JPH047446B2 - - Google Patents

Info

Publication number
JPH047446B2
JPH047446B2 JP58163494A JP16349483A JPH047446B2 JP H047446 B2 JPH047446 B2 JP H047446B2 JP 58163494 A JP58163494 A JP 58163494A JP 16349483 A JP16349483 A JP 16349483A JP H047446 B2 JPH047446 B2 JP H047446B2
Authority
JP
Japan
Prior art keywords
light
wavefront
measurement
shape
plane mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58163494A
Other languages
Japanese (ja)
Other versions
JPS6055213A (en
Inventor
Toshio Kano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP58163494A priority Critical patent/JPS6055213A/en
Publication of JPS6055213A publication Critical patent/JPS6055213A/en
Publication of JPH047446B2 publication Critical patent/JPH047446B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 (技術分野) この発明は、波面形状測定装置に関する。[Detailed description of the invention] (Technical field) The present invention relates to a wavefront shape measuring device.

(従来技術) 形状を測定するべき測定波面と、この波面を光
の進行方向に対して横にずらした参照波面とを作
り、一方の波面を作る光の光路長を変化させて、
両者の干渉領域の各点における、両波面の位相差
を測定し、この位相差を加算して、測定波面の形
状を特定する、波面形状測定方式が意図されてい
る。
(Prior art) A measurement wavefront whose shape is to be measured and a reference wavefront that is shifted horizontally with respect to the traveling direction of the light are created, and the optical path length of the light that creates one wavefront is changed.
A wavefront shape measurement method is intended in which the phase difference between both wavefronts at each point in their interference region is measured and the phase differences are added to specify the shape of the measured wavefront.

第1図は、このような波面形状測定方式を利用
した、物体形状測定装置とて、提案されたものの
1例を示している。
FIG. 1 shows an example of a proposed object shape measuring device using such a wavefront shape measuring method.

以下、この装置例に即して、波面形状測定方式
のあらましまを、簡単に説明し、あわせて、本発
明により解決しようとする問題点につき説明す
る。
Hereinafter, the outline of the wavefront shape measurement method will be briefly explained based on this example of the apparatus, and the problems to be solved by the present invention will also be explained.

第1図において、符号1はレーザー光源、符号
L1,L2はコリメーターレンズ、符号2,3はビ
ームスプリツター、符号4は平面鏡、符号L3
照明用のレンズ、符号5は圧電素子、符号6は平
行プレート、符号7はビームチスプリツター、符
号L4は結像レンズ、符号9はエリアセンサー、
符号10は被測定物体を、それぞれ示す。
In Figure 1, numeral 1 is a laser light source, numeral 1 is a laser light source;
L 1 and L 2 are collimator lenses, 2 and 3 are beam splitters, 4 is a plane mirror, L 3 is an illumination lens, 5 is a piezoelectric element, 6 is a parallel plate, and 7 is a beam chip. Splitter, code L 4 is imaging lens, code 9 is area sensor,
Reference numeral 10 indicates an object to be measured.

レーザー光源1から放射されたレーザー光は、
コリメーターレンズL1,L2により平行光束とな
り、ビームスプリツター2,3を透過したのち、
照明用のレンズL3を透過し、一旦集光したのち、
発散性の光束となつて、被測定物体の形状測定面
に入射し同形状測定面により反射される。この反
射光は、レンズL3を再度、逆方向へ透過し、ビ
ームスプリツター3により、2光束に分離する。
The laser light emitted from the laser light source 1 is
The collimator lenses L 1 and L 2 make it a parallel beam of light, and after passing through the beam splitters 2 and 3,
After passing through the lighting lens L 3 and condensing the light,
The beam becomes a diverging light beam, enters the shape measurement surface of the object to be measured, and is reflected by the shape measurement surface. This reflected light passes through the lens L3 again in the opposite direction, and is separated into two beams by the beam splitter 3.

分離した光束の一方は、ビームスプリツター
2,7、結像レンズL4を介して、エリアセンサ
ー9の受光域にいたる。分離した光束の他方は、
平面鏡4、平行プレート6、ビームスプリツター
7、結像レンズL4をへて、エリアセンサー9の
受光域にいたる。
One of the separated light beams reaches the light receiving area of the area sensor 9 via the beam splitters 2 and 7 and the imaging lens L4 . The other part of the separated luminous flux is
The light passes through the plane mirror 4, parallel plate 6, beam splitter 7, and imaging lens L4 , and reaches the light receiving area of the area sensor 9.

