined, and the cavity 5 is formed by the recess 3 and the mirror surface 2a of the second semiconductor substrate 2 (section AA '). Also, the oxygen introduction groove 4
Even if it does not reach the edge of the substrate 1, it is opened to the outside due to the step 22 formed in the peripheral portion of the second semiconductor substrate 2 (section BB ′).

【0021】次に図3(f)の如く、この一体化した接
合基板を、例えばドライO2 、ウエットO2 ,H2 ,O
2 混合燃焼気体等の酸化性雰囲気中で、900℃以上、
1時間以上の熱処理を施す。これにより、外部に開口し
ている酸素導入溝4を介して接合基板内部の空洞5に酸
化性ガスが導入され、空洞表面が酸化して熱酸化シリコ
ン6が成長する。ただしこの酸化工程は上記凹部3と第
2半導体基板2の表面とで形成される空洞5が、両者の
表面からの熱酸化シリコン6の成長によって完全に埋
設、充填されるまで最低時間行なう必要がある。以上の
工程により、接合基板内に誘電体埋め込み層として熱酸
化シリコン6を完全に埋設、充填することができる。
Next, as shown in FIG. 3 (f), this integrated bonded substrate is, for example, dry O 2 , wet O 2 , H 2 , O.
2 In an oxidizing atmosphere such as mixed combustion gas, 900 ° C or higher,
Heat treatment is performed for 1 hour or more. As a result, the oxidizing gas is introduced into the cavity 5 inside the bonded substrate via the oxygen introduction groove 4 opening to the outside, and the surface of the cavity is oxidized to grow the thermal silicon oxide 6. However, this oxidation step needs to be performed for a minimum time until the cavity 5 formed by the recess 3 and the surface of the second semiconductor substrate 2 is completely buried and filled by the growth of the thermally oxidized silicon 6 from both surfaces. is there. Through the above steps, the thermal silicon oxide 6 can be completely buried and filled in the bonded substrate as a dielectric buried layer.

【0022】次に、図3(g)の工程において、第2半
導体基板2の接合してない面から、所望の絶縁分離層の
厚みが得られるまでラッピングおよびポリッシングを行
ない、さらにその研磨面2b上に、第1半導体基板1の
周縁部を選択的にエッチングするためのマスク23を、
マスキングテープ、レジスト等により形成する(図3
(h))。このマスク23は、図3(h’)に示すよう
に、第2半導体基板2の鏡面2aに段差22を形成する
ために用いたマスク21(図1(c)参照)と等しいか
あるいはそれ以下の大きさにする。その後、図3
(i)、(i’)の工程で、第2半導体基板2の周縁部
24を化学的エッチングあるいはRIEによって選択的
にエッチングして除去する。これにより基板2周縁部2
4の欠け、剥がれを防止できる。
Next, in the step of FIG. 3G, lapping and polishing are performed from the unbonded surface of the second semiconductor substrate 2 until the desired thickness of the insulating separation layer is obtained, and then the polished surface 2b thereof. A mask 23 for selectively etching the peripheral portion of the first semiconductor substrate 1 is provided on the top.
Formed by masking tape, resist, etc. (Fig. 3
(H)). This mask 23 is equal to or less than the mask 21 (see FIG. 1C) used for forming the step 22 on the mirror surface 2a of the second semiconductor substrate 2 as shown in FIG. To the size of. After that, FIG.
In the steps (i) and (i ′), the peripheral portion 24 of the second semiconductor substrate 2 is selectively etched and removed by chemical etching or RIE. As a result, the substrate 2 peripheral portion 2
4 can be prevented from chipping and peeling.

