JP2003065709A - Method for analyzing interference fringe of transparent parallel flat plate - Google Patents

Method for analyzing interference fringe of transparent parallel flat plate

Info

Publication number
JP2003065709A
JP2003065709A JP2001254860A JP2001254860A JP2003065709A JP 2003065709 A JP2003065709 A JP 2003065709A JP 2001254860 A JP2001254860 A JP 2001254860A JP 2001254860 A JP2001254860 A JP 2001254860A JP 2003065709 A JP2003065709 A JP 2003065709A
Authority
JP
Japan
Prior art keywords
light
measured
interference fringe
parallel plate
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001254860A
Other languages
Japanese (ja)
Other versions
JP4081538B2 (en
Inventor
Kenichi Hibino
謙一 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001254860A priority Critical patent/JP4081538B2/en
Publication of JP2003065709A publication Critical patent/JP2003065709A/en
Application granted granted Critical
Publication of JP4081538B2 publication Critical patent/JP4081538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that it is necessary to set the distance L between the reference plane and the measurement plane of an optical measuring apparatus which measures a transparent parallel flat plate by a interferometer using wavelength variable laser, so that the ratio of the distance L to the optical thickness nT of the parallel flat plate satisfies the following: nT=3.5L in order to improve the accuracy, but the allowed set error of the distance L is only about 1.4% and unhandy for measuring. SOLUTION: The interferometer system is provided with an apparatus which sets the distance L on the optical axis between the reference plane and the measurement plane so that the ratio of the distance L to the optical thickness nT of the parallel flat plate satisfies the following: 2L<=nT<=9L, and an imaging means which successively photographs nineteen images having information of interference fringes formed by the optical interference of light beams from the reference plane and the plane of parallel flat plate to be measured while varying the central wavelength λ of the emitted light by the value of λ<2> /12L. A calculating operation based on a proposed expression is carried out for the information of nineteen interference fringe images, and the phase information relating to the shape of the plane of parallel flat plate to be measured is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、波長可変レーザを
観察用光源とする干渉計装置において被測定体である透
明平行平板あるいは光学平行平板の表面形状の位相情報
を得るための干渉縞解析方法に関し、特に、平行平板の
表面と裏面双方からの反射出力光によって生じる干渉縞
ノイズ、および平行平板表面・裏面間で3回多重反射し
た出力光の光干渉によって生じる干渉縞ノイズを除去す
る干渉縞解析方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference fringe analysis method for obtaining phase information of the surface shape of a transparent parallel plate or an optical parallel plate which is an object to be measured in an interferometer device using a tunable laser as an observation light source. In particular, regarding the interference fringe noise generated by the reflected output light from both the front surface and the back surface of the parallel plate, and the interference fringe noise generated by the optical interference of the output light multiple-reflected three times between the front surface and the back surface of the parallel plate. It relates to an analysis method.

【0002】[0002]

【従来の技術】従来より、波長可変レーザを光源として
透明平行平板を測定する光学測定装置として、例えばK.
Okada, H.Sakuta, T.Ose, and J. Tsujiuchi, "Separa
te measurements of surface shapes and refractive i
ndex inhomogeneity of an optical element using tun
able source phase shifting interferometry," Appli
ed Optics, vol.29 (1990) 3280-3285.(文献1)に示
されているトワイマングリーン干渉計や、P.J. de Groo
t, "Measurement of transparent plates with wavelen
gth-tuned phase shifting interferometry," Applied
Optics, vol.39 (2000) 2658-2663.(文献2)に示され
ているフィゾー型干渉計装置が知られている。
2. Description of the Related Art Conventionally, as an optical measuring device for measuring a transparent parallel plate using a wavelength tunable laser as a light source, for example, K.
Okada, H.Sakuta, T.Ose, and J. Tsujiuchi, "Separa
te measurements of surface shapes and refractive i
ndex inhomogeneity of an optical element using tun
able source phase shifting interferometry, "Appli
ed Optics, vol.29 (1990) 3280-3285. (Reference 1), Twyman Green interferometer, and PJ de Groo
t, "Measurement of transparent plates with wavelen
gth-tuned phase shifting interferometry, "Applied
The Fizeau interferometer device shown in Optics, vol.39 (2000) 2658-2663. (Reference 2) is known.