今、レンズL3と結像レンズL4との系を結像系
として、被測定物体10と、エリアセンサー9の
受光域とを、結像関係としてむすびつけると、上
記受光域における各光束の波面形状は、被測定物
体10形状測定面の形状と相似形となる。上記結
像系の倍率が、形状測定面と上記波面形状の大き
さの比を与えることはいうまでもない。
Now, when the system of lens L 3 and imaging lens L 4 is used as an imaging system, and the object to be measured 10 and the light-receiving area of the area sensor 9 are connected in an imaging relationship, each luminous flux in the above-mentioned light-receiving area is The wavefront shape is similar to the shape of the measurement surface of the object to be measured 10 . It goes without saying that the magnification of the imaging system gives the ratio of the size of the shape measurement surface and the wavefront shape.

従つて、上記波面形状を測定することにより、
被測定物体10の形状測定面の形状を、特定する
ことができる。
Therefore, by measuring the above wavefront shape,
The shape of the shape measurement surface of the object to be measured 10 can be specified.

ここで、以下の説明において用いられるいくつ
かの言葉につき説明を与えておく。
Here, some words used in the following explanation will be explained.

形状を測定されるべき波面の、波面形状の情報
を含む光であつて、未だ2光束に分割されていな
いものを情報光と呼ぶことにする。
Light that contains information about the wavefront shape of the wavefront whose shape is to be measured, and which has not yet been divided into two beams, will be referred to as information light.

情報光は、2つの波面を得るために、2光束に
分割される。この2光束の任意の一方を測定光、
他方を参照光と呼ぶ。そして、測定光の与える波
面を測定波面、参照光の与える波面を参照波面と
呼ぶ。
The information light is split into two beams to obtain two wavefronts. Any one of these two beams is used as the measurement light,
The other light is called the reference light. The wavefront given by the measurement light is called a measurement wavefront, and the wavefront given by the reference light is called a reference wavefront.

第1図にもどると、被測定物体10からの反射
光は情報光である。この情報光は、ビームスプリ
ツター3により、2光束すなわち測定光と参照光
に分離される。いずれを測定光とよび参照光と呼
ぶ力は、全く任意であるが、ここでは、便宜的
に、ビームスプリツター3から、ビームスプリツ
ター2,7、結像レンズL4をへて、エリアセン
サー9にいたる光を測定光と呼び、ビームスプリ
ツター3から、平面鏡4、平行プレート6、ビー
ムスプリツター7、結像レンズL4を経てエリア
センサー9にいたる光を参照光と呼ぶことにす
る。
Returning to FIG. 1, the reflected light from the object to be measured 10 is information light. This information light is separated by a beam splitter 3 into two light beams, that is, a measurement light and a reference light. It is completely arbitrary to call either the measurement light or the reference light, but here, for convenience, we will explain how the beam passes from the beam splitter 3, through the beam splitters 2 and 7, and through the imaging lens L4 to the area sensor. The light reaching 9 will be called the measurement light, and the light that will reach the area sensor 9 from the beam splitter 3 via the plane mirror 4, the parallel plate 6, the beam splitter 7, and the imaging lens L4 will be called the reference light.

参照光は、平行プレート6を透過することによ
り、その進行方向が、横方向へ微小距離ずれる。
従つて、第2図に示すように、測定光2−1と参
照光2−2とは、エリアセンサー9の受光域91
上で互いにずれて重なり合い、重なり合つた部分
では、干渉による干渉縞2−3があらわれる。干
渉縞2−3のあらわれる領域を、干渉領域とい
う。
When the reference light passes through the parallel plate 6, its traveling direction is shifted by a small distance in the lateral direction.
Therefore, as shown in FIG.
At the top, they are shifted and overlapped with each other, and interference fringes 2-3 appear due to interference in the overlapped portions. The area where the interference fringes 2-3 appear is called an interference area.

なお、エリアセンサー9は、受光素子を2次元
的にアレイ配列した固体撮影素子である。
Note that the area sensor 9 is a solid-state imaging device in which light-receiving elements are arranged in a two-dimensional array.

さて、第2図下部に示すように、測定光の波面
すなわち、測定波面をW(X)、参照光の波面、す
なわち、参照波面を、W(X+S)と表すことに
する。Sは両波面の横方向のずれ量であつて、第
1図に即して云えば、平行プレート6による参照
光の横ずれ量によつて定まる。
Now, as shown in the lower part of FIG. 2, the wavefront of the measurement light, that is, the measurement wavefront, is expressed as W(X), and the wavefront of the reference light, that is, the reference wavefront, is expressed as W(X+S). S is the amount of lateral deviation between the two wavefronts, and according to FIG. 1, it is determined by the amount of lateral deviation of the reference beam caused by the parallel plate 6.

