JPH02238306A - Apparatus for measuring fine displacement - Google Patents

Apparatus for measuring fine displacement

Info

Publication number
JPH02238306A
JPH02238306A JP6051689A JP6051689A JPH02238306A JP H02238306 A JPH02238306 A JP H02238306A JP 6051689 A JP6051689 A JP 6051689A JP 6051689 A JP6051689 A JP 6051689A JP H02238306 A JPH02238306 A JP H02238306A
Authority
JP
Japan
Prior art keywords
measured
interference pattern
beam splitter
displacement
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6051689A
Other languages
Japanese (ja)
Inventor
Katsuyuki Omura
克之 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6051689A priority Critical patent/JPH02238306A/en
Publication of JPH02238306A publication Critical patent/JPH02238306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure fine displacement with high accuracy by grasping the displacement of an object to be measured in an optical axis direction as a change of the interference pattern of the light reflected by a mirror and calculating phase shift at every interference pattern. CONSTITUTION:The light emitted from a light source 1 is transmitted through or reflected by a beam splitter 2 and the transmitted light is reflected by the mirror 4 mounted on an object 3 to be measured to again return to the position of the beam splitter 2 while the light reflected by the beam splitter 2 is reflected by a reference mirror 5 to again return to the position of the beam splitter 2. The light synthesized by this method and becoming an interference pattern K is detected by a unidimensional photoelectric detector 6. Then, a change of the interference pattern K is sampled to calculate phase shift at every interference pattern and, by this method, the displacement quantity of the object 3 to be measured can be calculated from the phase shift quantity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光の干渉現象を利用して物体の変位を計測す
る微小変位測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a minute displacement measuring device that measures the displacement of an object using the interference phenomenon of light.

従来の技術 従来、光の干渉現象を利用して物体(以下、被測定物と
呼ぶ)の微小変位を測定する方法としては、ごく一般的
な方法として、物体の変位に伴って生じる干渉縞の移動
本数のカウントを行うことにより測定する方法があり、
この場合、その検出精度は干渉縞1本程度、すなわち、
波長程度の精度が限界である。また、この他に、ヘテロ
ダイン干渉計を用いた測艮干渉機なるものがあり、この
場合、変位の測定範囲は広いがその検出精度を出すため
に、特種な光源(2周波レーザ)やかなり複雑な計算処
理系を必要とするため装置自体がかなり高価なものとな
る。
Conventional technology Conventionally, a very common method of measuring minute displacements of an object (hereinafter referred to as the object to be measured) using the interference phenomenon of light is to measure the interference fringes that occur due to the displacement of the object. There is a method to measure by counting the number of movement.
In this case, the detection accuracy is about one interference fringe, that is,
The limit is accuracy on the order of wavelength. In addition, there is also a measurement interferometer that uses a heterodyne interferometer.In this case, the displacement measurement range is wide, but in order to achieve detection accuracy, a special light source (two-frequency laser) and a fairly complex Since it requires a computational processing system, the device itself is quite expensive.

発明が解決しようとする課題 近年、例えば電歪素子の変位測定にみられるように、微
小変位、特に、光の波長λの100分の1程度の変位を
かなりの高精度で測定する必要性が増々要求されてきて
いる。その超高精度の微小変位測定方法の一つに、フリ
ンジスキャンニング法があり、この方法は、干渉計を構
成するミラーにλ/50〜λ/100程度の精度でλ程
度の変位を与える必要があり、この精度により干渉計自
体の測定精度が決まり、この変位発生に電歪素子が用い
られている。しかし、この場合、電歪素子をλ/100
でコントロールするために、実測前に予め電歪素子への
印加電圧と変位との関係を求め調整しておく必要があり
非常に面倒である。
Problems to be Solved by the Invention In recent years, there has been a need to measure minute displacements, particularly displacements of about 1/100th of the wavelength λ of light, with considerably high precision, as seen in the displacement measurement of electrostrictive elements, for example. It is being requested more and more. One of the ultra-high precision micro displacement measurement methods is the fringe scanning method, which requires applying a displacement of about λ to the mirror that makes up the interferometer with an accuracy of about λ/50 to λ/100. This accuracy determines the measurement accuracy of the interferometer itself, and an electrostrictive element is used to generate this displacement. However, in this case, the electrostrictive element is
In order to control this, it is necessary to determine and adjust the relationship between the voltage applied to the electrostrictive element and the displacement before actual measurement, which is extremely troublesome.