【0023】なお、この選択エッチング工程は、(g)
のラッピング工程後の第2半導体基板2の厚みが、前記
図2(d)のテラス構造形成工程における周縁部選択エ
ッチングのエッチング深さよりも小さい値であれば、す
なわちラッピングにより基板2の上記周縁部24が除去
されている場合には行なわなくてよい。
The selective etching step is (g)
If the thickness of the second semiconductor substrate 2 after the lapping step is smaller than the etching depth of the peripheral edge selective etching in the terrace structure forming step of FIG. 2D, that is, the peripheral edge portion of the substrate 2 by lapping. If 24 is removed, it need not be performed.

【0024】次に、図3(j)において、素子分離領域
を形成するため、第2半導体基板2に、0.3μm以上
の幅で熱酸化シリコン6に達する深さの素子分離用の溝
25を化学的エッチング、RIEあるいはダイシングに
よって形成する。ここで、上記溝25を形成する際の位
置合わせは、第1半導体基板1に形成した酸素導入溝4
の端部が、外気に開口しているため(図3(i’))、
これを基準にして精度よく行なうことができる。
Next, in FIG. 3J, in order to form an element isolation region, an element isolation groove 25 having a width of 0.3 μm or more and a depth reaching the thermal oxide silicon 6 is formed in the second semiconductor substrate 2. Are formed by chemical etching, RIE or dicing. Here, the alignment at the time of forming the groove 25 is performed by the oxygen introduction groove 4 formed in the first semiconductor substrate 1.
Since the end of is open to the outside air (Fig. 3 (i ')),
With this as a reference, it can be performed accurately.

【0025】しかる後、溝25の側面に絶縁層を形成す
るため、例えばドライO2 、ウエットO2 ,H2 ,O2
混合燃焼気体等の酸化性雰囲気中で、900℃以上、1
時間以上の熱処理を施し、厚さ0.3μm以上の熱酸化
シリコン層26を形成する。
Thereafter, in order to form an insulating layer on the side surface of the groove 25, for example, dry O 2 , wet O 2 , H 2 , O 2 is used.
900 ° C or higher in an oxidizing atmosphere such as mixed combustion gas, 1
Heat treatment is performed for a time or more to form a thermally oxidized silicon layer 26 having a thickness of 0.3 μm or more.

【0026】さらに、図4(k)に示すように、例えば
CVD法により多結晶シリコン27を堆積させ、溝25
を埋める。ただしこの際の充填物質は、多結晶シリコン
の代わりに酸化物や窒化ケイ素物等の絶縁物でもよく、
充填方法もスパッタ、蒸着、SOG等でもよい。また溝
25は、表面の開口部が閉じられれば必ずしも完全に多
結晶シリコン27で埋められていなくてもよく、空洞部
が残っていてもよい。その後、例えばラップポリッシュ
あるいはエッチングバック等により、表面の多結晶シリ
コン27および熱酸化シリコン層26の表面層26aを
除去し、平坦化する(図4(l),(l’))。
Further, as shown in FIG. 4 (k), polycrystalline silicon 27 is deposited by, for example, the CVD method, and the groove 25 is formed.
Fill in. However, the filling material at this time may be an insulator such as an oxide or a silicon nitride instead of polycrystalline silicon,
The filling method may be sputtering, vapor deposition, SOG, or the like. Further, groove 25 may not be completely filled with polycrystalline silicon 27 as long as the opening on the surface is closed, and a cavity may remain. After that, the polycrystalline silicon 27 on the surface and the surface layer 26a of the thermally oxidized silicon layer 26 are removed by, for example, lap polishing or etching back, and the surface is planarized (FIGS. 4 (l) and (l ')).

【0027】以上の工程により、本実施例によれば、酸
素導入溝4と外気との連通を確保できるので、図4
(l)に示すように、基板内に埋め込まれた熱酸化シリ
コン6と、側面の熱酸化シリコン層26および多結晶シ
リコン27とで、他の領域と完全に絶縁分離された領域
7を有する半導体基板を得ることができる。
According to the present embodiment, the communication between the oxygen introducing groove 4 and the outside air can be ensured by the above steps, so that FIG.
As shown in (l), a semiconductor having a region 7 which is completely insulated from the other regions by the thermally oxidized silicon 6 embedded in the substrate, the thermally oxidized silicon layer 26 and the polycrystalline silicon 27 on the side surface. A substrate can be obtained.

