JPH0828319B2 - Projection exposure device - Google Patents

Projection exposure device

Info

Publication number
JPH0828319B2
JPH0828319B2 JP2064155A JP6415590A JPH0828319B2 JP H0828319 B2 JPH0828319 B2 JP H0828319B2 JP 2064155 A JP2064155 A JP 2064155A JP 6415590 A JP6415590 A JP 6415590A JP H0828319 B2 JPH0828319 B2 JP H0828319B2
Authority
JP
Japan
Prior art keywords
light
exposure apparatus
projection exposure
pattern
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2064155A
Other languages
Japanese (ja)
Other versions
JPH0340417A (en
Inventor
良忠 押田
哲三 谷本
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to KR1019900702643A priority Critical patent/KR930011884B1/en
Priority to DE69027738T priority patent/DE69027738T2/en
Priority to EP90906337A priority patent/EP0426866B1/en
Priority to PCT/JP1990/000520 priority patent/WO1990013000A1/en
Priority to US07/623,438 priority patent/US5227862A/en
Publication of JPH0340417A publication Critical patent/JPH0340417A/en
Priority to US07/936,661 priority patent/US5392115A/en
Priority to US08/315,841 priority patent/US6094268A/en
Publication of JPH0828319B2 publication Critical patent/JPH0828319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体回路パターン、液晶等表示デバイスパ
ターン、等微細パターンの投影露光装置に係り、特に、
露光領域全面を高解像度で露光可能とする被露光物体の
傾きと高さを検出する手段を具備した投影露光装置に関
する。
Description: TECHNICAL FIELD The present invention relates to a projection exposure apparatus for semiconductor circuit patterns, display device patterns such as liquid crystal, and fine patterns such as
The present invention relates to a projection exposure apparatus equipped with means for detecting the inclination and height of an object to be exposed so that the entire exposure area can be exposed with high resolution.

〔従来の技術〕[Conventional technology]

半導体集積回路の微細パターンの露光、或いはTFT(T
hin Film Transistor)液晶テレビに代表される表示
デバイスの大視野パターン中の駆動回路パターンの露光
等では露光領域内全体に亘って線幅ばらつきの少ない、
原画に忠実なパターンを露光する必要がある。特に半導
体集積回路の分野では今後0.5μmパターン以下の線幅
パターンを15mm近い領域全面に露光する必要があるが、
パターンの微細化に伴ない、結像する範囲(焦点深度)
は±1μm以下となる。このため、パターン結像面にウ
ェハ上のフォトレジスト面を正確に一致させることが不
可欠となる。これを実現するにはウェハ表面(フォトレ
ジスト表面)の露光領域における傾きと高さを正確に検
出することが必要となる。
Exposure of fine pattern of semiconductor integrated circuit or TFT (T
hin Film Transistor) In the exposure of the drive circuit pattern in the large field pattern of the display device typified by a liquid crystal television, there is little variation in the line width over the entire exposure area.
It is necessary to expose a pattern that is true to the original picture. Particularly in the field of semiconductor integrated circuits, it is necessary to expose a line width pattern of 0.5 μm pattern or less over the entire area of about 15 mm in the future.
Image formation range (depth of focus) as patterns become finer
Is less than ± 1 μm. Therefore, it is essential that the photoresist surface on the wafer be exactly aligned with the pattern imaging surface. In order to realize this, it is necessary to accurately detect the inclination and height in the exposure area of the wafer surface (photoresist surface).

従来特開昭63−7626号公報で示されている第1の公知
例では半導体レーザをウェハ表面上に斜め方向から集光
し、その集光位置を検出することにより高さを検出して
いる。またこの公知例ではウェハの多層構造に伴う多重
反射に対し、3波長の半導体レーザを用いて対応し、集
光位置を斜め入射方向と直角方向に変え、ウェハ上の異
なる場所の高さを求めている。本公知例は高さの検出を
主にしており、斜め入射方向と直角方向に場所を変え測
定し、傾きを検出することも可能であるが、直径20mm程
度の狭い領域の2ヵ所を測定しても傾きの正確な値は得
にくい。それは本公知例で高さ検出を高精度に実現する
にはウェハ上の集光を充分に、即ち集光径をできるだけ
小さくする必要があるが、集光径を小さくするには集光
ビームの集光角(主光線に対する集光束の最外光線の
角)を大きくする必要があり、この結果主光線の入射角
度は小さくせざるを得ない。この角度を小さくする(ウ
ェハ面に垂直な線からの角度が小さくなる)とウェハの
多層構造に伴なう多重干渉の影響は後述の理由から大き
くなる。本公知例ではこの課題に対し3波長を用いてい
るが、それぞれの波長に対しては干渉の影響を受けてお
り、根本的な過大解決とならない。
In the first known example disclosed in Japanese Patent Laid-Open No. 63-7626, the height is detected by focusing a semiconductor laser on the wafer surface from an oblique direction and detecting the focusing position. . Further, in this known example, multiple reflections due to the multi-layer structure of the wafer are dealt with by using a semiconductor laser of three wavelengths, the converging position is changed to the oblique incident direction and the direction at right angles, and the heights of different places on the wafer are obtained. ing. In this known example, the height is mainly detected, and it is possible to measure the tilt by changing the place in the direction perpendicular to the oblique incident direction, and the tilt can be detected, but two places in a narrow area of about 20 mm in diameter are measured. However, it is difficult to obtain an accurate value for the slope. In this known example, in order to realize height detection with high accuracy, it is necessary to sufficiently collect light on the wafer, that is, to make the light collecting diameter as small as possible. It is necessary to increase the converging angle (the angle of the outermost ray of the concentrated light flux with respect to the principal ray), and as a result, the incident angle of the principal ray must be reduced. If this angle is made smaller (the angle from the line perpendicular to the wafer surface becomes smaller), the influence of multiple interference due to the multilayer structure of the wafer becomes large for the reason described later. In this known example, three wavelengths are used for this problem, but interference is exerted on each wavelength, and this is not a fundamental excessive solution.

また従来の傾き検出の方法として特開昭63−199420号
公報で示されている第2の公知例では投影レンズを通し
て露光波長と異なる傾き検出光を照射し、反射光を集光
し、集光位置から傾きを検出しているが、ウェハにほぼ
垂直或いは浅い角度で入射させるため後述の理由から下
地からの反射光との干渉の影響が無視できなくなり、正
確な検出は困難となる。
In the second known example disclosed in Japanese Patent Laid-Open No. 63-199420 as a conventional tilt detection method, tilt detection light different from the exposure wavelength is irradiated through a projection lens to collect reflected light and collect it. Although the tilt is detected from the position, since it is incident on the wafer at a substantially vertical or shallow angle, the influence of interference with the reflected light from the base cannot be ignored because of the reason described below, and accurate detection becomes difficult.

更に従来の多層構造物体に対する高さ検出の方法とし
て特開昭63−247741号公報で示される第3の公知例では
下地膜からの反射光を別々に分離しているが、このよう
な方法は半導体回路作成のプロセスに登録する薄い膜に
対して実行困難である。
Further, as a conventional height detecting method for a multi-layered structure object, in the third known example disclosed in Japanese Patent Laid-Open No. 63-247741, the reflected light from the undercoat film is separated separately. It is difficult to perform for thin films that are registered in the process of semiconductor circuit fabrication.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術は露光領域内の傾きと高さの情報を、半
導体回路パターンを有するウェハ等多層構造に対し、正
確に得ると言う点について配慮されておらず、今後の0.
5μm以下の回路パターン露光に要求される高精度の傾
き及び高さ制御に対して問題があった。
The above-mentioned prior art does not consider the fact that the information on the inclination and height in the exposure area is accurately obtained with respect to a multilayer structure such as a wafer having a semiconductor circuit pattern.
There is a problem with the highly accurate tilt and height control required for circuit pattern exposure of 5 μm or less.

本発明の目的を上記従来の課題を解決し、半導体プロ
セスのいかなるウェハに対しても露光領域におけるフォ
トレジスト表面の傾きと高さを正確に検出し、常に結像
面にレジスト表面或いはその近傍の最適位置に合せ、線
幅ばらつきの少ない高解像のパターンを露光する投影露
光装置を提供することにある。
The object of the present invention is to solve the above conventional problems, accurately detect the inclination and height of the photoresist surface in the exposure region for any wafer in the semiconductor process, and always detect the resist surface or its vicinity on the image plane. It is an object of the present invention to provide a projection exposure apparatus that exposes a high-resolution pattern that is aligned with an optimum position and has a small line width variation.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明においては、可干渉
光源より出射した光を平行な照明光とし、ウェハ上のフ
ォトレジスト表面上にある投影光学系の露光領域に斜め
から入射角θで照射し、反射光と、上記光源から出射し
た光を分離して作った参照光をパターン検出器上で互に
所望の角度を付けて入射させ得られる干渉縞を検出す
る。この干渉縞ピッチと位相の変化からウェハ上のフォ
トレジストと表面の傾きと高さの変化を求めることが可
能となる。また入射角度を85゜以上にすることは平行光
束を用いている本発明では容易であり、入射角が大きい
ためフォトレジスト表面での反射が大部分となり、下地
の層構造の各層での反射に伴ない、発生する干渉の影響
はほとんど無視できるようになる。またフォトレジスト
入射光をS偏光とすれば表面での反射が更に大きくなり
精度が向上する。
In order to achieve the above object, in the present invention, the light emitted from the coherent light source is converted into parallel illumination light, and the exposure area of the projection optical system on the photoresist surface on the wafer is obliquely irradiated with an incident angle θ. The reflected light and the reference light generated by separating the light emitted from the light source are incident on the pattern detector at a desired angle to each other to detect interference fringes. From this change in the interference fringe pitch and phase, it is possible to determine the change in the inclination and height of the photoresist on the wafer and the surface. Further, it is easy to set the incident angle to 85 ° or more in the present invention using a parallel light flux, and since the incident angle is large, the reflection on the surface of the photoresist becomes large, and the reflection on each layer of the underlying layer structure is reduced. As a result, the influence of the generated interference can be almost ignored. When the photoresist incident light is S-polarized, the reflection on the surface is further increased and the accuracy is improved.