課題を解決するための手段 そこで、このような問題点を解決するために、本発明は
、光源からの出射光の光路上にビームスプリッタを配設
し、前記出射光が前記ビームスプリッタを通過した光路
上に被測定物を配設し、この被測定物に入射する光の光
軸と一定の角度をなして前記被測定物にミラーを取付け
、前記出射光が前記ビームスプリッタを通過する光のう
ち前記被測定物に通じる光路と直交する方向の光路上に
基準ミラーを配設し、前記ミラーと前記基準ミラーとに
よりそれぞれ反射された光が前記ビームスプリッタを介
して合成された干渉パターンの光からなる光路上に光検
知器を配設し、この光検知器により検出された信号をデ
ジタル信号に変換するA/D変換器を設け、このA/D
変換器により変換されたデジタル信号をもとに前記干渉
パターンの変化を求め各干渉パターン毎に位相シフトを
計算し変位量を求めるデジタル信号処理部を有する微小
変位量測定手段を設け、前記被測定物を駆動し光路方向
に変位させる駆動用電源を設けた。
Means for Solving the Problems Therefore, in order to solve such problems, the present invention provides a method in which a beam splitter is disposed on the optical path of the emitted light from the light source, and the emitted light passes through the beam splitter. An object to be measured is arranged on the optical path, a mirror is attached to the object to be measured at a certain angle with the optical axis of the light incident on the object, and the output light is adjusted to the direction of the light passing through the beam splitter. A reference mirror is disposed on an optical path in a direction perpendicular to the optical path leading to the object to be measured, and the light reflected by the mirror and the reference mirror is combined via the beam splitter to form an interference pattern. A photodetector is disposed on the optical path consisting of a
A micro-displacement amount measuring means is provided having a digital signal processing section that calculates a change in the interference pattern based on the digital signal converted by the converter, calculates a phase shift for each interference pattern, and calculates the amount of displacement, and A driving power source was provided to drive the object and displace it in the optical path direction.

また、デジタル信号処理部は、フーリエ変換法を用いた
演算アルゴリズムにより位相シフトを計算するようにし
た。
Further, the digital signal processing section calculates the phase shift using an arithmetic algorithm using the Fourier transform method.

作用 従って、駆動用電源により被測定物を駆動させることに
よりその被測定物は光軸方向に変位し、この変位をミラ
ーにより反射された光の干渉パターンの変化としてとら
え、微小変位量測定手段のデジタル信号処理部によりそ
れら干渉パターンの変化を求め、各干渉パターン毎に位
相シフトを計算することにより被測定物の変位量を知る
ことができる。
Effect: Therefore, by driving the object to be measured using the drive power source, the object to be measured is displaced in the optical axis direction, and this displacement is captured as a change in the interference pattern of the light reflected by the mirror, and the minute displacement measuring means is used. The amount of displacement of the object to be measured can be determined by determining changes in these interference patterns using the digital signal processing section and calculating the phase shift for each interference pattern.

実施例 本発明の一実施例を図面に基づいて説明する。Example An embodiment of the present invention will be described based on the drawings.

まず、微小変位測定装置の全体構成を第1図及び第2図
に基づいて説明する。
First, the overall configuration of the minute displacement measuring device will be explained based on FIGS. 1 and 2.

光源1から出射された出射光の光路上にはビームスプリ
ッタ2が配置されており、このビームスブリッタ2を透
過した光の光路a上には被測定物3が設けられている。
A beam splitter 2 is disposed on the optical path of the light emitted from the light source 1, and an object to be measured 3 is disposed on the optical path a of the light transmitted through the beam splitter 2.