【0028】ところで、前記図7に示した従来の方法で
は、熱酸化後、第1半導体基板1を溝4が露出する位置
(図8(a)に一点鎖線で示す)まで研磨して、その表
面に素子を形成するが、第1半導体基板1には、凹部3
および溝4を形成する際の加工による損傷、歪みが存在
し、これらが核となって、熱酸化シリコン6埋め込み時
の熱酸化により酸化誘起積層欠陥(OSF)等の結晶欠
陥8が、第1半導体基板1側に集中して発生する(図8
(b))。つまり、素子形成面に多数の欠陥8が存在す
ることになり、ライフタイムの劣化、接合リーク電流の
増加等、素子特性の低下を招くおそれがある。これに対
し、本実施例では、接合前に加工歪みがない第2半導体
基板2を素子形成面としているので、素子形成面の結晶
欠陥を大幅に低減でき、素子特性が向上する。
By the way, in the conventional method shown in FIG. 7, after thermal oxidation, the first semiconductor substrate 1 is polished to a position where the groove 4 is exposed (shown by a chain line in FIG. 8A), and Elements are formed on the surface of the first semiconductor substrate 1.
Also, there are damages and strains due to processing when forming the grooves 4, and these serve as nuclei, and crystal defects 8 such as oxidation-induced stacking faults (OSF) due to thermal oxidation at the time of embedding the thermal oxide silicon 6 occur. These are concentrated on the semiconductor substrate 1 side (FIG. 8).
(B)). That is, many defects 8 are present on the element formation surface, which may lead to deterioration of element characteristics such as deterioration of lifetime and increase of junction leak current. On the other hand, in this embodiment, since the second semiconductor substrate 2 having no processing strain before joining is used as the element forming surface, crystal defects on the element forming surface can be significantly reduced and the element characteristics are improved.

【0029】なお、従来の方法において、図9に示すよ
うに、溝4が露出するまで研磨せず、溝4が内包された
状態で素子形成する場合、熱酸化シリコン6の埋め込み
領域と直接接合領域の境界が分からず、素子分離用の溝
14を形成する際のフォトリソグラフィ工程でマスク合
わせが困難となるが、本実施例では、基板周縁部を選択
的にエッチングしたテラス構造とし、酸素導入溝4が露
出しているので、位置合わせが容易にできる。また、通
常ウエハは周縁部が面取り(ベベリング)されているた
め、図10に示すように、基板1を接合面15近傍まで
研磨するとウエハ端部に欠けや剥がれ16が生じやすい
が、本実施例では、テラス構造形成時に接合面側の基板
周縁部をエッチングにより除去しているので、接合面近
傍まで研磨しても欠けや剥がれを生じることはない。
In the conventional method, as shown in FIG. 9, when an element is formed with the groove 4 included therein without polishing until the groove 4 is exposed, it is directly bonded to the buried region of the thermal oxide silicon 6. Although the boundaries between the regions are not known, mask alignment becomes difficult in the photolithography process when forming the trenches 14 for element isolation, but in the present embodiment, a terrace structure in which the peripheral edge of the substrate is selectively etched is used to introduce oxygen. Since the groove 4 is exposed, the alignment can be easily performed. In addition, since the peripheral portion of a normal wafer is chamfered (beveled), as shown in FIG. 10, when the substrate 1 is polished to the vicinity of the bonding surface 15, chipping or peeling 16 is likely to occur at the end of the wafer. Since the peripheral portion of the substrate on the bonding surface side is removed by etching when the terrace structure is formed, chipping or peeling does not occur even if polishing is performed up to the vicinity of the bonding surface.