なお、波面W(X)、W(X+S)は、本来、被
測定物体10の形状測定面の形状と、相似的に対
応するべきものであるが、第2図では、説明を一
般的とするため、一般的な形状が示されている。
Note that the wavefronts W(X) and W(X+S) should originally correspond to the shape of the shape measurement surface of the object to be measured 10 in a similar manner, but in FIG. 2, the explanation is given in a general manner. Therefore, the general shape is shown.

さて、測定波面W(X)と参照波面W(X+S)
とは、互いに、ずれ量Sのため、位相がずれてい
る。
Now, the measurement wavefront W(X) and the reference wavefront W(X+S)
are out of phase with each other due to the amount of shift S.

ところで、平面鏡4は圧電素子5の作用によつ
て、鏡面に直交する方向へ変位しうるようになつ
ている。これにより、参照光の光路長を調整しう
るようになつている。
By the way, the plane mirror 4 can be displaced in a direction perpendicular to the mirror surface by the action of the piezoelectric element 5. This allows the optical path length of the reference light to be adjusted.

平面鏡4をこのように変位させると、参照光は
平面鏡4による反射光の部分が横方向へずれる
が、後述するように、平面鏡4の変位量は、レー
ザー光の波長の程度の微小距離であり、従つて、
平面鏡の変位に起因する参照光の横ずれが、前述
のずれ量Sに与える影響は無視しうる。
When the plane mirror 4 is displaced in this way, the part of the reference light reflected by the plane mirror 4 is shifted in the lateral direction, but as will be described later, the amount of displacement of the plane mirror 4 is a minute distance on the order of the wavelength of the laser beam. , therefore,
The influence of the lateral shift of the reference light caused by the displacement of the plane mirror on the above-mentioned shift amount S can be ignored.

さて、測定波面W(X)、参照波面W(X+S)
との間の、位相差を、第2図最下図の如く△W
(X)と表す。もちろん、この位相差は、干渉領
域おいてのみ意味を有する。
Now, measurement wavefront W(X), reference wavefront W(X+S)
As shown in the bottom diagram of Figure 2, the phase difference between
It is expressed as (X). Of course, this phase difference has meaning only in the interference region.

ところで、この位相差△W(X) △W(X)=W(X+S)−W(X) で与えられ、ずれ量Sが小さいときは、Sの2次
以上の微小頃を切すてて、 △W(X)=dW/dX・S (1) と与えられる。従つて、(1)式が成立つ程度の大き
さに、ずれ量Sを設定するならば、測定波面W
(X)は、△W(X)/Sを加算して、すなわち、積分 1/S∫△W(x)dx (2) を実行することによつて、特定することができ
る。結局、位相差△W(X)の加算によつて、被
測定物体の形状測定面の形状を特定できるのであ
る。
By the way, this phase difference is given by △W(X) △W(X) = W(X+S) - W(X), and when the amount of shift S is small, the second or higher order of S is cut off. , △W(X)=dW/dX・S (1) Therefore, if the amount of deviation S is set to a size that satisfies equation (1), the measured wavefront W
(X) can be determined by adding ΔW(X)/S, ie by performing the integration 1/S∫ΔW(x)dx (2). After all, the shape of the shape measurement surface of the object to be measured can be specified by adding the phase difference ΔW(X).

位相差△W(X)を求めるには、以下の如くす
る。
To obtain the phase difference ΔW(X), proceed as follows.

測定光と参照光の光路差をlとすると、エリア
センサー9の受光域91(第2図)上の測定光2
−1は、aを振幅、iを虚数単位、波数k=2π/λ (λは波長)として、 A(x)=aexp〔i2k.W(x)〕 (3) と与えられ、参照光2−2は、bを振幅として、 B(X+s)=bexp〔i2k.(W(x+s)+l)〕(4
) と与えられる。
If the optical path difference between the measurement light and the reference light is l, the measurement light 2 on the light receiving area 91 (FIG. 2) of the area sensor 9
-1 is given as A(x)=aexp[i2k.W(x)] (3) where a is the amplitude, i is the imaginary unit, and wave number k=2π/λ (λ is the wavelength), and the reference light 2 -2, where b is the amplitude, B(X+s)=bexp[i2k.(W(x+s)+l)](4
) is given.

これから、干渉領域における、干渉縞2−3の
光強度分布Io(x.l)は、周知の如く、 Io(x.l)=a2+b2+2abcos2k〔W(x)−W(x+
S)−l〕 (5) と与えられる。このままでは、とりあつかいが面
倒なので、(5)式の両辺を(a2+b2)で除して規格
化する。
From this, the light intensity distribution Io(xl) of the interference fringes 2-3 in the interference region is, as is well known, Io(xl)=a 2 +b 2 +2abcos2k [W(x)-W(x+
S)−l] (5) is given. As it is, it is difficult to handle it as it is, so we standardize it by dividing both sides of equation (5) by (a 2 + b 2 ).