この被測定物3には入射する光の光軸に対して一定角度
をなした状態でミラー4が取付けられている。この場合
、そのミラー4は、前記被測定物3に入射する光の光軸
と直交する方向に対して角度θをなした状態となって取
付けられている。また、前記出射光のうちビームスプリ
ッタ2により反射された光の光路b上には基準ミラー5
が設けられている。さらに、前記ミラー4及び前記基準
ミラー5によりそれぞれ反射され,前記ビームスプリッ
タ2を介して、合成された干渉パターンKの光からなる
光路C上には、光検知器としての一次元光電検出器6が
配設されている。この一次元光電検出器6はA/D変換
器7と接続され、このA/D変換器7は微小変位量測定
手段としてのコンピュータ回路8に接続されている。こ
のコンピュータ回路8は図示しないデジタル信号処理部
を有しており、このデジタル信号処理部は、干渉パター
ンKの変化を求め、各干渉パターンK毎に位相シフトを
計算して前記被測定物3の変位量を求める演算アルゴリ
ズムの機能を備えている。また、前記コンピュータ回路
8は、駆動用電源としてのプログラマブル電源9と接続
されており、このプログラマブル電源9は前記被測定物
と接続され、その被測定物3を光路a方向に変位させる
ことができるようになっている。
A mirror 4 is attached to the object to be measured 3 at a constant angle with respect to the optical axis of the incident light. In this case, the mirror 4 is attached at an angle θ with respect to a direction perpendicular to the optical axis of the light incident on the object 3 to be measured. Further, a reference mirror 5 is provided on the optical path b of the light reflected by the beam splitter 2 among the emitted light.
is provided. Furthermore, on the optical path C consisting of the light of the interference pattern K that is reflected by the mirror 4 and the reference mirror 5 and combined via the beam splitter 2, there is a one-dimensional photoelectric detector 6 as a photodetector. is installed. This one-dimensional photoelectric detector 6 is connected to an A/D converter 7, and this A/D converter 7 is connected to a computer circuit 8 as minute displacement measuring means. This computer circuit 8 has a digital signal processing section (not shown), and this digital signal processing section determines the change in the interference pattern K, calculates the phase shift for each interference pattern K, and calculates the phase shift of the object to be measured 3. It is equipped with a calculation algorithm function that calculates the amount of displacement. Further, the computer circuit 8 is connected to a programmable power source 9 as a driving power source, and the programmable power source 9 is connected to the object to be measured and can displace the object to be measured 3 in the direction of the optical path a. It looks like this.

このような構成において、まず、この装置全体の流れに
ついて説明する。光源1から出射された光は、ビームス
プリッタ2により透過又は反射され、その透過光は被測
定物3に取付けられたミラー4により反射された後再び
ビームスブリッタ2の位置に戻り、一方、ビームスプリ
ッタ2により反射された光は、基準ミラー5により反射
された後再びビームスプリッタ2の位置に戻る。これに
より、ミラー4、基準ミラー5によりそれぞれ反射され
ビームスプリッタ2を通過することにより合成され干渉
パターンKとなった光は、一次元光電検出器6に検出さ
れる。この検出された信号はA/D変換器7によりデジ
タル信号に変換された後、コンピュータ回路8に送られ
る。このコンピュータ回路8では、デジタル信号処理部
によって、被測定物3の光路a方向への変位に伴って生
じる干渉パターンKの変化をサンプリングし、各干渉パ
ターン毎に位相シフトを計算し、これにより、その位相
シフトの値から被測定物3の変位量を求めている(詳細
な説明は後述する)。その後、このようにして求められ
た変位量はプログラマブル電源9に送られ、プログラマ
ブル電源9はその変位量をもとに被測定物3の駆動制御
を行う。
In such a configuration, first, the overall flow of this device will be explained. The light emitted from the light source 1 is transmitted or reflected by the beam splitter 2, and the transmitted light is reflected by the mirror 4 attached to the object to be measured 3 and then returns to the position of the beam splitter 2. The light reflected by the reference mirror 5 returns to the position of the beam splitter 2 again. As a result, the light reflected by the mirror 4 and the reference mirror 5 and combined by passing through the beam splitter 2 to form an interference pattern K is detected by the one-dimensional photoelectric detector 6. This detected signal is converted into a digital signal by the A/D converter 7 and then sent to the computer circuit 8. In this computer circuit 8, the digital signal processing unit samples the change in the interference pattern K that occurs as the object to be measured 3 is displaced in the direction of the optical path a, and calculates the phase shift for each interference pattern. The amount of displacement of the object to be measured 3 is determined from the value of the phase shift (detailed explanation will be given later). Thereafter, the amount of displacement determined in this manner is sent to the programmable power source 9, and the programmable power source 9 controls the drive of the object to be measured 3 based on the amount of displacement.