また上記フォトレジスト表面で反射した光を平面鏡に
垂直に入射し、反射した光を再びフォトレジスト表面に
入射させ、この反射光を物体光として干渉パターンの情
報を得ればウェハの傾きや高さの検出を2倍の感度で実
行することが可能となり、更に精度の高い検出が可能と
なる。
Further, the light reflected on the photoresist surface is perpendicularly incident on the plane mirror, the reflected light is again incident on the photoresist surface, and if the reflected light is used as object light to obtain the information of the interference pattern, the tilt and height of the wafer can be obtained. Can be detected with twice the sensitivity, and detection can be performed with higher accuracy.

また、上記参照光をフォトレジストの照射光および物
体光(反射光)と実効的にほぼ同一の方向に進みかつ同
一の領域を通過するごとく構成することにより、各光路
は空気のゆらぎ等外乱を同じように受け、周囲環境の変
化の影響を受けにくい傾きおよび高さ検出が可能とな
る。
Further, by constructing the reference light so that it effectively travels in substantially the same direction as the irradiation light of the photoresist and the object light (reflected light) and passes through the same region, each optical path causes disturbances such as air fluctuations. In the same manner, it becomes possible to detect tilt and height that are less susceptible to changes in the surrounding environment.

また得られた干渉縞の情報を高速フーリエ変換し、そ
の結果である縞のスペクトル近傍の情報から傾きΔθと
高さθhを求めれば、実時間と看做せる程度に高速にΔ
θ,Δhが求まる。またこの時フォトレジスト照射位置
がパターン検出手段であるアレイセンサ受光面と光学的
に共役(結像)な関係にあれば、ウェハ上の所望の領域
のみの情報を選び出し、その部分の傾きと高さを求める
ことが可能となる。
Further, if the information of the obtained interference fringes is subjected to the fast Fourier transform and the inclination Δθ and the height θh are obtained from the information in the vicinity of the spectrum of the fringes as a result, the Δ is as fast as the real time.
θ and Δh are obtained. At this time, if the photoresist irradiation position is in an optically conjugate (image-forming) relationship with the array sensor light receiving surface that is the pattern detecting means, information on only a desired area on the wafer is selected, and the inclination and height of that portion are selected. It becomes possible to ask for it.

また上述の干渉計測を一波長の光で実行する時、得ら
れる干渉縞の位相から高さを求めるが、この位相の変化
はαから2nπ+α(n:整数)に変化してもnは同定でき
ない、そこで波長の異なる第2の可干渉光を用い、第1
の波長の光と同一の光学系(光路)に導き、検出時に2
つの波長を分離し、2つの干渉縞情報を用い高さを決定
すれば、広い高さ変化の範囲に亘り高さ情報を精密に求
めることが可能となる。またエアーマイクロ等の他のウ
ェハ高さ検出手段を併用することにより、一波長検出に
よる高さ方向の不確定要因を除去し、広い高さ変化の範
囲に亘り高さ情報を精密に求めることが可能となる。
Also, when the above-mentioned interference measurement is performed with light of one wavelength, the height is obtained from the phase of the obtained interference fringes, but this phase change cannot be identified even if it changes from α to 2nπ + α (n: integer). , Using the second coherent light of different wavelength,
The same optical system (optical path) as the light of wavelength
If one wavelength is separated and the height is determined by using two pieces of interference fringe information, the height information can be accurately obtained over a wide range of height change. Also, by using other wafer height detection means such as an air micro, it is possible to eliminate the uncertainty factor in the height direction due to the detection of one wavelength and accurately obtain height information over a wide range of height change. It will be possible.

〔作用〕[Action]

上記のパターン検出器で得られる干渉縞の情報はピッ
チと位相の情報を有するため、傾きと高さの情報が同時
に得られる。しかも入射角度を85゜以上にすると以下に
説明するようにフォトレジスト表面の傾きや高さが正確
に同時に求まる。以下この入射角と入射光の偏光と検出
の精度について説明する。
Since the information of the interference fringes obtained by the above pattern detector has the information of the pitch and the phase, the information of the inclination and the height can be obtained at the same time. Moreover, when the incident angle is 85 ° or more, the inclination and height of the photoresist surface can be accurately obtained at the same time as described below. The incident angle, the polarization of the incident light, and the detection accuracy will be described below.

被測定物体に入射する光の振幅をS偏光、P偏光に対
しAs,Apとすると、屈折率nの物体の表面で反射及び屈
折する光の振幅Rs,Rp及びDs,Dpは入射角θ、屈折角ψ
(sinψ=sinθ/n)に対し、以下の式で与えられる。
If the amplitude of the light incident on the measured object is S-polarized light and As-Ap for the P-polarized light, the amplitudes Rs, Rp and Ds, Dp of the light reflected and refracted on the surface of the object having the refractive index n are the incident angles θ, Refraction angle ψ
For (sin ψ = sin θ / n), it is given by the following formula.

S偏光では入射角が0゜から60゜、P偏光では0゜か
ら75゜程度までは表面反射光より透過光の方が大きく、
下地の多層構造の境界からの反射光により表面反射光と
の間で振幅の大きな干渉が発生する。入射角が上記値か
ら85゜程度までは表面反射光の振幅の方が大きくなる
が、正確な測定を実現するには不十分な条件である。以
下にその理由を示す。第17図に示すように入射角θで入
射した振幅Aの光は屈折角ψ振幅Dで屈折し、下地で振
幅反射率Rbで反射すると、この反射光の振幅はDRbとな
る。ここで入射光Aの振幅を1とするとDは振幅透過率
になる。従って下地で反射した光が表面を通過するとそ
の振幅はRbD2となる。他方振幅A(=1)で入射した光
は表面で反射しその振幅はRとなる。ここでRやDは入
射光の偏光がSかPかでRs,Ds及びRp,Dpで表わせば上記
(1)〜(4)式が成立する。表面で反射した光R0と下
地で反射した光R1は層の厚さdが薄いと重なり、その結
果次式で示す複素振幅ARの光となる。
For S-polarized light, the incident angle is 0 ° to 60 °, and for P-polarized light, the transmitted light is larger than the surface reflected light from 0 ° to 75 °.
The reflected light from the boundary of the underlying multi-layer structure causes large-amplitude interference with the surface reflected light. The amplitude of the surface-reflected light increases from the above value to about 85 °, which is an insufficient condition for realizing accurate measurement. The reasons are as follows. As shown in FIG. 17, when the light having the amplitude A incident at the incident angle θ is refracted at the refraction angle ψ amplitude D and is reflected by the amplitude reflectance Rb on the base, the amplitude of the reflected light becomes DRb. Here, assuming that the amplitude of the incident light A is 1, D is the amplitude transmittance. Therefore, when the light reflected on the ground passes through the surface, its amplitude becomes RbD 2 . On the other hand, light incident with an amplitude A (= 1) is reflected by the surface and its amplitude becomes R. Here, R and D are expressed by Rs, Ds and Rp, Dp depending on whether the polarization of incident light is S or P, and the above equations (1) to (4) are established. The light R 0 reflected on the surface and the light R 1 reflected on the base layer overlap when the layer thickness d is small, and as a result, light having a complex amplitude A R shown by the following equation is obtained.

但しここでλは測定に用いる光の波長である。第3図
に示す膜の厚さdの僅かな変化(波長の1桁下の長さの
変化)に対しても(5)式からARの位相が変化すること
が分る。そこで入射角θとR,Dの関係はS及びP偏光に
対しそれぞれ第5図及び第6図に示す通りであり、この
グラフから更に分り易くするためノイズ成分となる
(5)式の第1項に対する第2項の振幅比RbD2/Rを求め
れば、測定に及ぼす誤差の程度を評価することができ
る。そこで最悪のケースとしてRb=1の場合を考え、D2
/Rを入射角度θに対し、また2つの偏光に対して求めた
ものが第7図である。D2/Rは各種検出方法において雑音
(誤差)成分となるため、この値を5%以下に保つには
85゜以上の入射角にする必要があることが分る。またS
偏光状態で入射すれば更に雑音が小さくなることが第7
図から分る。
Here, λ is the wavelength of light used for measurement. From the equation (5), it can be seen that the phase of A R changes even with a slight change in the film thickness d shown in FIG. 3 (change in length one digit below the wavelength). Therefore, the relationship between the incident angle θ and R, D is as shown in FIGS. 5 and 6 for S and P polarized light, respectively. To make it easier to understand from this graph, the first component of the equation (5) which becomes a noise component is shown. If the amplitude ratio RbD 2 / R of the second term to the term is obtained, the degree of error on the measurement can be evaluated. So consider the case of Rb = 1 as the worst case, D 2
FIG. 7 shows / R calculated with respect to the incident angle θ and two polarized lights. Since D 2 / R is a noise (error) component in various detection methods, keep this value below 5%.
It turns out that the incident angle must be 85 ° or more. Also S
Noise can be further reduced if it is incident in the polarized state.
You can see from the figure.

被測定物体表面で2度反射させる方法は第3図に示す
ように面の傾きαに対し4α光が傾き、1度反射させる
場合に比べ傾きと高さの検出感度を2倍以上させること
になり、精度の高い検出を可能にする。
As shown in FIG. 3, the method of reflecting twice on the surface of the object to be measured is to make the detection sensitivity of the inclination and height more than double as compared with the case where the light of 4α is inclined with respect to the inclination α of the surface. And enables highly accurate detection.

また下地面からの反射光は干渉パターンに重畳し干渉
縞のピッチや位相を乱すが、85゜以上の入射によりまた
更にS偏光を用いることにより前述した通りほとんどこ
の影響を除くことが可能となり、精度の高い検出が可能
となる。更にこの干渉測定に用いる参照光の光路を測定
光とほぼ同一の光路にすることにより空気のゆらぎ等の
測定環境の影響をほとんど受けない安定で高精度の測定
を実現する。
Also, the reflected light from the base surface is superimposed on the interference pattern and disturbs the pitch and phase of the interference fringes, but it is possible to almost eliminate this effect by using S-polarized light when incident at 85 ° or more and further using S-polarized light. Highly accurate detection is possible. Furthermore, by making the optical path of the reference light used for this interferometric measurement almost the same as the measuring light, stable and highly accurate measurement that is hardly affected by the measurement environment such as air fluctuation is realized.