【0003】このような干渉計装置では、被測定平行平
板面(測定面)と参照面を単色の平面光波で照明し、両
面からの反射出力光を統合して干渉縞を形成し、CCD
カメラ等の撮像装置で撮像し、得られた干渉縞画像を解
析して上記被検面表面の形状(位相変化)を観察測定し
ている。
In such an interferometer, the parallel plate surface to be measured (measurement surface) and the reference surface are illuminated with a monochromatic plane light wave, and the reflected output light from both surfaces is integrated to form an interference fringe.
An image is taken by an image pickup device such as a camera, and the obtained interference fringe image is analyzed to observe and measure the shape (phase change) of the surface to be inspected.

【0004】この測定では、測定面からの反射出力光
(測定光)の他に平行平板裏面からの反射出力光、及び
測定面と前記裏面の間を奇数回反射して出力する多重反
射出力光が存在し、それぞれ参照面からの出力光(参照
光)と統合して干渉縞を形成しノイズ信号となる。この
ため平行平板面の測定では、これらのノイズ信号の影響
を除去する操作が必要である。
In this measurement, in addition to the reflected output light from the measurement surface (measurement light), the reflected output light from the back surface of the parallel plate and the multiple reflection output light which is reflected and output between the measurement surface and the back surface an odd number of times Exist and are integrated with the output light from the reference surface (reference light) to form interference fringes, which become noise signals. Therefore, it is necessary to remove the influence of these noise signals in the measurement of the plane of parallel plates.

【0005】この点に関して、前記文献1では、出力光
の波長λをλ/4Lずつ変化させる毎に撮像装置によ
り記録した60枚の干渉縞画像を解析処理することによ
り、裏面からの直接反射光が作るノイズ信号を除去する
ことに成功し、測定誤差としてλ/60(平方根自乗誤
差)以下を得ている。
With respect to this point, in the above-mentioned document 1, direct analysis of 60 interference fringe images recorded by the image pickup device every time the wavelength λ of the output light is changed by λ 2 / 4L is performed, thereby directly reflecting from the back surface. It succeeded in removing the noise signal generated by light, and the measurement error was λ / 60 (square root squared error) or less.

【0006】また前記文献2では、出力光の波長λをλ
/8Lずつ変化させる毎に撮像装置により記録した1
3枚の干渉縞画像を解析処理することにより、裏面から
の直接反射光が作るノイズ信号、及び多重反射出力光が
作るノイズ信号の一部を除去することに成功し、測定誤
差としてλ/200〜λ/50(最大最小誤差)以下を
得ている。
Further, in the above-mentioned reference 2, the wavelength λ of output light is λ
2/1 recorded by the imaging device 8L by every changing
By analyzing the three interference fringe images, we succeeded in removing a part of the noise signal created by the direct reflected light from the back surface and the noise signal created by the multiple reflected output light, resulting in a measurement error of λ / 200. .About..lamda. / 50 (maximum minimum error) or less is obtained.

【0007】[0007]

【発明が解決しようとする課題】平行平板の各点におけ
る高さhは、反射型の干渉計でよく知られている次式 h=λψ(x,y)/4π で計算される。現在までの技術では、平行平板の最高測
定精度は文献2の方法によりノイズ信号を除去すること
でλ/200が得られる。しかしながらこの方法で精度
を達成するためには、参照面と測定面との距離Lと平行
平板の光学的厚さnTの比がnT=3.5Lを満たすよ
うに距離Lを設定しなければならない。その際の距離L
の許容される設定誤差は、1.4%程度である。
The height h at each point of the parallel plate is calculated by the following equation h = λψ (x, y) / 4π which is well known in the reflection type interferometer. In the technology up to now, the maximum measurement accuracy of the parallel plate is λ / 200 by removing the noise signal by the method of Reference 2. However, in order to achieve accuracy with this method, the distance L must be set so that the ratio of the distance L between the reference surface and the measurement surface and the optical thickness nT of the parallel plate satisfies nT = 3.5L. . Distance L at that time
The allowable setting error of is about 1.4%.