次に、本発明の主要部をなすコンピュータ回路8のデジ
タル信号処理部のもつ演算アルゴリズムの機能について
説明する。今、被測定物3が光路a方向に沿って距離Q
だけ変位したものとする。
Next, the functions of the arithmetic algorithm of the digital signal processing section of the computer circuit 8, which constitutes the main part of the present invention, will be explained. Now, the object to be measured 3 is moving along the optical path a for a distance Q
It is assumed that the displacement occurs by

この時、観測面となる一次元光電検出器6における干渉
パターンKの強度分布(パワースペクトル)■は、 ■(X,y)=a(X,y) 十b(x, y)cos(2yr/λ)−[f,x+φ
(x, y)+2Q]・・・(1) となる。
At this time, the intensity distribution (power spectrum) of the interference pattern K on the one-dimensional photoelectric detector 6, which is the observation surface, is as follows: (X, y) = a (X, y) /λ)−[f,x+φ
(x, y)+2Q]...(1).

ここで、a(x,y)はバックグランドのノイズ、b(
x,y)はコントラストのムラ、φ(x.y)はミラー
4の面精度に起因する誤差を示す。
Here, a(x, y) is background noise, b(
x, y) indicates contrast unevenness, and φ(x, y) indicates an error due to the surface precision of the mirror 4.

今、簡単のために(1)式を一次元で考えると、I(x
)=a(x)+  b(x)・cosk(f,x+d)
・・・(2) となる。
Now, for simplicity, if we consider equation (1) in one dimension, I(x
)=a(x)+b(x)・cosk(f,x+d)
...(2) becomes.

ただし、d;φ(x)+2Q (d:位相シフト) k=2π/λ (λ:波長) とする。However, d;φ(x)+2Q (d: phase shift) k=2π/λ (λ: wavelength) shall be.

(2)式は一般にkf,を基本波として、Xに関するフ
ーリエ展開の形で表わすと、 ・・・ (3) ただし、Cr,Srはr次のフーリエ係数とする。
Expression (2) is generally expressed in the form of Fourier expansion with respect to X with kf as the fundamental wave: (3) where Cr and Sr are r-order Fourier coefficients.

ここで、(2)式を変形すると、 I(x) = a(x) +b(x)・coskd−c
oskf,x+ b(x)・sinkd−sinkf,
x   −(4)となる。
Here, when formula (2) is transformed, I(x) = a(x) + b(x)・coskd−c
oskf, x+ b(x)・sinkd−sinkf,
x − (4).

(3)、(4)式を比較すると、I(x)のkf,に同
期して変化する成分のフーリエ係数、すなわち、(3)
式よりr==1のとき、C,.S,は、(::,=b(
x)−coskd    −= (5)S,= b(x
)・sink d    − (6)どすることができ
る。
Comparing equations (3) and (4), we find that the Fourier coefficient of the component that changes in synchronization with kf of I(x), that is, (3)
From the formula, when r==1, C, . S, is (::,=b(
x) −coskd −= (5) S,= b(x
)・sink d − (6) What can be done?

ところで、今、(2)式に注目すると、a(X)は照明
ムラなどf.に比べ低周波な成分を示すものであり、b
(x)はスペックル(speakle)などf.に比べ
高周波な成分を示すものであり、これらの振幅は共にf
0成分(ミラー4を角度θだけ傾けたことにより発生し
た干渉縞)に比べ十分小さなものとなる。そこで、これ
らのことを考慮すると、I(x)のパワースペクトルは
f.付近に鋭いピークをもち、しかも、このf.は他の
成分から十分区別して見分けることができる。この様子
を波形で示すと、第3図ないし第5図に示すようになる
。なお、これら波形の見方は,第3図を例にとると、被
測定物3の変位がQの時に位相シフトが(2π/λ)・
2Q となった場合における、干渉パターンKは第3図
(a)のようになり、サンプリング信号は第3図(b)
のようになり、フーリ工変換されたパワースペクトルは
第3図(C)に示すようになる。
By the way, if we pay attention to equation (2), a(X) is caused by f. It shows a low frequency component compared to b
(x) is f. such as speckle. It shows a higher frequency component than f
This is sufficiently small compared to the 0 component (interference fringes generated by tilting the mirror 4 by an angle θ). Therefore, taking these things into consideration, the power spectrum of I(x) is f. It has a sharp peak nearby, and this f. can be well distinguished from other components. This situation is shown in waveforms as shown in FIGS. 3 to 5. In addition, how to read these waveforms is as follows, taking FIG. 3 as an example. When the displacement of the object to be measured 3 is Q, the phase shift is (2π/λ).
2Q, the interference pattern K is as shown in Figure 3(a), and the sampling signal is as shown in Figure 3(b).
The Fourier-transformed power spectrum is as shown in FIG. 3(C).