I(X.l)=1+γcos2k 〔W(x)−W(x+s)−l〕 (6) ここに、γ=2ab/a2+b2 (6)式を、lについてフーリエ変換すると、ξ=
2・klとして、 I(x,l)=1/2apn=1 aocos nξ+n=1 bosinnξ (7) ao=∫I(x.l)cos nξdξ (8) bo=∫I(x.l)sin nξdξ (9) となる。
I(Xl)=1+γcos2k [W(x)−W(x+s)−l] (6) Here, γ=2ab/a 2 +b 2 When formula (6) is Fourier transformed with respect to l, ξ=
As 2・kl, I(x,l)=1/2a p + n=1 a o cos nξ+ n=1 b o sinnξ (7) a o =∫I(xl)cos nξdξ (8) b o =∫I(xl)sin nξdξ (9).

(6)式と、(7)式とを比較すると、(6)式は、n=2
以上の振動成分を含まないから、n>1のnに対
して、ao=bo=op従つて、(7)式は、 I(x.l)=1/2ap+a1cosξ+b1sinξ =1/2ap+a1cos2kl+b1sin2kl (7) となる。
Comparing equations (6) and (7), equation (6) has n=2
Since the above vibration components are not included, for n > 1, a o = b o = o p Therefore, equation (7) is: I(xl) = 1/2a p + a 1 cosξ + b 1 sinξ = 1/2a p +a 1 cos2kl+b 1 sin2kl (7)

一方、(6)式は、△W=W(x)−W(x+S)で
あることに着目すると、 I(x.l)=1+γ cos2k△W. cos2kl+γsin2k.△Wsin2kl (6)′ となる。これから、 a0=2. a1=γcos2k△W,b1=γsin2k△W が得られる。従つて、 tan2k△W=b1/a1 となり、これから、位相差△Wは、 △W=1/2k2tan-1b1/a1 (10) で与えられる。
On the other hand, when paying attention to the fact that ΔW=W(x)−W(x+S), equation (6) becomes I(xl)=1+γ cos2kΔW. cos2kl+γsin2k.ΔWsin2kl (6)′. From this, a 0 =2. a 1 =γcos2k△W, b 1 =γsin2k△W are obtained. Therefore, tan2k△W=b 1 /a 1 , and from this, the phase difference △W is given by △W=1/2k 2 tan -1 b 1 /a 1 (10).

a1,b1は、n>1のnが全て0であることに
注目すると、式(8),(9)から、 a1=∫I(x.l)cosξdξ (8′) b1=∫I(x.l)sinξdξ (9′) で与えられる。
Note that a 1 and b 1 are all 0 where n>1, and from equations (8) and (9), a 1 = ∫I (xl) cosξdξ (8') b 1 = ∫I (xl) sinξdξ (9′).

この積分は、近似的に以下の如く実行される。
すなわち、測定光と参照光との光路差lは、先に
のべたように、圧電素子5によつて平面鏡4を、
変位させることによつて変化させることができ
る。そこで、波最入の11/2Nを1ステツプとして、 圧電素子5により、平面鏡4をN段階に変位させ
る。
This integration is performed approximately as follows.
In other words, the optical path difference l between the measurement light and the reference light is, as mentioned earlier, when the piezoelectric element 5 causes the plane mirror 4 to
It can be changed by displacement. Therefore, the plane mirror 4 is displaced in N stages by the piezoelectric element 5, with 11/2N, which is the maximum wave input, as one step.

これにより、lは、λ/2Nきざみでλ/2だけ変化 する。各ステツプにおけるlを、 lj=λ/2Nj とあらわせば、式(8′),(9′)は、それぞれ、 a1=kλ/NNj=1 I(x.lj)cos2klj (8″) b1=kλ/NNj=1 I(x.lj)sin2klj (9″) となるから、結局、位相差△Wは、 で与えられる。 As a result, l changes by λ/2 in steps of λ/2N. If l at each step is expressed as lj = λ/2Nj, equations (8') and (9') are respectively a 1 = kλ/N Nj=1 I(x.lj) cos2klj (8″ ) b 1 = kλ/N Nj=1 I(x.lj)sin2klj (9″), so in the end, the phase difference △W is is given by

従つて、△W(x)を得るには、次のようにす
れば良い。
Therefore, in order to obtain ΔW(x), the following procedure may be used.