また得られた干渉縞情報を高速フーリェ変換(FTT)
プログラムによりスペクトル検出すると縞の周波数に相
当するスペクトルの情報がピッチと位相を表わしている
ため、この値から傾きと高さが同時に求まる。またFFT
はマトリックス演算であるため並列演算処理が可能であ
り、このような並列演算回路を用いれば1ms以下で処理
が可能となり、傾きと高さを検出し、実時間で制御する
ことも容易にできる。
In addition, the obtained interference fringe information is subjected to fast Fourier transform (FTT).
When the spectrum is detected by the program, the information of the spectrum corresponding to the frequency of the fringe represents the pitch and the phase, and therefore the inclination and the height can be obtained at the same time from this value. Also FFT
Since it is a matrix operation, parallel operation processing is possible, and if such a parallel operation circuit is used, processing can be performed in 1 ms or less, and inclination and height can be detected and control can be easily performed in real time.

また、干渉検出の場合、干渉縞の一ピッチ分の変化が
起ると、検出される干渉縞は全く同一のものになる。こ
のため整数ピッチの移動量を加減したものが検出値の不
確定値として残ることになる。本発明では第2の波長を
検出光として第1波長と同様に干渉検出し、第1波と第
2波長の位相関係から広い範囲に亘り正確な高さ検出を
可能にし、高精度、広範囲の傾き及び高さ制御を可能に
している。またエアーマイクロ等の他のウェハ高さ検出
手段により一波長検出時の不確定範囲の検出を行ない広
い範囲に亘り正確な高さ検出を可能にしている。
Further, in the case of interference detection, if a change of one pitch of the interference fringes occurs, the detected interference fringes become exactly the same. Therefore, a value obtained by adjusting the moving amount of the integer pitch remains as the uncertain value of the detected value. In the present invention, the second wavelength is used as the detection light to perform interference detection in the same manner as the first wavelength, and it is possible to accurately detect the height over a wide range from the phase relationship between the first wave and the second wavelength. The tilt and height can be controlled. Further, other wafer height detecting means such as an air micro is used to detect an indefinite range when detecting one wavelength, thereby enabling accurate height detection over a wide range.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図により説明する。露光
照明系81より出射した露光光はレチクル9を照明し、そ
の透過光は縮小投影レンズ8によりステージ7上のウェ
ハ4の表面にレチクル上のパターンの縮小像として投影
される。レチクル9とウェハ4の相対的位置はアライメ
ント系800により検出され、レチクル9又はウェハ4の
いずれかを微動制御することによりパターンの重ね露光
が行われる。100XはX方向の傾き及び高さを検出する系
であり、Y方向の傾きについては同様の光学系が図示さ
れないが存在する。以下検出系について説明する。
An embodiment of the present invention will be described below with reference to FIG. The exposure light emitted from the exposure illumination system 81 illuminates the reticle 9, and the transmitted light is projected by the reduction projection lens 8 on the surface of the wafer 4 on the stage 7 as a reduced image of the pattern on the reticle. The relative position of the reticle 9 and the wafer 4 is detected by the alignment system 800, and fine exposure control of either the reticle 9 or the wafer 4 allows the pattern to be overexposed. 100X is a system for detecting the tilt and height in the X direction, and there is a similar optical system for the tilt in the Y direction, although not shown. The detection system will be described below.

半導体レーザ等可干渉性の光源1を出射した光をレン
ズ11により平行光15にする。平行光15はビームスプリッ
タプリズム10により平行光16と17に分離される。平行光
16は照射手段であるビームスプリッタ12,ミラー13を経
て上下および2軸の抑り機構を搭載しているステージ7
の上の被露光物体であるウェハ4の上面のフォトレジス
トに入射角θ、(88゜)で入射している。前述のごとく
ほぼ総ての光がフォトレジスト表面で反射され、この反
射物体光16′は折返し検出光学系である平面境14に垂直
に入射し、元の光路を逆に辿り、被露光物体4で反射
し、物体光26″としてミラー13、ビームスプリッタ12、
レンズ21、微小開口板23、レンズ22、を経て、パターン
検出手段3に至る。他方ビームスプリッタ10で分離され
た参照光17は、照射光16とほぼ同一光路で同一方向に
(但し厳密にはウェハ垂線に対し、92゜の角度の方向
に)進み、平面鏡14で垂直に反射し、物体光26″とほぼ
同一経路を参照光27″として進み、楔ガラス24を経てパ
ターン検出手段3に至る。参照光路が物体光路と異なる
点は被露光物体4で反射しない点、及び楔ガラス24を通
過する点である。レンズ21と22は平行光で入射した光を
平行光で出射させるが、ウェハ上の照射光の照射位置、
即ち露光領域0をほぼパターン検出器上に結像させる。
今もし楔ガラスがないと、ウェハ面で反射し戻って来た
物体光と参照光の交又点Aはパターン検出手段の受光面
の後方で結像する。このことはこの受光面では両光はず
れている。そこで参照光(又は物体光)に楔ガラスを入
れ、受光面上で両光が交又しかつ露光領域0が結像する
ようにしている。折返し検出光学系内に配置されている
微小開口板23は、レンズ21に入射する平行光である物体
光と参照光の集光位置にあり、集光点に微小な開口が有
る。この微小開口板は干渉性の高いレーザ光を用いる場
合に問題となるレンズ、ビームスプリッタ等で発生する
裏面反射光を除去し、パターン検出手段の受光面に雑音
光が重畳しないようにしている。パターン検出手段3で
検出される干渉縞は第2図に示すような強度分布Ixであ
る。パターン検出手段3は一次元アレイセンサであり、
第2図のX軸上に印された位置で強度値が求まり、この
データが処理回路5に伝送される。ウェハの露光領域の
表面が水平で露光結像系によるレチクル9の結像面と一
致すると(第3図の4)第2図の実線のピッチPの干渉
縞が得られる。もし露光領域の表面が第3図或いは第2
図の点線LL′に示すようにαだけ傾くと、第3図からも
明らかな様に1回目の反射光は2α、戻って来た2回目
の反射光は4α傾くことになる。この結果パターン検出
手段で得られる干渉縞は第2図の点線に示すようにピッ
チP′となる。検出手段で得られた干渉信号は伝送線31
により第4図に示す処理回路5に入力される。入力信号
はまず第2図横軸印の各点に対応したタイミングでA/D
変換されFFT回路に入力される。このFFT入力信号は第4
図(b)のようになっており、FFTの結果は複素数C
(k)で得られ第4図(C)に示すように(但しこのグ
ラフの縦軸は|C(k)|)一般にk=0とK=mにスペ
クトルのピークを持つ。k=0は正弦波のバイアス成
分、k=mは正弦波の周期に対応している。mはピッチ
Pに対応しているが、出力は離散的にしか得られないた
め、真のスペクトルピーク位置を求めるためにC(m)
およびその近傍のデータから内挿処理して真のピーク位
置を求めれば傾きΔψxが求まる。また複素数C(m)
の位相(tan-1(Im(C(m))/Re(C(m)))から
高さ(Z)の情報ΔZが得られる。このようにして得ら
れたΔψX,ΔZと第1図には省略されているY方向の検
出検系で得られたy方向の干渉縞情報から処理回路5で
同様にして得られたΔψを基にステージ7の上下及び
2軸の抑り機構を制御し、レチクル結像面とフォトレジ
スト表面を所望の位置関係に合せる。
The light emitted from the coherent light source 1 such as a semiconductor laser is converted into parallel light 15 by the lens 11. The parallel light 15 is split into parallel lights 16 and 17 by the beam splitter prism 10. Parallel light
Reference numeral 16 denotes a stage 7 having a beam splitter 12 and a mirror 13 which are irradiation means, and a vertical and biaxial suppression mechanism mounted thereon.
Is incident on the photoresist on the upper surface of the wafer 4, which is the object to be exposed, at an incident angle θ, (88 °). As described above, almost all the light is reflected by the photoresist surface, and this reflected object light 16 'is incident perpendicularly on the plane boundary 14 which is the folding detection optical system, traces the original optical path in the opposite direction, and is exposed. Reflected by the mirror 13, beam splitter 12, as object light 26 ″,
The pattern detection means 3 is reached via the lens 21, the minute aperture plate 23, and the lens 22. On the other hand, the reference beam 17 separated by the beam splitter 10 travels in the same direction as the irradiation beam 16 in the same direction (although strictly speaking, in the direction of an angle of 92 ° with respect to the wafer normal) and is reflected vertically by the plane mirror 14. Then, the light beam travels on the same path as the object light beam 26 ″ as the reference light beam 27 ″ and reaches the pattern detecting means 3 via the wedge glass 24. The reference optical path differs from the object optical path in that it is not reflected by the object 4 to be exposed and that it passes through the wedge glass 24. The lenses 21 and 22 emit the light incident as parallel light as parallel light, and the irradiation position of the irradiation light on the wafer,
That is, the exposure area 0 is imaged substantially on the pattern detector.
If the wedge glass is not present, the intersection point A of the object light and the reference light reflected and returned on the wafer surface forms an image behind the light receiving surface of the pattern detecting means. This means that the two lights are deviated on this light receiving surface. Therefore, a wedge glass is put in the reference light (or the object light) so that both the lights intersect on the light receiving surface and the exposure area 0 forms an image. The minute aperture plate 23 arranged in the folding detection optical system is located at the condensing position of the object light and the reference light, which are parallel lights incident on the lens 21, and has a minute aperture at the condensing point. This minute aperture plate removes back surface reflected light generated by a lens, a beam splitter, etc., which is a problem when using a laser light having high coherence, and prevents noise light from being superimposed on the light receiving surface of the pattern detecting means. The interference fringes detected by the pattern detecting means 3 have an intensity distribution Ix as shown in FIG. The pattern detection means 3 is a one-dimensional array sensor,
The intensity value is obtained at the position marked on the X axis in FIG. 2, and this data is transmitted to the processing circuit 5. When the surface of the exposure area of the wafer is horizontal and coincides with the image plane of the reticle 9 formed by the exposure image forming system (4 in FIG. 3), interference fringes having a solid line pitch P in FIG. 2 are obtained. If the surface of the exposed area is as shown in FIG.
When it is inclined by α as shown by the dotted line LL ′ in the figure, as is apparent from FIG. 3, the first reflected light is inclined by 2α and the returning second reflected light is inclined by 4α. As a result, the interference fringes obtained by the pattern detecting means have a pitch P'as shown by the dotted line in FIG. The interference signal obtained by the detection means is transmitted through the transmission line 31.
Is input to the processing circuit 5 shown in FIG. The input signal is A / D at the timing corresponding to each point indicated by the horizontal axis in Fig. 2.
It is converted and input to the FFT circuit. This FFT input signal is the 4th
It looks like Figure (b), and the result of FFT is the complex number C
As shown in FIG. 4 (C) obtained by (k) (however, the vertical axis of this graph is | C (k) |), there are generally spectrum peaks at k = 0 and K = m. k = 0 corresponds to the sine wave bias component, and k = m corresponds to the sine wave period. m corresponds to the pitch P, but the output can be obtained only discretely, so C (m) is used to obtain the true spectral peak position.
If the true peak position is obtained by performing an interpolation process from the data in and near the point, the slope Δψx can be obtained. Also, the complex number C (m)
Phase (information [Delta] Z of tan -1 (Im (C (m )) / Re (C (m))) from a height (Z) is obtained. Thus [Delta] [phi] X obtained, [Delta] Z to the first The vertical and biaxial suppression mechanism of the stage 7 is based on Δψ Y similarly obtained by the processing circuit 5 from the y-direction interference fringe information obtained by the y-direction detection detection system (not shown). Is controlled to align the reticle image forming surface and the photoresist surface with a desired positional relationship.