この場合、f.のビーク位置でのI(x)のブーリエ変
換の実数部、虚数部は、それぞれ、(5)、(6)式の
C.、S1に相当し、 C,=Re [Ia(f’,)]    ・= (7)
S,=Im [Ia(f,)]    − (8)とな
る。
In this case, f. The real part and imaginary part of the Boulier transform of I(x) at the beak position are calculated by C. of equations (5) and (6), respectively. , corresponds to S1, C,=Re [Ia(f',)] ・= (7)
S,=Im[Ia(f,)]−(8).

ただし、Iaは、I(x)のフーリエ変換後のピーク位
置での値を示す。また、Re.Imはそれぞれ実数部、
虚数部をとる演算子を示す。
However, Ia indicates the value at the peak position of I(x) after Fourier transformation. Also, Re. Im is the real part,
Indicates an operator that takes an imaginary part.

従って、位相シフトdは、 d=(1/k)Jan−’[S,/C,]   =(9
)で表わせる。
Therefore, the phase shift d is d=(1/k)Jan-'[S,/C,]=(9
) can be expressed as

例えば、今、ミラー4がQ IJ< Q , まで変位
した時にd. = d ,  とし、ミラー4がQがΩ
,まで変位した時に(1=d,とすると, ΔQ =(d,− d,)/ 2      ・・・(
10)となり、これより微小変位ΔQを求めることがで
きる。
For example, now when the mirror 4 is displaced to Q IJ < Q , d. = d, and mirror 4 has Q of Ω
When the displacement reaches , (1=d, then ΔQ = (d, - d,)/2...(
10), from which the minute displacement ΔQ can be determined.

上述したような演算アルゴリズムの機能を備えたデジタ
ル信号処理部を有するコンピュータ回路8を設けたこと
により、干渉パターンKの変化をミラー4に傾きθを与
えた光路a方向に一次元的にサンプリングを行うことに
よって求め、これにより得られたサンプリング信号をも
とに一次元のフーリエ変換を行い、各干渉パターン毎に
位相シフトを計算することによって被測定物3の変位量
を求めることが可能となる。
By providing the computer circuit 8 having a digital signal processing unit equipped with the above-mentioned calculation algorithm function, changes in the interference pattern K can be sampled one-dimensionally in the direction of the optical path a where the mirror 4 is given an inclination θ. The amount of displacement of the object to be measured 3 can be determined by performing a one-dimensional Fourier transform based on the sampling signal obtained thereby and calculating the phase shift for each interference pattern. .