【0030】[0030]

【実施例2】図5は本発明の他の実施例である。前記実
施例1では、第2半導体基板2のウエハ周縁部を、選択
的にエッチングすることでテラス構造としたが、本実施
例では図5(a)に示すように、凹部3および酸素導入
溝4を形成した第1半導体基板1表面をマスク11を形
成した後、その周縁部を選択的にエッチングして段差1
2を形成し、テラス構造とする(図5(b))。この段
差12により、酸素導入溝4が端縁まで形成されていな
くても、酸素導入溝4は外気に開口する(図5(b
´))。そして、未加工の第2半導体基板2と接合した
後(図5(c))、熱酸化処理により空洞5内を熱酸化
シリコン6で埋設、充填する。
Second Embodiment FIG. 5 shows another embodiment of the present invention. In the first embodiment, the peripheral edge of the wafer of the second semiconductor substrate 2 is selectively etched to form the terrace structure. However, in the present embodiment, as shown in FIG. 5A, the recess 3 and the oxygen introduction groove are formed. After the mask 11 is formed on the surface of the first semiconductor substrate 1 on which the step 4 is formed, the peripheral portion of the mask 11 is selectively etched to form the step 1
2 to form a terrace structure (FIG. 5B). Even if the oxygen introducing groove 4 is not formed up to the edge due to the step 12, the oxygen introducing groove 4 opens to the outside air (see FIG. 5B.
´)). Then, after bonding to the unprocessed second semiconductor substrate 2 (FIG. 5C), the inside of the cavity 5 is filled and filled with thermal oxide silicon 6 by thermal oxidation treatment.

【0031】続いて図5(d)の工程で、第1半導体基
板1側から研磨して所望の厚みとし、酸素導入溝4を表
面に露出させる。この後、基板端部の剥がれ、欠けを防
止するため第1半導体基板1の周縁部を選択エッチング
してもよい。次に図5(e)に示すように露出した酸素
導入溝4を多結晶シリコン13で埋め、絶縁分離領域7
を形成する。
Then, in the step of FIG. 5D, the first semiconductor substrate 1 side is polished to a desired thickness to expose the oxygen introducing groove 4 on the surface. After that, the peripheral edge portion of the first semiconductor substrate 1 may be selectively etched in order to prevent peeling and chipping of the edge portion of the substrate. Next, as shown in FIG. 5E, the exposed oxygen introduction groove 4 is filled with polycrystalline silicon 13, and the insulating isolation region 7 is formed.
To form.

【0032】本実施例によっても熱酸化シリコン6の埋
設を良好に行なうことができる。また、酸素導入溝4を
露出させるため、素子分離用の溝を改めて形成する必要
がない。
Also in this embodiment, the thermal silicon oxide 6 can be buried well. Further, since the oxygen introducing groove 4 is exposed, it is not necessary to newly form a groove for element isolation.

【0033】[0033]

【実施例3】図6は本発明のさらに他の実施例である。
上記実施例1、2では、基板の周縁部を選択的にエッチ
ングしてテラス構造を形成することで酸素導入溝を外気
に開口させたが、本実施例では図6(a)に示すよう
に、第2半導体基板2を、第1半導体基板1の直径より
も小さく形成する。この第2半導体基板2を、凹部3と
酸素導入溝4を形成した第1半導体基板1と直接接合す
ると(図6(b))、第1半導体基板1の外周部が露出
するので、図6(b´)の如く、酸素導入溝4は外気に
開口する。
Third Embodiment FIG. 6 shows still another embodiment of the present invention.
In Examples 1 and 2 described above, the oxygen introduction groove was opened to the outside air by selectively etching the peripheral portion of the substrate to form the terrace structure, but in this Example, as shown in FIG. The second semiconductor substrate 2 is formed to have a diameter smaller than that of the first semiconductor substrate 1. When this second semiconductor substrate 2 is directly bonded to the first semiconductor substrate 1 in which the recess 3 and the oxygen introducing groove 4 are formed (FIG. 6B), the outer peripheral portion of the first semiconductor substrate 1 is exposed. As shown in (b '), the oxygen introducing groove 4 opens to the outside air.