第8図は本発明の一実施例である。第1図と同一番号
は同一物である。また第1図同様y方向の傾き検出系の
図は省略している。半導体レーザ1は波長がλ、半導
体レーザ1′は波長がλであり、例えば、λ=810n
m,λ=750nmである、半導体レーザ1,1′で出射した光
はそれぞれ11と11′により平行光になり、回折格子18,1
8′により0次と1次の平行光に分離される。分離され
た4本の平行ビームは波長分離ミラー19によりλの光
は透過、λの光は反射し、プリズム110で4本のビー
ムは互に平行な平行ビームとなる。波長λとλのビ
ーム16,16′は全く同一の光路を通りミラー13で反射
し、ウェハにθで入射し、反射光は物体光となり、ミ
ラー23,レンズ21、22から成る検出光学系を通り、パタ
ーン検出手段3に入射する。他方波長λとλのビー
ム17と17′は全く同一の参照光路を通り、パターン検出
手段3に、物体光と一定の角度を成し入射する。物体光
路と参照光路はウェハ面での反射を除き、全く同一光学
部品を通る。処理回路5′は半導体レーザ1と1′を交
互に点滅し、パターン検出手段3からλとλの波長
の干渉縞情報を交互に受信する。第9図は処理回路で受
信されるλの波長の干渉縞情報である。実線は最良の
高さ位置に於るものであり、点線はΔZだけ高さが変化
した時のものである。両検出信号は傾きに変化がない場
合、下記値で示される位相差Δφzを発生している。
FIG. 8 shows an embodiment of the present invention. The same numbers as in FIG. 1 are the same. Also, as in FIG. 1, the diagram of the y-direction tilt detection system is omitted. The semiconductor laser 1 has a wavelength of λ 1 , and the semiconductor laser 1 ′ has a wavelength of λ 2. For example, λ 1 = 810n.
The light emitted from the semiconductor laser 1,1 ′ with m, λ 2 = 750 nm is collimated by 11 and 11 ′, respectively, and the diffraction grating 18,1
8'separates into 0th and 1st parallel rays. The four separated parallel beams are transmitted by the wavelength separation mirror 19 for the light of λ 1 and reflected by the light of λ 2 , and the prism 110 makes the four parallel beams parallel to each other. The beams 16 and 16 'of wavelengths λ 1 and λ 2 travel through exactly the same optical path, are reflected by the mirror 13, are incident on the wafer at θ 1 , and the reflected light becomes object light, which is detected by the mirror 23, lenses 21 and 22. The light enters the pattern detection means 3 through the optical system. On the other hand, the beams 17 and 17 'of the wavelengths λ 1 and λ 2 pass through exactly the same reference optical path and enter the pattern detecting means 3 at a constant angle with the object light. The object light path and the reference light path pass through exactly the same optical component except for reflection on the wafer surface. The processing circuit 5'blinks the semiconductor lasers 1 and 1'alternately and alternately receives the interference fringe information of the wavelengths λ 1 and λ 2 from the pattern detecting means 3. FIG. 9 shows the interference fringe information of the wavelength λ 1 received by the processing circuit. The solid line is at the best height position and the dotted line is when the height changes by ΔZ. When there is no change in the slope of both detection signals, the phase difference Δφz represented by the following value is generated.

しかしながら検出される位相差ΔφzからΔZを求め
る場合、下記式で示される不確定性がある。
However, when obtaining ΔZ from the detected phase difference Δφz, there is an uncertainty shown by the following equation.

ここでnは整数である。例えばλ=0.81μm,θ
2度とすると真の値+11.6nμmの不確定値を持つ。本
実施例ではこの問題を第2の波長λによる測定で解決
している。第10図(a)はλの波長で検出した時の基
準位置(X=X0)でのウェハ面の高さ変化に対する検出
強度Izであり、第10図(b)は同じくλの波長に於る
ものである。検出されるパターンの強度は次式となる。
Here, n is an integer. For example, λ 1 = 0.81 μm, θ 1 =
If it is twice, it has an uncertain value of true value + 11.6nμm. In this embodiment, this problem is solved by the measurement with the second wavelength λ 2 . Figure 10 (a) is a detected intensity Iz with respect to the height variation of the wafer surface at the reference position when detected at a wavelength of λ 1 (X = X 0) , FIG. 10 (b) are also of lambda 2 It is at the wavelength. The intensity of the detected pattern is given by the following equation.

ここでXは検出手段の受光面の座標でありMは結像倍
率である。従ってIz=I(X0,ΔZ;λi)となる。λ
で検出した位相値がΔψとし、この値に対応する高さ
が第10図に示すように…P-2,P-1,P1,P2,P3…に対応する
ものであるとすると、これらの内、どの点に対応するΔ
Zが真の値であるか分らない。λで検出した位相値が
Δψであったとすると対応するΔZは第10図の…
-1,0,1,…となる。第10図(a)(b)で同
一位相となるΔZ=S0と次に同一位相となるΔZ=S1
間隔S1S0は次式で与えられ、 この間でλの位相がΔψで、λの位相がΔ 2
なるのはΔZ0の一点だけであり、この条件を満たす次の
ΔZの値は次式で与えられる高さとなる。
Here, X is the coordinates of the light receiving surface of the detecting means, and M is the image forming magnification. Therefore, Iz = I (X 0 , ΔZ; λi). λ 1
It is assumed that the phase value detected in step 1 is Δψ 1, and the height corresponding to this value corresponds to ... P -2 , P -1 , P 1 , P 2 , P 3 ... as shown in FIG. Then, which of these points corresponds to Δ
I don't know if Z is a true value. Assuming that the phase value detected at λ 2 is Δψ 2 , the corresponding ΔZ is shown in FIG.
-1 , 0 , 1 , 2, ... The interval S 1 S 0 between ΔZ = S 0 having the same phase and ΔZ = S 1 having the same phase next in FIGS. 10A and 10B is given by the following equation: During this period, the phase of λ 1 is Δψ 1 , and the phase of λ 1 becomes Δ 2 at only one point of ΔZ 0 , and the next value of ΔZ satisfying this condition is the height given by the following equation.

ΔZ=ΔZ1+mS1S0 …(10) 但しここでmは整数である。ΔZ = ΔZ 1 + mS 1 S 0 (10) Here, m is an integer.

λ=0.81μm,λ=0.75μm,θ=2゜ではS1S0
145μmとなる。ウェハ面の高さがこの様な広い範囲で
変動することはなく、仮に厚さの異なる種類のウェハを
用いる場合には、あらかじめその値は分っているから問
題を生じない。なお第1図の実施例では折返し平面鏡を
用いウェハ面で2度反射させているため上記のS1S0に相
当する値は上記の第8図の実施例の場合の半分となり、
72.5μmとなる。
At λ 1 = 0.81 μm, λ 2 = 0.75 μm, θ 1 = 2 °, S 1 S 0 is
It becomes 145 μm. The height of the wafer surface does not fluctuate in such a wide range, and if wafers of different types are used, the value will be known in advance and no problem will occur. In the embodiment shown in FIG. 1, since a folded plane mirror is used to reflect the light twice on the wafer surface, the value corresponding to S 1 S 0 is half that in the embodiment shown in FIG.
It becomes 72.5 μm.

第11図は一回の露光でウェハ上に露光される領域41に
対し、x方向とy方向の照明光16及び▲▼を示して
いる。照明光16のウェハ上の場所はパターン検出手段3
の受光面301のアレイ素子の番地と対応している。照明
領域全体に対応する番地js〜jeの間で、所望の領域のみ
を、例えば第11図でIs〜Ie、或いは第12図でIs1〜Ie1
びIs2〜Ie2を取り出し、このデータみを用いてFFTを実
行することが容易にできる。このように任意の部分を指
定することが可能なため、例えば微細パターンを含む所
を検出領域に指定し、粗いパターンの部分を外すことに
より、微細パターン部分を傾きや高さが正確に求めら
れ、より焦点に近い位置で露光を行うことが可能とな
る。
FIG. 11 shows the illumination light 16 in the x direction and the y direction and ▲ ▼ for the region 41 which is exposed on the wafer in one exposure. The position of the illumination light 16 on the wafer is the pattern detection means 3
This corresponds to the address of the array element on the light-receiving surface 301 of. Among the addresses js to je corresponding to the entire illumination area, only a desired area is extracted, for example, Is to Ie in FIG. 11 or Is 1 to Ie 1 and Is 2 to Ie 2 in FIG. 12, and this data is extracted. It is easy to perform FFT using only Since it is possible to specify an arbitrary part in this way, for example, by specifying the part containing the fine pattern as the detection area and removing the part of the rough pattern, the inclination and height of the fine pattern part can be accurately obtained. , It is possible to perform exposure at a position closer to the focus.