すなわち、干渉領域の各点Xにおける、光強度
I(x.lj)を、エリアセンサー9により測定し、
この測定値にcos2klj,sin2kljをかけて、I(x.lj)
cos2klj,I(x.lj)sin2kljを算出する。圧電素子
5による平面鏡4のNステツプの変位の各ステツ
プごとに、これを繰返し、各算出値を順次加算し
て、Nj=1 I(x.lj)cos2klj,Nj=1 I(x.lj)sin2kljを
得、前者で後者を除して、その逆正接関数値を
得、これに1/2kをかければ、式11の値が得ら
れる。
That is, the light intensity I (x.lj) at each point X in the interference area is measured by the area sensor 9,
Multiply this measured value by cos2klj and sin2klj to get I(x.lj)
Calculate cos2klj, I(x.lj)sin2klj. This is repeated for each step of the N-step displacement of the plane mirror 4 by the piezoelectric element 5, and each calculated value is sequentially added to obtain Nj=1 I(x.lj)cos2klj, Nj=1 I( x.lj) sin2klj, divide the latter by the former to obtain its arctangent function value, and multiply this by 1/2k to obtain the value of Equation 11.

あとは、この位相差△W(x)を用い、(2)式に
従つて位相差を加算すれば、測定波面W(x)を
特定することができる。つづいて、平行プレート
6を光軸に平行な軸のまわりに90度回転させ、測
定波面と参照波面を、X軸と直交するy方向へず
らし、y方向に関する同様の測定を行つて、測定
波面W,yを特定しW(x),W(y)から、被測
定物体10の形状測定面の形状を特定することが
できる。
After that, by using this phase difference ΔW(x) and adding the phase differences according to equation (2), the measurement wavefront W(x) can be specified. Next, the parallel plate 6 is rotated 90 degrees around an axis parallel to the optical axis, the measurement wavefront and the reference wavefront are shifted in the y direction perpendicular to the X axis, and the same measurement in the y direction is performed. By specifying W and y, the shape of the shape measurement surface of the object to be measured 10 can be specified from W(x) and W(y).

以上が、波面形状測定方式のあらましである。 The above is an overview of the wavefront shape measurement method.

例えば、位相差△W(x)が第3図の上図の如
きものであつたとすれば、これを加算して得られ
る波面の形状は、第3図下図の如きものとなる。
For example, if the phase difference ΔW(x) is as shown in the upper part of FIG. 3, the shape of the wavefront obtained by adding these values will be as shown in the lower part of FIG. 3.

第4図に、実際の測定結果の1例を示す。 FIG. 4 shows an example of actual measurement results.

さて、第1図の波面形状測定装置では、測定光
が、ビームスプリツター2,7、結像レンズL4
を介してエリアセンサー9に到り、参照光が平面
鏡4、平行プレート6、ビームスプリツター7、
結像レンズL4を介してエリアセンサー9に到る
ようになつているため、測定に際しては、測定装
置に対し、万全の防振対策が必要となる。すなわ
ち、振動により、測定光、参照光の各光路を構成
する光学系の相対的な位置関係がくるうと、測定
精度にただちに悪影響を及ぼすのである。
Now, in the wavefront shape measuring device shown in Fig. 1, the measurement light is transmitted through the beam splitters 2 and 7 and the imaging lens L
The reference light reaches the area sensor 9 via the plane mirror 4, parallel plate 6, beam splitter 7,
Since it is designed to reach the area sensor 9 via the imaging lens L 4 , it is necessary to take thorough anti-vibration measures for the measuring device during measurement. That is, if the relative positional relationship of the optical systems constituting the optical paths of the measurement light and the reference light is distorted due to vibration, measurement accuracy is immediately adversely affected.

(目的) そこで、本発明は、耐振動性にすぐれ、かつコ
ンパクトな、波面形状測定位置の提供を目的とす
る。
(Objective) Therefore, an object of the present invention is to provide a wavefront shape measurement position that has excellent vibration resistance and is compact.

(構成) 以下、本発明を説明する。(composition) The present invention will be explained below.

本発明の波面形状測定装置は、集光レンズと、
ハーフミラーあるいはビームスプリツターと、第
1および第2の平面鏡を有する。
The wavefront shape measuring device of the present invention includes a condensing lens;
It has a half mirror or beam splitter and first and second plane mirrors.

集光レンズは、測定波面の情報を有する情報光
を集束させる。
The condensing lens focuses the information light having information on the measurement wavefront.