発明の効果 本発明は、被測定物の光軸方向への変位をミラーにより
反射された光の干渉パターンの変化としてとらえ、微小
変位量測定手段のデジタル信号処理部によりそれら干渉
パターンの変化を求め、各干渉パターン毎に位相シフト
を計算して被測定物の変位量を求めるようにしたので、
従来のように微小変位を測定するための特別な光学系を
必要どせず安価な装置を得ることができ、しかも、従来
のように干渉パターンの照明ムラやスペックル等のノイ
ズの影響を受けるようなこともないものである。また、
デジタル信号処理部は、その演算アルゴリズムにフリー
リエ変換法を用いたことにより、読取精度をλ/100
 (λは一波長)程度にまで向上させることができ高精
度な微小変位測定ができるものである。
Effects of the Invention The present invention captures the displacement of the object to be measured in the optical axis direction as a change in the interference pattern of light reflected by a mirror, and determines the change in the interference pattern using the digital signal processing section of the minute displacement measurement means. , the amount of displacement of the object to be measured is determined by calculating the phase shift for each interference pattern.
It is possible to obtain an inexpensive device that does not require a special optical system for measuring minute displacements as in the past, and is not affected by noise such as uneven illumination of the interference pattern and speckles as in the past. There is nothing like that. Also,
The digital signal processing unit uses the Freelier transform method for its calculation algorithm, which improves the reading accuracy to λ/100.
(λ is one wavelength), making it possible to measure minute displacements with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図はその
光検知器に干渉パターンが検出される様子を示す斜視図
、第3図(a)(b)(c)は被測定物の変位がαの時
に位相シフトが(2π/λ>2Qとなった場合における
干渉パターン、サンプリング信号、!{ワースベクトル
のそれぞれの波形を示す波形図、第4図(a)(b)(
c)は被測定物の変位がQ十Q,の時に位相シフトが(
2π/λ)2(Q+α,)となった場合における干渉パ
ターン、サンプリング信号、パワースペクトルのそれぞ
れの波形を示す波形図、第5図(a)(b)(c)は被
測定物の変位がQ+Q,の時に位相シフトが(2π/λ
)2(Q+Q,)となった場合における干渉パターン、
サンプリング信号、パワースペクトルのそれぞれの波形
を示す波形図である。 ■・・・光源、2・・・ビームスプリッタ、3・・・被
測定物、4・・・ミラー 5・・・基準ミラー 6・・
・光検知器、7・・・A/D変換器、8・・・微小変位
量測定手段、9・・・駆動用電源 一毛 図 3Z図
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is a perspective view showing how an interference pattern is detected by the photodetector, and Fig. 3 (a), (b), and (c) are Interference pattern when the displacement of the object to be measured is α and the phase shift is (2π/λ>2Q), the sampling signal, and the waveform diagram showing the respective waveforms of the worth vector, Fig. 4 (a) (b) (
In c), when the displacement of the object to be measured is Q0Q, the phase shift is (
2π/λ)2(Q+α,), waveform diagrams showing the waveforms of the interference pattern, sampling signal, and power spectrum when the displacement of the object to be measured is When Q+Q, the phase shift is (2π/λ
)2(Q+Q,), the interference pattern is
FIG. 3 is a waveform diagram showing the respective waveforms of a sampling signal and a power spectrum. ■... Light source, 2... Beam splitter, 3... Measured object, 4... Mirror 5... Reference mirror 6...
・Photodetector, 7...A/D converter, 8...Minute displacement measurement means, 9...Drive power source Figure 3Z diagram

Claims (1)

【特許請求の範囲】 1、光源と、この光源からの出射光の光路上に配設され
たビームスプリッタと、前記出射光が前記ビームスプリ
ッタを通過した光路上に配設された被測定物と、この被
測定物に入射する光の光軸と一定の角度をなして前記被
測定物に取付けられたミラーと、前記出射光が前記ビー
ムスプリッタを通過する光のうち前記被測定物に通じる
光路と直交する方向の光路上に配設された基準ミラーと
、前記ミラーと前記基準ミラーとによりそれぞれ反射さ
れた光が前記ビームスプリッタを介して合成された干渉
パターンの光からなる光路上に配設された光検知器と、
この光検知器に接続されその検出された信号をデジタル
信号に変換するA/D変換器と、このA/D変換器に接
続されその変換されたデジタル信号をもとに前記干渉パ
ターンの変化を求め各干渉パターン毎に位相シフトを計
算し変位量を求めるデジタル信号処理部を有する微小変
位量測定手段と、この微小変位量測定手段と接続され前
記被測定物を駆動し光路方向に変位させる駆動用電源と
よりなることを特徴とする微小変位測定装置。 2、デジタル信号処理部は、フーリエ変換法を用いた演
算アルゴリズムにより位相シフトを計算することを特徴
とする請求項1記載の微小変位測定装置。
[Claims] 1. A light source, a beam splitter disposed on the optical path of the emitted light from the light source, and an object to be measured disposed on the optical path through which the emitted light passes through the beam splitter. , a mirror attached to the object to be measured at a constant angle with the optical axis of the light incident on the object to be measured, and an optical path of the emitted light passing through the beam splitter that leads to the object to be measured. and a reference mirror disposed on an optical path in a direction orthogonal to the reference mirror, and a reference mirror disposed on an optical path consisting of light of an interference pattern obtained by combining the lights reflected by the mirror and the reference mirror via the beam splitter. a photodetector,
An A/D converter connected to this photodetector and converting the detected signal into a digital signal; and an A/D converter connected to this A/D converter and detecting a change in the interference pattern based on the converted digital signal. micro-displacement measurement means having a digital signal processing unit that calculates the phase shift for each interference pattern and obtains the displacement; and a drive connected to the micro-displacement measurement means to drive the object to be measured and displace it in the optical path direction. A minute displacement measuring device characterized by comprising a power source for use. 2. The minute displacement measuring device according to claim 1, wherein the digital signal processing section calculates the phase shift by an arithmetic algorithm using a Fourier transform method.
JP6051689A 1989-03-13 1989-03-13 Apparatus for measuring fine displacement Pending JPH02238306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6051689A JPH02238306A (en) 1989-03-13 1989-03-13 Apparatus for measuring fine displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6051689A JPH02238306A (en) 1989-03-13 1989-03-13 Apparatus for measuring fine displacement