第13図は本発明の一実施例である。第1図、第8図と
同一番号は同一物を表している。波長λとλの半導
体レーザ1及びより出射した光は、コリメータレンズ
11と▲▼で平行光となり、波長分離ミラー19により
同一光路となる。シリンドリカルレンズ110と120はy方
向のビーム径を広くするために使われている。第14図は
ウェハ4上の露光領域41に対し、拡げられた照射光16
(点線)の範囲を示している。照射部分は二次元アレイ
素子から成るパターン検出手段3″と′の受光面302
上に結像される。二次元的に得られた照射部分の干渉縞
のうち第14図に示す所望の領域42,43のみの情報を演算
処理する。42及び43のそれぞれの場所でx方向の傾きと
高さが求まり41全面としてのx,y方向の傾きと高さが求
まる。
FIG. 13 shows an embodiment of the present invention. The same numbers as in FIGS. 1 and 8 represent the same items. Light emitted from the semiconductor laser 1 having wavelengths λ 1 and λ 2 and the collimator lens
11 and ▲ ▼ form parallel light, and the wavelength separation mirror 19 forms the same optical path. The cylindrical lenses 110 and 120 are used to widen the beam diameter in the y direction. FIG. 14 shows the irradiation light 16 that has been expanded to the exposure area 41 on the wafer 4.
The range of (dotted line) is shown. The illuminated portion is the light receiving surface 302 of the pattern detecting means 3 "and 3'comprising a two-dimensional array element
Imaged above. Information of only the desired regions 42 and 43 shown in FIG. 14 among the interference fringes of the irradiation portion obtained two-dimensionally is processed. The inclination and height in the x direction are obtained at the respective positions of 42 and 43, and the inclination and height in the x and y directions of the entire surface 41 are obtained.

第15図は本発明の一実施例である。本図は平面図であ
り、投影露光装置の露光光学系は省略されている。ステ
ージの抑り機構のx軸方向の回転軸71とy方向の回転軸
72の回りにwx,wy微小回転可能である。ウェハ4上の露
光領域41にx軸から45゜傾いた方向(x方向)から傾き
および高さ検出用の照射光が照射され、反射光が平面鏡
14で垂直に戻され、前述の傾きおよび高さ検出光学系10
0で検出される。本実施例では2軸の仰り機構に対し検
出光は45゜の傾きを持っており、パターン検出手段の二
次元撮像面には第16図のごとき干渉パターンが発生して
いる。ウェハ面が水平を保っている時に干渉パターンが
実線であり、y方向に傾いている場合が点線である。こ
のため撮像面上のx方向とy方向のピッチと位相を求め
れば、xとy方向の傾きと高さが一検出光軸系から求め
ることができる。また第15図の実施例で、パターン検出
手段の直前で光ビームを2分し、x方向とy方向を別々
のパターン検出手段で検出してもよい。
FIG. 15 shows an embodiment of the present invention. This drawing is a plan view, and the exposure optical system of the projection exposure apparatus is omitted. Rotation axis 71 in the x-axis direction and rotation axis in the y-direction of the stage restraining mechanism
It is possible to rotate wx, wy minutely around 72. The exposure area 41 on the wafer 4 is irradiated with irradiation light for tilt and height detection from a direction (x direction) tilted by 45 ° from the x-axis, and reflected light is a plane mirror.
It is returned vertically at 14, and the tilt and height detection optics 10
Detected at 0. In this embodiment, the detection light has an inclination of 45 ° with respect to the biaxial elevation mechanism, and an interference pattern as shown in FIG. 16 is generated on the two-dimensional image pickup surface of the pattern detecting means. The interference pattern is a solid line when the wafer surface is kept horizontal, and a dotted line when the wafer surface is inclined in the y direction. Therefore, if the pitch and the phase in the x direction and the y direction on the imaging surface are obtained, the inclination and the height in the x and y directions can be obtained from one detection optical axis system. Further, in the embodiment of FIG. 15, the light beam may be divided into two just before the pattern detecting means, and the x direction and the y direction may be detected by different pattern detecting means.

第18図は本発明の一実施例である。第1図と同一番号
は同一物を表わしている。第1図との相異点は以下5点
である。レーザ源にHe−Neレーザ等に代表されるチュ
ーブ式レーザ101を用い、レーザ光の一部(ガウス分布
の中心部)を選択するピンホール板102を折返し平面鏡1
4と共役な位置に設けた点,ビーム15がビームスプリ
ッタ12を通り、ミラー14で折返されて、パターン検出手
段3に至るまでの反射回数が参照光路と物体光路で共に
偶数または奇数になるようにした点パターン検出手段
3と折返し平面鏡14を共役な関係(結像関係)とし、ウ
ェハ面で反射し戻って来た物体光と参照光の交叉点Aが
パターン検出手段3上に結像するように平行平面ガラス
201を参照光路27″(または物体光路26″)中に挿入し
た点、パターン検出手段3に入射する物体光および参
照光が平面波となるようにパターン検出手段の直前に補
正レンズ204を挿入した点、ウェハ4の高さ検出にエ
アーマイクロ82を併用した点である。
FIG. 18 shows an embodiment of the present invention. The same numbers as in FIG. 1 represent the same items. The difference from FIG. 1 is the following five points. A tube laser 101 typified by a He-Ne laser or the like is used as a laser source, and a pinhole plate 102 for selecting a part of laser light (center portion of Gaussian distribution) is folded back to form a flat mirror 1
A point provided at a position conjugate with 4 and the beam 15 pass through the beam splitter 12, are reflected by the mirror 14, and the number of reflections until reaching the pattern detecting means 3 is even or odd both in the reference optical path and the object optical path. The point pattern detecting means 3 and the folding plane mirror 14 are formed into a conjugate relationship (image forming relationship), and an intersection point A of the object light and the reference light reflected and returned on the wafer surface is imaged on the pattern detecting means 3. As parallel plane glass
A point where 201 is inserted in the reference optical path 27 ″ (or an object optical path 26 ″), and a point where a correction lens 204 is inserted immediately before the pattern detecting means so that the object light and the reference light incident on the pattern detecting means 3 become plane waves. The point is that the air micro 82 is also used to detect the height of the wafer 4.

レーザ源101を出射した光は折返し平面鏡14と共役な
位置に設けたピンホール板102の微小開口部に入射しガ
ウス分布の中心部を選択する。次にレンズ103,105によ
り所望の太さの平行光15にし、ビームスプリッタ106に
入射する。平行光15はビームスプリッタ106により平行
光16と17に分離する。ここで平行光16はビームスプリッ
タ106を透過(反射回数0)させ、平行光17はビームス
プリッタ106内で2回反射させている。これはビーム15
がビームスプリッタ12を通り、ミラー14で折返されて、
パターン検出手段3に至るまでの反射回数が参照光路と
物体光路で共に偶数または奇数になるようにしたもの
で、反射回数を揃えることによりビームスプリッタ106
への入射光15の方向が変動した際、参照光と物体光の交
叉角の変動を小さく押えることができ、その結果干渉縞
ピッチの変化がほとんど起らず、高精度の検出が可能と
なる。本実施例の場合、ビームスプリッタ106でビーム
分割後パターン検出手段に至るまでの参照光と物体光の
反射回数は共に6回となり偶数回で揃っている。ビーム
スプリッタ106を出射した平行光16はビームスプリッタ1
2,ミラー13を経て上下および2軸のあおり機構を搭載し
ているステージ7の上の被露光物体であるウェハ4の上
面のフォトレジスト表面でほとんど全ての光が反射し、
折返し平面鏡14に垂直に入射する。折返し平面鏡14で反
射した平行光16は再び元の光路を逆捩りし、物体光26″
としてミラー13,ビームスプリッタ12,レンズ202,微小開
口板23,レンズ203,204を経てパターン検出手段3に至
る。他方ビームスプリッタ106で分離された平行光17は
平行光16とほぼ同一光路で進み、ビームスプリッタ12,
ミラー13を経て直接折返しミラー14に垂直に入射した
後、再び元の光路を逆戻りし、参照光27″としてミラー
13,ビームスプリッタ12,平行平面ガラス201,レンズ202,
微小開口板23,レンズ203,204を経てパターン検出手段3
に至る。参照光路が物体光路と異なる点は被露光物4で
反射しない点、平行平面ガラス201を通過する点であ
る。レンズ202,203,204は折返し平面鏡14の反射面と露
光中心Oとの間の光軸に垂直な平面をパターン検出手段
3上に結像させる。これは被露光物体の所望の場所に相
当する部分の情報のみから傾きと高さを検出する場合、
干渉縞内の位置とウェハ上の位置の対応が明確になって
いる必要があるためであり、上記構成を採用することに
より、行きと帰りの光路中のウェハの像がほぼ均等にパ
ターン検出手段3上に結像でき、部分的に検出しても高
い精度で検出できる。しかし折返し平面鏡14の反射面と
露光中心Oとの間の光軸に垂直な平面をパターン検出手
段3上に結像させた場合、露光領域と交叉点Aが一致し
ていないため、このままではパターン検出手段3上で参
照光と物体光を重ね合わせることはできない。そこで平
行平面ガラス201を参照光路27″(または物体光路2
6″)中に挿入し、参照光を平行移動させてパターン検
出手段3上で参照光と物体光が重なり合うようにした。
レンズ204はレンズ202および203によって生じた参照光
と物体光の球面波を平面波に補正するためのレンズでパ
ターン検出手段3の直前に配置してある。両波面を平面
波にすることにより干渉縞のピッチのばらつきを無く
し、高い検出精度が得られる。
The light emitted from the laser source 101 enters the minute opening of the pinhole plate 102 provided at a position conjugate with the folding plane mirror 14 and selects the center of the Gaussian distribution. Next, the lenses 103 and 105 form parallel light 15 having a desired thickness, which is then incident on the beam splitter 106. The parallel light 15 is split into parallel lights 16 and 17 by the beam splitter 106. Here, the parallel light 16 is transmitted through the beam splitter 106 (the number of reflections is 0), and the parallel light 17 is reflected twice in the beam splitter 106. This is beam 15
Passes through the beam splitter 12 and is folded back by the mirror 14,
The number of reflections to reach the pattern detection means 3 is set to be even or odd in both the reference light path and the object light path.
When the direction of the incident light 15 on the light fluctuates, the fluctuation of the crossing angle between the reference light and the object light can be suppressed to a small degree, and as a result, the interference fringe pitch hardly changes, which enables highly accurate detection. . In the case of the present embodiment, the number of reflections of the reference light and the object light up to the pattern detection means after the beam splitting by the beam splitter 106 is 6 times, which is even. The parallel light 16 emitted from the beam splitter 106 is the beam splitter 1
2, almost all the light is reflected by the photoresist surface on the upper surface of the wafer 4 which is the object to be exposed on the stage 7 having the vertical and biaxial tilting mechanism through the mirror 13.
It is vertically incident on the folding plane mirror 14. The parallel light 16 reflected by the folding plane mirror 14 reversely twists the original optical path again, and the object light 26 ″
As a result, it reaches the pattern detection means 3 through the mirror 13, the beam splitter 12, the lens 202, the minute aperture plate 23, the lenses 203 and 204. On the other hand, the collimated light 17 separated by the beam splitter 106 travels in substantially the same optical path as the collimated light 16, and the beam splitter 12,
After passing through the mirror 13 and directly incident on the folding mirror 14 vertically, the original optical path is reversed again and the reference light 27 ″ is mirrored.
13, beam splitter 12, parallel plane glass 201, lens 202,
The pattern detection means 3 through the minute aperture plate 23 and the lenses 203 and 204
Leading to. The reference optical path differs from the object optical path in that it is not reflected by the object to be exposed 4 and passes through the plane-parallel glass 201. The lenses 202, 203 and 204 form an image on the pattern detecting means 3 on a plane perpendicular to the optical axis between the reflecting surface of the folding plane mirror 14 and the exposure center O. This is when detecting the tilt and height from only the information of the part corresponding to the desired location of the exposed object,
This is because the correspondence between the position in the interference fringes and the position on the wafer must be clear. By adopting the above configuration, the image of the wafer in the optical path of the going and returning can be almost even. An image can be formed on 3 and can be detected with high accuracy even if it is partially detected. However, when a plane perpendicular to the optical axis between the reflecting surface of the folding plane mirror 14 and the exposure center O is imaged on the pattern detecting means 3, the exposure area and the intersection point A do not coincide with each other. The reference light and the object light cannot be superposed on the detection means 3. Then, the plane parallel glass 201 is used as the reference optical path 27 ″ (or the object optical path 2).
6 "), and the reference light was moved in parallel so that the reference light and the object light were overlapped on the pattern detecting means 3.
The lens 204 is a lens for correcting the spherical waves of the reference light and the object light generated by the lenses 202 and 203 into a plane wave, and is arranged immediately before the pattern detecting means 3. By making both wavefronts plane waves, it is possible to eliminate variations in the pitch of interference fringes and obtain high detection accuracy.