ハーフミラーあるいはビームスプリツターは、
集光レンズによる集束高速を、集束途上におい
て、測定光と参照光とに分割する。
Half mirror or beam splitter is
The high-speed focusing by the condensing lens is divided into measurement light and reference light during focusing.

第1の平面鏡は、測定光と参照光とに分割され
た光束の一方の集束位置において、光束光軸に直
交するように配備される。光束光軸とは、上記集
光レンズの光軸を通つた光線に合致する光軸をい
う。
The first plane mirror is arranged so as to be orthogonal to the optical axis of the light beam at one of the focusing positions of the light beam divided into the measurement light and the reference light. The optical axis of the light flux refers to an optical axis that coincides with the light beam passing through the optical axis of the condensing lens.

第2の平面鏡は、2分割された光束の他方の集
束位置において、光束光軸に対して傾いて配備さ
れる。
The second plane mirror is arranged at an angle with respect to the optical axis of the light beam at the other focusing position of the two divided light beams.

そして、これら第1および第2の平面鏡のうち
の任意の一方が、圧電素子により変位させられ
て、測定光と参照光の光路長差lを変化させる。
Then, any one of the first and second plane mirrors is displaced by the piezoelectric element to change the optical path length difference l between the measurement light and the reference light.

以下、図面を参照しながら、具体的に説明す
る。
Hereinafter, a detailed description will be given with reference to the drawings.

第5図は、本発明の1実施例を示している。な
お、繁雑を避けるため、混同の虞れがないと思わ
れるものについては、第1図におけると同一の符
号を付した。
FIG. 5 shows one embodiment of the invention. In order to avoid complication, the same reference numerals as in FIG. 1 are given to those items that are considered to have no risk of confusion.

図中に新たにあらわれた符号につき説明する
と、符号L5は、集光レンズ、符号8,112は
ビームスプリツター、符号11は第1の平面鏡、
符号12は第2の平面鏡を示す。
To explain the newly appearing symbols in the figure, the symbol L5 is a condenser lens, the symbol 8,112 is a beam splitter, the symbol 11 is a first plane mirror,
Reference numeral 12 indicates a second plane mirror.

レーザー光源1よりの光は、コリメートレンズ
L2,L3により平行光束化され、ビームスプリツ
ター112、レンズL3を介して、被測定物体1
0に照射される。被測定物体10からの反射光す
なわち情報光は、レンズL3、ビームスプリツタ
ー112を介して、集光レンズL5に入射し、同
集光レンズL5により集束光束となつてビームス
プリツター8に入射し、ビームスプリツター8に
より、集束途上で2光束に分割され、分割された
光束の一方は、平面鏡11上に、又、他方は平面
鏡12の上にそれぞれ集束する。
The light from laser light source 1 is passed through a collimating lens.
The light beams are collimated by L 2 and L 3 , and then passed through the beam splitter 112 and lens L 3 to the object to be measured 1.
irradiated to 0. The reflected light from the object to be measured 10, that is, the information light, enters the condenser lens L5 via the lens L3 and the beam splitter 112, and is condensed by the condenser lens L5 into a beam splitter 8. The beam enters the beam and is split into two beams by the beam splitter 8 on the way to being focused. One of the split beams is focused on a plane mirror 11 and the other is focused on a plane mirror 12.

平面鏡11は、これに入射する集束光束の光束
光軸に直交的である。従つて、この平面鏡11に
反射された光は、入射方向へと進行し、ビームス
プリツター8、結像レンズL4を介して、エリア
センサー9に到る。
The plane mirror 11 is perpendicular to the optical axis of the convergent light beam incident thereon. Therefore, the light reflected by the plane mirror 11 travels in the direction of incidence and reaches the area sensor 9 via the beam splitter 8 and the imaging lens L4 .

一方、平面鏡12は、これに集束的に入射する
光の光軸に対して、微小角θだけ傾いており、従
つて、この平面鏡12による反射光の光軸方向
は、入射光軸に対し、2θだけ傾く。この反射光
はビームスプリツター8、結像レンズL4を介し
てエリアセンサー9にいたる。なお、平面鏡12
における反射点は、結像レンズL4の焦点となつ
ているので、エリアセンサー9に入射する測定光
と参照光とはともに光軸が平行となつている。
On the other hand, the plane mirror 12 is tilted by a small angle θ with respect to the optical axis of the light that is convergently incident thereon, and therefore, the optical axis direction of the light reflected by the plane mirror 12 is as follows with respect to the incident optical axis. Tilt by 2θ. This reflected light reaches the area sensor 9 via the beam splitter 8 and the imaging lens L4 . Note that the plane mirror 12
Since the reflection point at is the focal point of the imaging lens L4 , the optical axes of both the measurement light and the reference light incident on the area sensor 9 are parallel.