Publications (1)

Publication Number Publication Date
JPH02238306A true JPH02238306A (en) 1990-09-20

Family

ID=13144561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6051689A Pending JPH02238306A (en) 1989-03-13 1989-03-13 Apparatus for measuring fine displacement

Country Status (1)

Country Link
JP (1) JPH02238306A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940132A (en) * 1982-08-31 1984-03-05 Toshiba Corp Optical device
JPS5958305A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Method and device for measuring surface shape
JPS6055213A (en) * 1983-09-06 1985-03-30 Ricoh Co Ltd Device for measuring wave pront shape
JPS62223603A (en) * 1986-03-26 1987-10-01 Japan Spectroscopic Co Precise measuring method for movement quantity and xy stage
JPS6337202A (en) * 1986-07-31 1988-02-17 Japan Spectroscopic Co Optical apparatus for measuring minute displacement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940132A (en) * 1982-08-31 1984-03-05 Toshiba Corp Optical device
JPS5958305A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Method and device for measuring surface shape
JPS6055213A (en) * 1983-09-06 1985-03-30 Ricoh Co Ltd Device for measuring wave pront shape
JPS62223603A (en) * 1986-03-26 1987-10-01 Japan Spectroscopic Co Precise measuring method for movement quantity and xy stage
JPS6337202A (en) * 1986-07-31 1988-02-17 Japan Spectroscopic Co Optical apparatus for measuring minute displacement

Similar Documents

Publication Publication Date Title
US5133601A (en) Rough surface profiler and method
US5355221A (en) Rough surface profiler and method
JP5149486B2 (en) Interferometer, shape measurement method
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
US6040910A (en) Optical phase-shift triangulation technique (PST) for non-contact surface profiling
US4776698A (en) Measuring
WO2021082707A1 (en) Nonlinear error correction method for optical fiber michelson interferometer
CN108680108A (en) Triangle micro-displacement measuring device and method are interfered in line laser phase shift
US9464882B2 (en) Interferometer with continuously varying path length measured in wavelengths to the reference mirror
JP3375641B2 (en) Microscope inspection method of an object and interference microscope for achieving a resolution exceeding the diffraction limit (super resolution)
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
WO1994011895A1 (en) Method and apparatus for measuring displacement
CN113587844B (en) Phase-shifting interferometry system and method
CN115597511A (en) Grating pitch measuring device and method
JP3564569B2 (en) Real-time surface shape measurement method and device
JPH02238306A (en) Apparatus for measuring fine displacement
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JPH0652162B2 (en) Interferometry method
JP2993836B2 (en) Interferometer using coherence degree
JPS63128211A (en) Spacing measuring method
JPH01109214A (en) Rotary encoder
JPS61155902A (en) Interference measuring apparatus
JP2003090765A (en) Method and apparatus for measuring wavelength fluctuation
JP2003065709A (en) Method for analyzing interference fringe of transparent parallel flat plate
RU2085840C1 (en) Optical roughness indicator