【0034】以下、上記第1実施例と同様にして、熱酸
化処理により空洞5内に熱酸化シリコン6を埋設、充填
し(図6(c))、第2半導体基板2側から研磨して所
望の厚みとした後、第2半導体基板2の研磨面上に、基
板端部の欠け、剥がれを防止するためのマスク23を形
成して(図6(d))、基板周縁部を選択エッチングす
る(図6(e))。続いて、素子分離用の溝25を形成
した後、溝側面に熱酸化シリコン層26を形成し、多結
晶シリコン27で溝25を埋める(図6(f))。
Thereafter, in the same manner as in the first embodiment described above, the thermal oxidation treatment is used to embed and fill the thermal silicon oxide 6 in the cavity 5 (FIG. 6 (c)) and polish it from the second semiconductor substrate 2 side. After having a desired thickness, a mask 23 is formed on the polished surface of the second semiconductor substrate 2 to prevent chipping and peeling of the substrate edge (FIG. 6D), and the peripheral edge of the substrate is selectively etched. (FIG. 6 (e)). Then, after forming the trench 25 for element isolation, a thermally oxidized silicon layer 26 is formed on the side surface of the trench and the trench 25 is filled with polycrystalline silicon 27 (FIG. 6F).

【0035】本実施例の方法によっても、酸素導入溝を
外気に開口させることができ、熱酸化シリコン6の埋設
を良好に行なうことができる。また、素子分離のための
溝の形成時の位置合わせも第1実施例と同様に精度良く
行なうことができる。
Also by the method of this embodiment, the oxygen introduction groove can be opened to the outside air, and the thermal silicon oxide 6 can be buried well. Further, the alignment at the time of forming the groove for element isolation can be performed with high precision as in the first embodiment.

【0036】[0036]

【発明の効果】このように、本発明の方法を採用すれ
ば、ウエハのチャックなど、装置の制約により、基板の
端部にまで酸素導入溝が形成できない場合でも、半導体
基板の接合時に、酸素導入溝が埋没することがなく、酸
素の導入路として良好に機能するので、基板内部へ十分
な酸素を供給することができる。従って、基板内部の空
洞内を熱酸化シリコンで完全に埋め込むことができ、素
子の絶縁分離が良好になされる。
As described above, when the method of the present invention is adopted, even when the oxygen introduction groove cannot be formed even at the end portion of the substrate due to the limitation of the device such as the chuck of the wafer, the oxygen is not formed at the time of joining the semiconductor substrates. Since the introduction groove is not buried and functions well as an oxygen introduction path, sufficient oxygen can be supplied to the inside of the substrate. Therefore, the inside of the substrate can be completely filled with the thermal oxide silicon, and the element is well isolated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の製造工程を示す断面図およ
び平面図である。
FIG. 1 is a sectional view and a plan view showing a manufacturing process of an embodiment of the present invention.

【図2】本発明の一実施例の製造工程を示す断面図およ
び平面図である。
FIG. 2 is a cross-sectional view and a plan view showing the manufacturing process of the embodiment of the present invention.

【図3】本発明の一実施例の製造工程を示す断面図およ
び平面図である。
FIG. 3 is a cross-sectional view and a plan view showing the manufacturing process of the embodiment of the present invention.

【図4】本発明の一実施例の製造工程を示す断面図およ
び平面図である。
FIG. 4 is a sectional view and a plan view showing the manufacturing process of the embodiment of the present invention.

【図5】本発明の他の実施例の製造工程を示す断面図お
よび平面図である。
5A and 5B are a sectional view and a plan view showing a manufacturing process of another embodiment of the present invention.

【図6】本発明のさらに他の実施例の製造工程を示す断
面図および平面図である。
6A and 6B are a sectional view and a plan view showing the manufacturing process of still another embodiment of the present invention.