【0008】波長可変レーザを光源とする干渉測定装置
では、例えば出力光の波長λをλ/8Lずつ変化させ
る毎に測定を行うといった例でわかるように、距離Lは
波長走査量に直接関係するパラメータで、装置毎に可能
である限り値を固定して測定できることが望ましい。こ
のようにしないと、距離を変化させる毎に撮像装置の測
定時刻の変更等の調節を行う必要がある。上記のような
事情から、厚さや屈折率が少しずつ異なる平行平板の資
料毎に距離Lを毎回調節する事は測定器を構成する上で
著しく不便である。また、平板の厚さや屈折率を測定す
るといった付加的な手続きも必要になる。
In an interference measuring apparatus using a wavelength tunable laser as a light source, the distance L is directly related to the wavelength scanning amount, as can be seen from an example in which measurement is performed every time the wavelength λ of output light is changed by λ 2 / 8L. It is desirable that the parameters to be measured can be fixed and measured as much as possible for each device. If this is not done, it is necessary to make adjustments such as changing the measurement time of the imaging device each time the distance is changed. Due to the above-mentioned circumstances, it is extremely inconvenient to construct a measuring instrument that the distance L is adjusted every time for each material of the parallel plate whose thickness and refractive index are slightly different. It also requires additional procedures such as measuring the thickness and refractive index of the flat plate.

【0009】産業界で要求される測定精度としては、エ
タロン用の平行板などではλ/100程度は珍しくな
く、現在の方法では測定精度が十分に実現されていると
は言えない。
Regarding the measurement accuracy required in the industrial world, it is not uncommon for parallel plates for etalons to be around λ / 100, and it cannot be said that the current methods have achieved sufficient measurement accuracy.

【0010】本発明では19枚の干渉縞画像を解析する
新しい方法により、前記の問題の一つである距離Lの許
容される設定誤差として、従来の10倍以上である17
%を実現することを目的としている。また、前記の他の
問題である最高測定精度については、λ/600を実現
することを目的としている。
The present invention uses a new method of analyzing 19 interference fringe images, and the allowable setting error of the distance L, which is one of the above problems, is 10 times or more that of the conventional method.
The purpose is to achieve%. Further, regarding the other problem, the maximum measurement accuracy, the aim is to realize λ / 600.

【0011】[0011]

【課題を解決するための手段】本願発明は上記課題を解
決するため、請求項1に係る発明は、波長λで透明な平
行平面板の表面の各位置での高さ、あるいは基板上に作
成された透明な薄膜表面の各位置での高さを測定する方
法において、出力光がコヒーレントでその中心波長λを
時間的に変化させ得る照明光源と、該照明光源からの光
束を平行光束とした後、参照面上および被測定平行平板
面上に導く光学系と、前記参照面と前記被測定面との光
軸上での距離Lと前記平行平板の光学的厚さnTの比
が、2LnT9Lを満たすように距離Lを設定する
装置と、該参照面および該被測定平行平板面からの光束
の光干渉により得られた干渉縞情報を、前記出力光の中
心波長λをλ/12Lずつ変化させる毎に、連続的に
19画像撮像する撮像手段とを備えた干渉計装置におい
て、該撮像して得られた19枚の干渉縞画像情報I
(x,y),I−8(x,y),・・・,I(x,
y),I(x,y),・・・,I(x,y)に対し
て、下式(1)に基づく演算処理を施して被測定平行平
板面の形状に関する位相情報ψ(x,y)を求めること
を特徴とする干渉縞解析方法としたものである。 式(1)
In order to solve the above-mentioned problems, the present invention according to claim 1 relates to the height at each position on the surface of a plane-parallel plate which is transparent at a wavelength λ, or is formed on a substrate. In the method for measuring the height at each position of the surface of a transparent thin film, an illumination light source whose output light is coherent and whose central wavelength λ can be changed with time, and a light flux from the illumination light source is a parallel light flux. After that, an optical system that guides the light onto the reference surface and the parallel plate surface to be measured, and the ratio of the distance L on the optical axis between the reference surface and the measured surface to the optical thickness nT of the parallel plate is 2L. < NT < 9L, and a device for setting the distance L, and interference fringe information obtained by optical interference of light beams from the reference surface and the parallel plate surface to be measured are obtained by using the center wavelength λ of the output light as λ. each varying by 2 / 12L, continuously 19 imaging In the interferometer apparatus provided with an image means, interference of 19 sheets obtained by imaging fringe image information I - 9
(X, y), I- 8 (x, y), ..., I 0 (x, y
y), I 1 (x, y), ..., I 9 (x, y) are subjected to arithmetic processing based on the following equation (1) to obtain phase information ψ (regarding the shape of the parallel plate surface to be measured. x, y) is obtained, which is an interference fringe analysis method. Formula (1)

【数3】 ここで定数ar、brは以下の値とする。[Equation 3] Here, the constants ar and br have the following values.