上記説明でわかるように、本発明の装置におい
ては情報光を測定光と参照光に分けるのは、ハー
フミラーもしくは、ビームスプリツター、この実
施例ではビームスプリツター8により行なわれ
る。また、測定波面と参照波面を、光の進光方向
に対して横方向へずらすのは、第2の平面鏡によ
つて行なわれる。
As can be seen from the above description, in the apparatus of the present invention, the information light is divided into the measurement light and the reference light by a half mirror or a beam splitter, in this embodiment the beam splitter 8. Further, the measurement wavefront and the reference wavefront are shifted laterally with respect to the traveling direction of the light by the second plane mirror.

平面鏡11は、圧電素子5によつて、鏡面に直
交する方向へ変換させられる。
The plane mirror 11 is transformed by the piezoelectric element 5 in a direction perpendicular to the mirror surface.

波面形状の測定は、圧電素子5によつて光路長
を変化させつつ、エリアセンサー9により、干渉
領域における各点の光強度を測定し、その測定値
に所定の演算を施して位相差△W(x)を得(第
(11)式)、これを、(2)式に従つて加算すること
により行なわれる。Y方向の測定は、平面鏡12
を、入射光軸のまわりに90゜回転させて、△W
(y)を得、これを加算する。
To measure the wavefront shape, while changing the optical path length using the piezoelectric element 5, the area sensor 9 measures the light intensity at each point in the interference region, and the measured value is subjected to a predetermined calculation to calculate the phase difference ΔW. This is done by obtaining (x) (Equation (11)) and adding it according to Equation (2). Measurement in the Y direction is performed using a plane mirror 12.
Rotate 90° around the incident optical axis to obtain △W
Obtain (y) and add this.

第6図は、本発明の他の実施例を示す。第5図
に示す実施例では、被測定物体10の形状を、結
像関係により、波面形状として相似的に再現し、
この波面形状を測定することにより、被測定物体
の形状を特定した。第6図に示す実施例では、被
検レンズLによる波面の形状そのものを測定す
る。これにより被検レンズLのレンズ機能を容易
にチエツクできる。なお、光路長の変化を、第2
の平面鏡の変位で行うこともできる。また、ビー
ムスプリツターにかえてハーフミラーを用いるこ
とができることはいうまでもない。
FIG. 6 shows another embodiment of the invention. In the embodiment shown in FIG. 5, the shape of the object to be measured 10 is similarly reproduced as a wavefront shape by the imaging relationship,
By measuring this wavefront shape, the shape of the object to be measured was identified. In the embodiment shown in FIG. 6, the shape of the wavefront produced by the lens L to be tested itself is measured. Thereby, the lens function of the lens L to be tested can be easily checked. Note that the change in optical path length is
This can also be done by displacing a plane mirror. Furthermore, it goes without saying that a half mirror can be used instead of the beam splitter.

(効果) 以上、本発明によれば、新規な波面形状測定装
置を提供できる。
(Effects) As described above, according to the present invention, a novel wavefront shape measuring device can be provided.

この波面形状測定装置では、測定光と参照光と
が通過する光学系の大部分が互いに共通してお
り、従つて耐振動性に優れ、又、装置全体のコン
パクト化が可能である。
In this wavefront shape measuring device, most of the optical systems through which the measurement light and the reference light pass are common to each other, and therefore have excellent vibration resistance and can be made compact as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は、波面形状測定方式を説
明するための図、第5図は本発明の1実施例を示
す図、第6図は、本発明の別実施例を示す図であ
る。 1……レーザー光源、L2,L3……コリメータ
ーレンズ、8,12……ビームスプリツター、
L3……照明用のレンズ、L4……結像レンズ、L5
……集光レンズ、11……第1の平面鏡、12…
…第2の平面鏡、5……圧電素子、L……被検レ
ンズ。
Figures 1 to 4 are diagrams for explaining the wavefront shape measurement method, Figure 5 is a diagram showing one embodiment of the present invention, and Figure 6 is a diagram showing another embodiment of the present invention. . 1...Laser light source, L2 , L3 ...Collimator lens, 8, 12...Beam splitter,
L 3 ...Lens for illumination, L 4 ...Imaging lens, L 5
...Condensing lens, 11...First plane mirror, 12...
...Second plane mirror, 5...Piezoelectric element, L...Test lens.