本検出法では一波長検出の場合(7)式で示すウェハ
高さの不確定性の問題があった。2波長照明による解決
法を前述したが、他のウェハ高さ検出手段を併用するこ
とによっても解決可能である。本実施例ではエアーマイ
クロ82を併用することによってこの問題を解決した。即
ち(6)式で示す本検出法によって確実に高さ検出がで
きる範囲まではエアーマイクロによってウェハ高さを位
置決めし、(6)式で示す位相変化の範囲内では本検出
法を用いる。また他の方法としてウェハの高さ検出はエ
アーマイクロ等の他の検出手段、傾き検出は本検出法を
用いてもよい。第21図はエアーマイクロの原理を示した
もので空圧源821からエアーマイクロノズル822および参
照用エアーマイクロ823に圧力空気を供給し、エアーマ
イクロノズル822とウェハ4のギャップによって決まる
エアーマイクロノズル内の背圧824と参照用エアーマイ
クロ823の背圧825の圧力差を差圧変換器826によって電
気信号に変換して処理回路5によってステージ7の高さ
を制御し差圧が0になったところで止める。
This detection method has a problem of uncertainties in the height of the wafer, which is shown by the equation (7) in the case of detecting one wavelength. Although the solution using the two-wavelength illumination has been described above, the solution can also be solved by using other wafer height detecting means together. In this embodiment, this problem is solved by using the air micro 82 together. That is, the wafer height is positioned by the air micro to the range where the height can be reliably detected by the present detection method shown by the equation (6), and the present detection method is used within the range of the phase change shown by the equation (6). As another method, the height of the wafer may be detected by other detecting means such as an air micro, and the tilt may be detected by this detecting method. FIG. 21 shows the principle of the air micro, in which pressurized air is supplied from the air pressure source 821 to the air micro nozzle 822 and the reference air micro 823, and inside the air micro nozzle determined by the gap between the air micro nozzle 822 and the wafer 4. The back pressure 824 and the back pressure 825 of the reference air micro 823 are converted into an electric signal by the differential pressure converter 826, and the height of the stage 7 is controlled by the processing circuit 5 so that the differential pressure becomes zero. stop.

第19図と第20図は本実施例のガウス分布の一部を選択
して照明する方法の効果を説明するための図で、第19図
はガウス分布の一部を選択しない場合、第20図はガウス
分布の一部を選択した場合の参照光(実線)と物体光
(破線)のパターン検出手段3上の照度分布を示したも
のである。縦軸に照度Ix,横軸にパターン検出手段3の
検出位置xを示す。ウェハが傾くと物体光はパターン検
出手段3上を移動し、参照光と物体光の重なり状態(斜
線部)が変化する。この時、ガウス分布の一部を選択し
ない第19図の実施例では参照光と物体光の重なり部分の
照度が大きく変化し、干渉強度が大きく変動する。これ
に対し、第20図のガウス分布の一部を選択した照明で
は、参照光と物体光の重なり部分の照度変化は小さく、
干渉強度の変動も小さい。干渉強度の変動が小さい方が
信号処理の過程で誤差が小さく高精度の検出が可能とな
る。本実施例の信号処理に関しては前述してあるため説
明を省略する。
FIGS. 19 and 20 are diagrams for explaining the effect of the method of selecting and illuminating a part of the Gaussian distribution according to the present embodiment. FIG. 19 shows a case where a part of the Gaussian distribution is not selected. The figure shows the illuminance distribution on the pattern detection means 3 of the reference light (solid line) and the object light (broken line) when a part of the Gaussian distribution is selected. The vertical axis shows the illuminance Ix, and the horizontal axis shows the detection position x of the pattern detecting means 3. When the wafer is tilted, the object light moves on the pattern detecting means 3, and the overlapping state (hatched portion) of the reference light and the object light changes. At this time, in the embodiment of FIG. 19 in which a part of the Gaussian distribution is not selected, the illuminance at the overlapping portion of the reference light and the object light changes greatly, and the interference intensity also changes greatly. On the other hand, in the illumination in which a part of the Gaussian distribution in FIG. 20 is selected, the illuminance change at the overlapping portion of the reference light and the object light is small,
The fluctuation of the interference intensity is also small. The smaller the fluctuation of the interference intensity, the smaller the error in the process of signal processing and the more accurate detection becomes possible. Since the signal processing of this embodiment has been described above, the description thereof will be omitted.

第22図は本発明の一実施例である。本実施例ではウェ
ハ4の露光領域41の対角線方向にレーザ光を照射する。
100xはx方向の傾きおよび高さを検出する系、100Yはy
方向の傾きおよび高さを検出する系、14は折返し平面鏡
である。第23図は露光領域41の拡大図をであり、1つの
露光領域内に2つの回路部(メモリー等)を有する例で
ある。図において412が回路部を413が境界部を示し、レ
ーザ光411は露光領域に対して対角線方向に照射してい
る。第24図は第23図のI−I断面を示すが、一般に回路
部412と境界部413では高さが異なる。このため、露光領
域の辺に対して直角、平行方向でレーザ光を照射した場
合、本来検出したい回路部の傾きと高さではなく、境界
部の傾きと高さを検出してしまう恐れがある。これに対
し、第23図の如く露光領域の対角線方向にレーザ光を照
射し、必要に応じて任意の検出範囲を選択することによ
り回路部の傾きと高さを正確に求めることが可能とな
る。また露光領域の対角線方向にレーザ光を照射する場
合、照射範囲が最も長くとれ、露光領域の傾きと高さよ
り高性度に検出できる効果もある。
FIG. 22 shows an embodiment of the present invention. In this embodiment, laser light is irradiated in the diagonal direction of the exposure area 41 of the wafer 4.
100x is a system that detects inclination and height in the x direction, and 100Y is y.
Reference numeral 14 is a folded plane mirror, which detects the tilt and height of the direction. FIG. 23 is an enlarged view of the exposure area 41, which is an example having two circuit parts (memory etc.) in one exposure area. In the figure, 412 indicates a circuit portion and 413 indicates a boundary portion, and the laser beam 411 irradiates the exposure region in a diagonal direction. FIG. 24 shows a cross section taken along the line I--I of FIG. 23. Generally, the circuit portion 412 and the boundary portion 413 have different heights. For this reason, when the laser light is irradiated in a direction perpendicular or parallel to the side of the exposure area, the inclination and height of the boundary portion may be detected instead of the inclination and height of the circuit portion to be originally detected. . On the other hand, as shown in FIG. 23, it is possible to accurately obtain the inclination and height of the circuit section by irradiating a laser beam in the diagonal direction of the exposure area and selecting an arbitrary detection range as necessary. . Further, when the laser light is irradiated in the diagonal direction of the exposure area, the irradiation range can be set to be the longest, and there is an effect that the inclination and height of the exposure area can be detected with a higher degree of accuracy.