【数4】 [Equation 4]

【0012】また請求項2に係る発明は、前記干渉計装
置において、前記参照面と前記被測定面との光軸上での
距離Lと前記平行平板の光学的厚さnTの比が14L
nT21Lを満たすように距離Lを設定した請求項1
記載の干渉縞解析方法としたものである。
According to a second aspect of the present invention, in the interferometer device, the ratio of the distance L on the optical axis between the reference surface and the surface to be measured and the optical thickness nT of the parallel plate is 14L <
The distance L is set so as to satisfy nT < 21L.
This is the interference fringe analysis method described.

【0013】また、請求項3に係る発明は、前記干渉計
装置において、前記平板の表面と裏面が完全な平行では
なく、平行光を照射した場合に両面からの出射光が作る
干渉縞が200本以内で観測できる程度の傾斜角を持っ
ているものに用いる請求項1記載の干渉縞解析方法とし
たものである。
According to a third aspect of the present invention, in the interferometer device, the front surface and the back surface of the flat plate are not completely parallel, and when the parallel light is irradiated, the interference fringes produced by the light emitted from both surfaces are 200. The interference fringe analysis method according to claim 1, wherein the interference fringe analysis method is used for an object having an inclination angle that can be observed within this number.

【0014】また、請求項4に係る発明は、前記干渉計
装置がフィゾー型干渉計であることを特徴とし、被測定
面からの測定光と前記参照面からの参照光との位相差を
およそπ/6ずつずらして19枚の画像を撮像する手段
を備えている請求項1または2または3記載の干渉縞解
析方法としたものである。
The invention according to claim 4 is characterized in that the interferometer device is a Fizeau interferometer, and the phase difference between the measurement light from the surface to be measured and the reference light from the reference surface is about The interference fringe analysis method according to claim 1, 2 or 3, further comprising means for capturing 19 images by shifting by π / 6.

【0015】また、請求項5に係る発明は、前記干渉計
装置がミラウ型干渉計であることを特徴とし、被測定面
からの測定光と参照面からの参照光との位相差をおよそ
π/6ずつずらして19枚の画像を撮像する手段を備え
ている請求項1乃至3のいずれか1つに記載の干渉縞解
析方法としたものである。
The invention according to claim 5 is characterized in that the interferometer device is a Mirau type interferometer, and the phase difference between the measurement light from the surface to be measured and the reference light from the reference surface is about π. The interference fringe analysis method according to any one of claims 1 to 3, further comprising means for capturing 19 images by shifting by / 6.

【0016】また、請求項6に係る発明は、前記干渉計
装置が近赤外波長を光源とするフィゾー型干渉計であ
り、平行平板がシリコンウェーハである場合について、
被測定面からの測定光と前記参照面からの参照光との位
相差をおよそπ/6ずつずらして19枚の画像を撮像す
る手段を備えている請求項1乃至3のいずれか1つに記
載の干渉縞解析方法としたものである。
The invention according to claim 6 is the case where the interferometer device is a Fizeau interferometer using a near infrared wavelength as a light source, and the parallel plate is a silicon wafer.
4. The device according to claim 1, further comprising means for capturing 19 images by shifting the phase difference between the measurement light from the surface to be measured and the reference light from the reference surface by about π / 6. This is the interference fringe analysis method described.