Claims (1)

【特許請求の範囲】 1 形状を測定すべき測定波面と、この波面を、
光の進行方向に対して横にずらした参照波面とを
作り、一方の波面を作る光の光路長を変化させ
て、両者の干渉領域の各点における、両波面の位
相差を測定し、この位相差を加算して、測定波面
の形状を特定する、波面形状測定方式において、 測定波面の情報を有する情報光を集束させる集
光レンズと、 この集光レンズによる集束光束を、集束途上に
おいて2分割するハーフミラーもしくはビームス
プリツターと、 上記ハーフミラーもしくはビームスプリツター
により2分割された光束の一方の集束位置におい
て、光束光軸に直交するように配備される第1の
平面鏡と、 上記2分割された光束の他方の集束位置におい
て、光束光軸に対し傾いて配備される第2の平面
鏡とを有し、 上記第1および第2の平面鏡の任意の一方を、
圧電素子によつて変位させて、光路長を変化させ
るようにしたことを特徴とする、波面形状測定装
置。
[Claims] 1. A measurement wavefront whose shape is to be measured, and this wavefront,
A reference wavefront is created that is shifted horizontally with respect to the direction in which the light travels, and the optical path length of the light that makes up one wavefront is changed, and the phase difference between the two wavefronts is measured at each point in their interference region. In the wavefront shape measurement method, which specifies the shape of the measurement wavefront by adding phase differences, there is a condenser lens that converges information light having information about the measurement wavefront, and a condensed light beam by this condenser lens. a half mirror or beam splitter that splits the beam; a first plane mirror disposed perpendicular to the optical axis of the beam at one focusing position of the beam split into two by the half mirror or beam splitter; and a second plane mirror arranged at an angle with respect to the optical axis of the light beam at the other focusing position of the light beam, and any one of the first and second plane mirrors,
A wavefront shape measuring device characterized in that the optical path length is changed by displacement using a piezoelectric element.
JP58163494A 1983-09-06 1983-09-06 Device for measuring wave pront shape Granted JPS6055213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163494A JPS6055213A (en) 1983-09-06 1983-09-06 Device for measuring wave pront shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163494A JPS6055213A (en) 1983-09-06 1983-09-06 Device for measuring wave pront shape

Publications (2)

Publication Number Publication Date
JPS6055213A JPS6055213A (en) 1985-03-30
JPH047446B2 true JPH047446B2 (en) 1992-02-12

Family

ID=15774928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163494A Granted JPS6055213A (en) 1983-09-06 1983-09-06 Device for measuring wave pront shape

Country Status (1)

Country Link
JP (1) JPS6055213A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613443Y2 (en) * 1985-04-22 1994-04-06 株式会社リコー Wavefront shape measuring instrument
US4743118A (en) * 1985-04-04 1988-05-10 Ricoh Company, Ltd. Method of detecting origin of shear and measuring amount of shear in shearing interferometer systems
JPH02238306A (en) * 1989-03-13 1990-09-20 Ricoh Co Ltd Apparatus for measuring fine displacement
EP3055729A1 (en) * 2013-10-07 2016-08-17 Ramot at Tel-Aviv University Ltd. Polarization-independent differential interference contrast optical arrangement

Also Published As

Publication number Publication date
JPS6055213A (en) 1985-03-30

Similar Documents

Publication Publication Date Title
JP2752003B2 (en) Inspection interferometer with scanning function
KR100225923B1 (en) Phase shifting diffraction interferometer
JP2000501508A (en) Interferometer for measuring thickness error of semiconductor wafer
TWI408356B (en) Reflective scatterometer
JPH0324432A (en) Optical instrument for phase detection inspection of optical system, particularly spectacle lens
JP2010121960A (en) Measuring device and method of measuring subject
JP2003302205A (en) Shearing interference measuring method and shearing interferometer, method of manufacturing for projection optical system, and projection optical system, and projection exposure device
JPH047446B2 (en)
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
JPH0611323A (en) Shape measuring instrument
JPS6024401B2 (en) How to measure the physical constants of a measured object
JPH047447B2 (en)
JP2000097657A (en) Interferometer
JPS6365882B2 (en)
JP2003106934A (en) Device and method for measuring optical path length, device and method for measuring thickness, and device and method for measuring inclined component of refractive index distribution
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument
JP3410800B2 (en) Vibration resistant interferometer
JPH0828319B2 (en) Projection exposure device
JPH1047938A (en) Measuring device for laser beam spread angle
JPH11325848A (en) Aspherical surface shape measurement device
KR101464695B1 (en) Multi-interference phase interferometer with simultaneous measurement functions
JP2023125296A (en) spectroscopic ellipsometer
JPH05157532A (en) Computer hologram for measurement and measuring method using same
JPH0593611A (en) Thickness measuring apparatus
SU1058875A1 (en) Laser profilograph