以上示した実施例では半導体露光装置について説明し
ているが、本発明はその他の液晶ディスプレイ等表示デ
バイス用露光装置等にも同様に適用でき、大きな効果が
発揮できる。
Although the semiconductor exposure apparatus has been described in the above-described embodiments, the present invention can be similarly applied to other exposure apparatuses for display devices such as liquid crystal displays and can exert a great effect.

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したように構成されているので以
下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the effects described below.

(1)干渉測定により傾きと高さを同時に求めることが
できる。
(1) The tilt and the height can be simultaneously obtained by the interferometric measurement.

(2)参照光が照射、検出光とほぼ同じ場所を通るよう
に構成することにより、空気のゆらぎ等、外乱要因の影
響を受けない安定な傾き及び高さ検出ができる。
(2) By arranging the reference light so that the reference light passes through substantially the same place as the irradiation light and the detection light, stable inclination and height detection that is not affected by disturbance factors such as air fluctuation can be performed.

(3)被露光物体への入射角を85゜以上にすることによ
り、又入射光をS偏光にすることにより、フォトレジス
ト表面の傾き及び高さを、下地の膜構造の影響を受ける
ことなく、正確に検出することができる。
(3) By setting the incident angle to the object to be exposed to 85 ° or more and by making the incident light S-polarized, the inclination and height of the photoresist surface are not affected by the underlying film structure. , Can be accurately detected.

(4)被露光物体に斜照射した光の反射光を垂直に折返
し、再び被露光物体に照射することにより、傾きおよび
高さの検出精度を2倍に高めることができる。
(4) By returning the reflected light of the light obliquely irradiated to the exposed object vertically, and irradiating the exposed object again, the accuracy of detecting the inclination and the height can be doubled.

(5)パターン検出手段の撮像面を被露光物体面上のビ
ーム照射位置と共役にし、被露光物体の所望の場所に相
当する部分の情報のみから傾きと高さを検出することに
より、特に精密に焦点合せをする必要のある所に焦点を
合せることができる。
(5) Particularly precise by making the imaging surface of the pattern detecting means conjugate with the beam irradiation position on the surface of the exposed object and detecting the tilt and height only from the information of the portion corresponding to the desired location of the exposed object. You can focus on where you need to focus.