【図7】従来の半導体基板の製造工程を示す断面図およ
び平面図である。
7A and 7B are a sectional view and a plan view showing a conventional manufacturing process of a semiconductor substrate.

【図8】従来の半導体基板の製造工程を示す断面図であ
る。
FIG. 8 is a cross-sectional view showing a conventional manufacturing process of a semiconductor substrate.

【図9】従来の半導体基板の製造工程を示す断面図およ
び平面図である。
FIG. 9 is a cross-sectional view and a plan view showing a conventional semiconductor substrate manufacturing process.

【図10】従来の半導体基板の製造工程を示す断面図で
ある。
FIG. 10 is a cross-sectional view showing a conventional semiconductor substrate manufacturing process.

【符号の説明】[Explanation of symbols]

1 第1半導体基板 12 段差 1a 鏡面 2 第2半導体基板 22 段差 2a 鏡面 3 凹部 4 酸素導入溝 5 空洞 6 熱酸化シリコン 1 1st semiconductor substrate 12 level | step difference 1a mirror surface 2 2nd semiconductor substrate 22 level | step difference 2a mirror surface 3 recessed part 4 oxygen introduction groove 5 cavity 6 thermal silicon oxide

フロントページの続き (72)発明者 藤野 誠二 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内Front Page Continuation (72) Inventor Seiji Fujino 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Japan Auto Parts Research Institute, Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方が鏡面研磨された第1半
導体基板の鏡面に凹部を形成し、該凹部に連通する凹部
より深い酸素導入溝を形成する工程と、これと接合され
る少なくとも一方が鏡面研磨された第2半導体基板、あ
るいは上記第1半導体基板の鏡面周縁部を所定幅、深さ
にエッチングして段差を形成しテラス構造とする工程
と、第1半導体基板の上記鏡面と第2半導体基板の上記
鏡面とを密着し、熱処理することによって接合する工程
と、この接合基板の、第1半導体基板の上記凹部と第2
半導体基板とで形成される空洞内に、上記酸素導入溝よ
り酸化性雰囲気ガスを導き、熱処理することによって空
洞内に熱酸化シリコンを充填、埋設する工程とを有する
ことを特徴とする半導体基板の製造方法。
1. A step of forming a recess in a mirror surface of a first semiconductor substrate, at least one of which is mirror-polished, and an oxygen introduction groove deeper than the recess communicating with the recess, and at least one of which is bonded to the mirror surface. A step of forming a terrace structure by etching the polished second semiconductor substrate or the mirror surface peripheral portion of the first semiconductor substrate to a predetermined width and depth to form a terrace structure; and the mirror surface of the first semiconductor substrate and the second semiconductor. A step of bringing the substrates into close contact with the mirror surface and performing a heat treatment to join the substrates;
In a cavity formed with a semiconductor substrate, a step of introducing an oxidizing atmosphere gas from the oxygen introducing groove and performing heat treatment to fill and bury the thermal silicon oxide in the cavity is provided. Production method.
【請求項2】 少なくとも一方が鏡面研磨された第1半
導体基板の鏡面に凹部を形成し、該凹部に連通する凹部
より深い酸素導入溝を形成する工程と、この第1半導体
基板の上記鏡面と、少なくとも一方が鏡面研磨され、か
つ第1半導体基板より小径の第2半導体基板の鏡面とを
密着し、熱処理することによって接合する工程と、この
接合基板の、第1半導体基板の上記凹部と第2半導体基
板とで形成される空洞内に、上記酸素導入溝より酸化性
雰囲気ガスを導き、熱処理することによって空洞内に熱
酸化シリコンを充填、埋設する工程とを有することを特
徴とする半導体基板の製造方法。
2. A step of forming a recess in a mirror surface of a first semiconductor substrate, at least one of which is mirror-polished, and forming an oxygen introduction groove deeper than the recess communicating with the recess, and the mirror surface of the first semiconductor substrate. A step of adhering a mirror surface of a second semiconductor substrate, at least one of which is mirror-polished and having a diameter smaller than that of the first semiconductor substrate, and performing heat treatment, and a step of joining the concave portion of the first semiconductor substrate with the concave portion of the first semiconductor substrate. 2 a step of introducing an oxidizing atmosphere gas from the oxygen introduction groove into a cavity formed with the semiconductor substrate and performing a heat treatment to fill and bury the thermal silicon oxide in the cavity. Manufacturing method.
JP26265891A 1991-09-13 1991-09-13 Manufacturing method for semiconductor substrate Withdrawn JPH0574926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26265891A JPH0574926A (en) 1991-09-13 1991-09-13 Manufacturing method for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26265891A JPH0574926A (en) 1991-09-13 1991-09-13 Manufacturing method for semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH0574926A true JPH0574926A (en) 1993-03-26