以上の説明したように被露光物体の表面の傾きや高さ
を下地に影響されることなく高精度に安定に検出するこ
とが可能となり、特に0.5μm以下の線幅のLSI等焦点深
度に余裕のないパターン露光に対し、露光工程の歩留り
の大幅向上に寄与する。
As explained above, it becomes possible to detect the inclination and height of the surface of the object to be exposed with high accuracy and stability without being affected by the base, and especially for a focal depth such as an LSI with a line width of 0.5 μm or less. This contributes to a significant improvement in the yield of the exposure process, as compared with the pattern exposure without the exposure.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例で折返し検出光学系を含むも
のの構成を示した図、第2図は検出パターン信号波形を
示す図、第3図は折返し検出光学系の効果を説明するた
めの図、第4図は処理回路の実施例を示す図、第5図乃
至第7図は入射角と反射、透過複素振幅の関係及び、雑
音成分率の特性を示す図、第8図は本発明の一実施例で
2波長を用いるものの構成を示す図、第9図は高さ変化
に伴なう検出パターン信号の変化を表わす図、第10図は
2波長λ1で検出時の高さ変化ΔZに伴なう着目点
の信号Izの変化を表わす図、第11図及び第12図は露光領
域に対する照射光と演算処理領域を示す図、第13図は本
発明の実施例で2波長で2次元的に検出するものの構成
を示す図、第14図は第13図に示す実施例の露光領域に対
する演算処理領域を示す図、第15図は本発明の実施例の
一検出系で2方向の傾きを検出するものを示す図、第16
図はその検出パターンを示す図、第17図は照射検出光の
振幅成分を説明する図、第18図は本発明の一実施例でエ
アーマイクロを併用し、更に光学系の改善を図ったもの
の構成を示す図、第19図及び第20図は各々本発明に係る
照明法の効果を説明する図、第21図は本発明に係るエア
ーマイクロの原理を示す図、第22図乃至第24図は各々本
発明に係る露光領域の対角線方向にレーザ光を照射した
場合の説明図である。 1……レーザ光源、10,12……ビームスプリッタ、 14……折返し平面鏡、21,22……レンズ、 23……微小開口板、24……楔ガラス、 3,3″,″……パターン検出手段、 4……ウェハ、5……処理回路、 7……ステージ、8……露光投影レンズ、 81……照明系、9……レチクル、 82……エアーマイクロ。
FIG. 1 is a diagram showing a configuration of an embodiment including a folding detection optical system according to the present invention, FIG. 2 is a diagram showing a detection pattern signal waveform, and FIG. 3 is a diagram for explaining an effect of the folding detection optical system. FIG. 4, FIG. 4 is a diagram showing an embodiment of a processing circuit, FIGS. 5 to 7 are diagrams showing the relationship between incident angle and reflection / transmission complex amplitude, and characteristics of noise component ratio, and FIG. diagram illustrating the configuration of those using two wavelengths in one embodiment of the invention, Figure 9 represents the change in the accompanying detection pattern signal to the height variation diagram, when detecting Fig. 10 2 wavelengths lambda 1, at lambda 2 Of the signal Iz at the point of interest associated with the height change .DELTA.Z of the light, FIG. 11 and FIG. 12 show the irradiation light for the exposure area and the calculation processing area, and FIG. 13 is an embodiment of the present invention. FIG. 14 is a diagram showing the configuration of a two-dimensional detection with two wavelengths, and FIG. 14 shows an arithmetic processing area for the exposure area of the embodiment shown in FIG. FIG. 15 and FIG. 15 are views showing a detection system for detecting tilts in two directions in an embodiment of the present invention, and FIG.
FIG. 17 is a diagram showing the detection pattern, FIG. 17 is a diagram for explaining the amplitude component of the irradiation detection light, and FIG. 18 is one embodiment of the present invention in which an air micro is used in combination to further improve the optical system. FIG. 19 is a diagram showing the configuration, FIG. 19 and FIG. 20 are diagrams for explaining the effects of the illumination method according to the present invention, FIG. 21 is a diagram showing the principle of the air micro according to the present invention, and FIGS. 3A and 3B are explanatory diagrams when laser light is irradiated in a diagonal direction of an exposure region according to the present invention. 1 …… Laser light source, 10,12 …… Beam splitter, 14 …… Folded plane mirror, 21,22 …… Lens, 23 …… Micro aperture plate, 24 …… Wedge glass, 3,3 ″, ″ …… Pattern detection Means, 4 ... Wafer, 5 ... Processing circuit, 7 ... Stage, 8 ... Exposure projection lens, 81 ... Illumination system, 9 ... Reticle, 82 ... Air micro.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】露光照明系とマスク又はレチクルと投影光
学系と被露光物体を保持し、被露光物体を直交する3方
向に移動せしめるステージと、該マスク又はレチクルと
該被露光物体との相対的位置を検出し、位置合せ制御す
るアライメント系とから成る投影露光装置において、可
干渉光源より出射した光を平行な照射光とし、該被露光
物体表面上にある投影光学系の露光領域に斜めから入射
角θで照射せしめる少くとも1つの照射手段と、被露光
物体で反射した物体光をパターン検出手段に導く少くと
も1つの検出光学系と、上記可干渉光源より出射した光
を分離し、参照光を発生する手段と、当該参照光を該パ
ターン検出手段に導き該物体光の光軸に対し、所望の角
度を付けて該パターン検出手段上で重畳し、干渉せしめ
る少くとも1つの参照光手段と、該パターン検出手段で
得られた干渉パターンの情報から、被露光物体の傾きも
しくは高さの少くとも一方の情報を得る処理開路と、当
該情報に基づき、被露光物体の少くとも1方向の傾き、
もしくは高さの少くとも一方を制御せしめるステージ制
御系とを備え付けたことを特徴とする投影露光装置。
1. A stage for holding an exposure illumination system, a mask or reticle, a projection optical system, an object to be exposed, and moving the object to be exposed in three directions orthogonal to each other, and a relative position between the mask or reticle and the object to be exposed. In a projection exposure apparatus including an alignment system that detects a target position and controls alignment, the light emitted from the coherent light source is converted into parallel irradiation light, which is oblique to the exposure area of the projection optical system on the surface of the object to be exposed. From at least one irradiation means for irradiating at an incident angle θ, at least one detection optical system for guiding the object light reflected by the exposed object to the pattern detection means, and the light emitted from the coherent light source are separated, A means for generating reference light and at least one for guiding the reference light to the pattern detection means, superimposing it on the pattern detection means at a desired angle with respect to the optical axis of the object light, and causing interference. A illuminating means and a processing circuit for obtaining at least one of the inclination and height of the exposed object from the information of the interference pattern obtained by the pattern detecting means, and at least 1 of the exposed object based on the information. The tilt of the direction,
Alternatively, the projection exposure apparatus is provided with a stage control system for controlling at least one of the heights.
【請求項2】上記照射光および物体光と上記参照光は実
行的にほぼ同一方向に進みかつ同一領域を通過すること
を特徴とする請求項1記載の投影露光装置。
2. The projection exposure apparatus according to claim 1, wherein the irradiation light, the object light and the reference light practically travel in substantially the same direction and pass through the same region.
【請求項3】上記入射角θは85゜以上であることを特徴
とする請求項1記載の投影露光装置。
3. The projection exposure apparatus according to claim 1, wherein the incident angle θ is 85 ° or more.
【請求項4】上記照射光はS偏光であることを特徴とす
る請求項1記載の投影露光装置。
4. The projection exposure apparatus according to claim 1, wherein the irradiation light is S-polarized light.
【請求項5】折返し平面鏡を配置し、被露光物体で反射
した上記物体光を当該折返し平面鏡でほぼ垂直に反射さ
せ、往路と同一光路を逆に進め、再び被露光物体で反射
させ、上記パターン検出手段に導く、折返し検出光学系
を具備し、上記参照光との間で上記パターン検出手段上
で干渉せしめることを特徴とする請求項1記載の投影露
光装置。
5. A pattern is formed by arranging a folding plane mirror, wherein the object light reflected by the object to be exposed is reflected substantially vertically by the plane mirror, and the same optical path as the outward path is reversed and reflected by the object to be exposed again. 2. The projection exposure apparatus according to claim 1, further comprising a folding detection optical system for guiding to the detection means, and causing interference with the reference light on the pattern detection means.
【請求項6】上記参照光が上記物体光と実効的にほぼ同
一の方向、同一の領域を通過するごとく構成した手段を
具備することを特徴とする請求項5記載の投影露光装
置。
6. The projection exposure apparatus according to claim 5, further comprising means configured so that the reference light passes through substantially the same direction and the same region as the object light.
【請求項7】上記パターン検出手段はアレイセンサであ
り、被露光物体の傾きΔθと高さΔhに応じたピッチP
と位相φを有する正弦波信号を上記処理回路に伝送し、
当該処理回路で高速フーリェ変換を実行し、Pに対応す
るスペクトル近傍の情報から、ΔθとΔhを求めること
を特徴とする請求項1乃至6のいずれか記載の投影露光
装置。
7. The pattern detecting means is an array sensor, and a pitch P corresponding to the inclination Δθ and height Δh of the exposed object.
And transmitting a sine wave signal having a phase φ to the processing circuit,
7. The projection exposure apparatus according to claim 1, wherein a high-speed Fourier transform is executed by the processing circuit, and Δθ and Δh are obtained from information in the vicinity of the spectrum corresponding to P.
【請求項8】上記被露光物体上の照射位置は上記検出光
学系又は折返し検出光学系により、ほぼ上記パターン検
出手段と共役な関係(結像関係)にあることを特徴とす
る請求項1又は5又は6記載の投影露光装置。
8. The irradiation position on the object to be exposed is in a conjugate relationship (imaging relationship) with the pattern detecting means by the detection optical system or the folding detection optical system. 7. The projection exposure apparatus according to 5 or 6.
【請求項9】上記パターン検出手段に入射する物体光及
び参照光は実効的に平面波であることを特徴とする請求
項1又は5又は6記載の投影露光装置。
9. The projection exposure apparatus according to claim 1, wherein the object light and the reference light incident on the pattern detecting means are effectively plane waves.
【請求項10】上記パターン検出手段はアレイセンサで
あり、上記被露光物体上の照射位置は上記検出光学系又
は折返し検出光学系により、ほぼ上記パターン検出手段
と共役な関係にあり、上記アレイセンサで得られた情報
の所望の領域のみを選択し、高速フーリェ変換演算を施
し、得られたスペクトル情報より、被露光物体の露光領
域の所望の領域の傾きもしくは高さの少なくとも一方を
求める処理回路を具備したことを特徴とする請求項1又
は5又は6記載の投影露光装置。
10. The pattern detecting means is an array sensor, and the irradiation position on the object to be exposed is in a conjugate relationship with the pattern detecting means by the detection optical system or the folding detection optical system. A processing circuit that selects only the desired region of the information obtained in step 1, performs a high-speed Fourier transform operation, and obtains at least one of the inclination and height of the desired region of the exposure region of the exposed object from the obtained spectral information. 7. The projection exposure apparatus according to claim 1, 5 or 6, further comprising:
【請求項11】上記検出光学系又は折返し反射光学系と
参照光の光路中に、両光路の光集束部分に微小開口を設
け、両光路中の光学部品の表裏面より反射した雑音的光
成分を遮光することを特徴とする請求項1又は5又は6
記載の投影露光装置。
11. A noisy light component reflected from the front and back surfaces of an optical component in both optical paths by providing a minute aperture in a light converging portion of both the optical paths in the optical path of the detection optical system or the reflection optical system and the reference light. The light is shielded from the light.
The projection exposure apparatus according to claim 1.
【請求項12】上記可干渉光源とは波長の異なる第2の
可干渉光源を備え、当該第2の可干渉光源より出射した
光を上記照射手段に導入し、上記第1の可干渉光源とほ
ぼ同一光路の物体光及び参照光を形成し、上記検出光学
系或いは折返し検出光学系中に第1の波長の光から第2
の波長の光を分離する手段を配置し、分離された第2の
波長の物体光および参照光を第2のパターン検出手段で
検出し、第1及び第2のパターン検出手段で得られた干
渉縞の情報から高さ方向の不確定要因を除去し、正確な
高さ情報を広い範囲で検出可能としたことを特徴とする
請求項1又は5又は6記載の投影露光装置。
12. A coherent light source having a wavelength different from that of the coherent light source is provided, and light emitted from the second coherent light source is introduced into the irradiating means, and the first coherent light source is provided. The object light and the reference light having substantially the same optical path are formed, and the first light from the second light is converted into the second light in the detection optical system or the folding detection optical system.
Means for separating the light having the wavelength of 2 is arranged, the separated object light and reference light having the second wavelength are detected by the second pattern detecting means, and the interferences obtained by the first and second pattern detecting means are detected. 7. The projection exposure apparatus according to claim 1, wherein an uncertain factor in the height direction is removed from the stripe information so that accurate height information can be detected in a wide range.
【請求項13】1本のビームがビームスプリッタを通
り、パターン検出手段に至るまでの参照光と物体光の反
射回数を共に偶数または奇数に揃えたことを特徴とする
請求項1又は5又は6記載の投影露光装置。
13. A single beam passes through a beam splitter, and the number of reflections of the reference light and the object light before reaching the pattern detecting means are both even or odd. The projection exposure apparatus described.
【請求項14】エアーマイクロ等の他のウェハ高さ検出
手段を併用することにより、一波長検出による高さ方向
の不確定要因を除去し、正確な高さ情報を広い範囲で検
出可能としたことを特徴とする請求項1又は5又は6記
載の投影露光装置。
14. By using another wafer height detecting means such as an air micro in combination, an uncertain factor in the height direction due to one wavelength detection is removed, and accurate height information can be detected in a wide range. The projection exposure apparatus according to claim 1, 5 or 6, characterized in that.
【請求項15】レーザ光を露光領域のほぼ対角線方向に
照射したことを特徴とする請求項1又は5又は6記載の
投影露光装置。
15. The projection exposure apparatus according to claim 1, wherein the laser light is applied in a substantially diagonal direction of the exposure area.
【請求項16】レーザ光の一部を選択するピンホール板
を照明光路中に設けたことを特徴とする請求項1又は5
又は6記載の投影露光装置。
16. A pinhole plate for selecting a part of laser light is provided in the illumination optical path.
Or the projection exposure apparatus according to item 6.
【請求項17】レーザ光の一部を選択するピンホール板
をほぼ露光領域と共役位置に設けたことを特徴とする請
求項16記載の投影露光装置。
17. The projection exposure apparatus according to claim 16, wherein a pinhole plate for selecting a part of the laser light is provided at a position substantially conjugate with the exposure area.
JP2064155A 1989-04-21 1990-03-16 Projection exposure device Expired - Lifetime JPH0828319B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019900702643A KR930011884B1 (en) 1989-04-21 1990-04-20 Projection exposure device and projection exposure method
DE69027738T DE69027738T2 (en) 1989-04-21 1990-04-20 PROJECTION AND PLAYBACK CONTROL AND PROJECTION AND PLAYBACK METHOD
EP90906337A EP0426866B1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
PCT/JP1990/000520 WO1990013000A1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
US07/623,438 US5227862A (en) 1989-04-21 1990-04-20 Projection exposure apparatus and projection exposure method
US07/936,661 US5392115A (en) 1989-04-21 1992-08-28 Method of detecting inclination of a specimen and a projection exposure device as well as method of detecting period of periodically varying signal
US08/315,841 US6094268A (en) 1989-04-21 1994-09-30 Projection exposure apparatus and projection exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10002589 1989-04-21
JP1-100025 1989-04-21

Publications (2)

Publication Number Publication Date
JPH0340417A JPH0340417A (en) 1991-02-21
JPH0828319B2 true JPH0828319B2 (en) 1996-03-21

Family

ID=14262998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2064155A Expired - Lifetime JPH0828319B2 (en) 1989-04-21 1990-03-16 Projection exposure device

Country Status (1)

Country Link
JP (1) JPH0828319B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10229818A1 (en) 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Focus detection method and imaging system with focus detection system
US20060147821A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2010192470A (en) * 2009-02-13 2010-09-02 Canon Inc Measurement apparatus, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JPH0340417A (en) 1991-02-21

Similar Documents

Publication Publication Date Title
JP6712349B2 (en) Alignment system
JP3774476B2 (en) Interferometer system using two wavelengths and lithographic apparatus comprising such a system
US5202748A (en) In situ process control system for steppers
US5751426A (en) Positional deviation measuring device and method for measuring the positional deviation between a plurality of diffraction gratings formed on the same object
JPH047814A (en) Alignment device of exposure device
JPH0513297A (en) Aligning apparatus
US5231467A (en) Reflective alignment position signal producing apparatus
JPS63275912A (en) Detecting device of surface displacement
JPH0828319B2 (en) Projection exposure device
JPH08219718A (en) Plane position detector
JP2796347B2 (en) Projection exposure method and apparatus
JP2506725B2 (en) Pattern defect inspection system
JP2861927B2 (en) Method and apparatus for detecting inclination or height of optical multilayer object
JP3003671B2 (en) Method and apparatus for detecting height of sample surface
JP2548068B2 (en) Position shift and gap detection method
JP2612042B2 (en) Alignment equipment for light exposure equipment
JPH047446B2 (en)
JPH08124830A (en) Projection exposure device
JPH07123105B2 (en) Alignment device
JPH06310404A (en) Projection aligner
JPH05196567A (en) Complex reflectivity measurement method and device
JP3004303B2 (en) Exposure method and apparatus
JPH0428217A (en) Positioning device
JPS63298107A (en) Slant incident interferometer device
JPH03111713A (en) Interference type apparatus for detecting tilt or height, reduction stepper and method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14

EXPY Cancellation because of completion of term