Family

ID=17378832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26265891A Withdrawn JPH0574926A (en) 1991-09-13 1991-09-13 Manufacturing method for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0574926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504867A (en) * 1999-07-12 2003-02-04 コミツサリア タ レネルジー アトミーク Method for separating two members and device for performing the same
WO2005045908A1 (en) * 2003-11-06 2005-05-19 Matsushita Electric Industrial Co., Ltd. Method for bonding substrate, bonded substrate, and direct bonded substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504867A (en) * 1999-07-12 2003-02-04 コミツサリア タ レネルジー アトミーク Method for separating two members and device for performing the same
WO2005045908A1 (en) * 2003-11-06 2005-05-19 Matsushita Electric Industrial Co., Ltd. Method for bonding substrate, bonded substrate, and direct bonded substrate
JPWO2005045908A1 (en) * 2003-11-06 2007-05-24 松下電器産業株式会社 Substrate bonding method, bonded substrate and direct bonding substrate
CN100405540C (en) * 2003-11-06 2008-07-23 松下电器产业株式会社 Method for bonding substrate, bonded substrate, and direct bonded substrate
US7608520B2 (en) 2003-11-06 2009-10-27 Panasonic Corporation Method for bonding substrate, bonded substrate, and direct bonded substrate

Similar Documents

Publication Publication Date Title
JP4173884B2 (en) Method for manufacturing germanium-on-insulator (GeOI) type wafer
US7977747B2 (en) Composite substrate and method of fabricating the same
US7449395B2 (en) Method of fabricating a composite substrate with improved electrical properties
US6242320B1 (en) Method for fabricating SOI wafer
US6319333B1 (en) Silicon-on-insulator islands
US6232201B1 (en) Semiconductor substrate processing method
EP0570321A2 (en) Bonded wafer structure having a buried insulator layer
US7348257B2 (en) Process for manufacturing wafers of semiconductor material by layer transfer
JPH0580148B2 (en)
JPH03283636A (en) Manufacture of semiconductor substrate
JP3933371B2 (en) Trench element isolation method for integrated circuit device using high selectivity CMP
JPH05235007A (en) Manufacture of semiconductor substrate
JPH1174208A (en) Manufacture of semiconductor substrate
JPH1174209A (en) Manufacture of semiconductor substrate
JPH0574926A (en) Manufacturing method for semiconductor substrate
JPH0964319A (en) Soi substrate and its manufacture
JPH11111839A (en) Semiconductor substrate and its manufacture
JP4214567B2 (en) Manufacturing method of semiconductor substrate for pressure sensor
KR100291519B1 (en) Method for manufacturing SOI semiconductor substrate
JPH06334028A (en) Manufacture of dielectric isolation substrate
KR100511900B1 (en) Method of manufacturing SOI substrate
JPH07335742A (en) Semiconductor substrate and its manufacture
JPH03265154A (en) Manufacture of semiconductor substrate
KR100595858B1 (en) Fabricating method of semiconductor device
KR100312981B1 (en) A method of fabricating bonding type SOI wafer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203