【0017】[0017]

【発明の実施の形態】本発明について、透明平行平板の
干渉縞解析方法の具体的な例を述べる前に、本発明によ
って上記課題を解決することができる原理について説明
する。図1の干渉計において出力光の波長λを時間的に
変化させたとき、光束の光干渉により形成され時刻tに
撮像装置に記録される干渉縞強度は、次式で表される。
BEST MODE FOR CARRYING OUT THE INVENTION Prior to describing a specific example of a method for analyzing interference fringes of a transparent parallel plate in the present invention, the principle by which the above problems can be solved by the present invention will be described. When the wavelength λ of the output light is temporally changed in the interferometer of FIG. 1, the interference fringe intensity which is formed by the light interference of the light flux and is recorded in the imaging device at the time t is expressed by the following equation.

【数5】 ただし変調周波数は、参照面と測定面の間隔をLとして
波長が単位時間にδλ変化するとして、
[Equation 5] However, regarding the modulation frequency, assuming that the distance between the reference surface and the measurement surface is L and the wavelength changes by δλ in a unit time,

【数6】 で定義される。数式3中で位相値ψが測定面の形状を
表す位相情報であり、解析法により抽出すべき情報であ
る。また、同式中振幅sを含む項は裏面反射や多重反
射により発生したノイズ項である。図2に平行平板の光
学的厚さnT=3Lのときの信号およびノイズの周波数
スペクトルJ(ν)を表す。
[Equation 6] Is defined by In Expression 3, the phase value ψ 1 is the phase information representing the shape of the measurement surface and is the information to be extracted by the analysis method. Also, the term including amplitude s k in the equation is a noise term generated by the back surface reflection and multiple reflection. FIG. 2 shows the frequency spectrum J (ν) of the signal and noise when the optical thickness of the parallel plate nT = 3L.

【0018】光源波長がλ/12L変化する毎に干渉
縞画像を取り込み数式1で位相情報を解析した結果は次
式で表される。
The result obtained by capturing the interference fringe image each time the light source wavelength changes by λ 2 / 12L and analyzing the phase information by the mathematical formula 1 is represented by the following formula.

【数7】 [Equation 7]

【0019】数式5の右辺第一項が求める位相値、第二
項は誤差項である。ここで関数Fは、次式で表される。
The first term on the right-hand side of Equation 5 is the phase value to be obtained, and the second term is the error term. Here, the function F is expressed by the following equation.

【数8】 [Equation 8]

【0020】被測定平行平板の光学的厚さが2LnT
9Lの範囲である時に、各厚さに対して図2の周波数
スペクトルJ(ν)を求め、数式6の解析パラメータa
,bを、数式5の右辺第二項誤差項を最小化するよ
うに決定する。このようにして解析パラメータa,b
が数式2のように決定される。
The optical thickness of the parallel plate to be measured is 2L < nT.
When it is in the range of < 9 L, the frequency spectrum J (ν) of FIG.
r 1 and b r are determined so as to minimize the second term error term on the right side of Expression 5. In this way, the analysis parameters a r , b
r is determined as in Equation 2.

【0021】図3にこの解析法を採用した場合の位相値
ψの最大最小測定誤差の計算結果を示す。この図では
参照面、測定面および裏面の反射率がすべて4%である
として計算を行った。図では比較として前記文献2で紹
介した従来の解析法(13画像法)を用いた場合の誤差
も同時に示す。本発明の方法により平行平板の厚さが2
nT9Lの範囲にある場合は、誤差の大きさはλ
/60以下であり、従来法1の最高値(平方根自乗誤差
でλ/60)よりも優れていることがわかる。また、図
3の比較により従来法2と比べてもすべての範囲で今回
の方法がより小さい誤差を与えて優れていることがわか
る。
FIG. 3 shows the calculation results of the maximum and minimum measurement errors of the phase value ψ 1 when this analysis method is adopted. In this figure, calculation was performed assuming that the reflectances of the reference surface, the measurement surface and the back surface are all 4%. For comparison, the figure also shows the error when using the conventional analysis method (13-image method) introduced in Document 2 above. According to the method of the present invention, the thickness of the parallel plate is 2
When L < nT < 9L, the error magnitude is λ.
It is / 60 or less, which is superior to the maximum value (λ / 60 in square root error) of Conventional method 1. Further, it is understood from the comparison of FIG. 3 that the present method gives a smaller error in all the ranges than the conventional method 2 and is excellent.

【0022】図3の結果より被測定平行平板の光学的厚
さが2.8LnT4.1Lの範囲である時に、最高
測定精度であるλ/600を実現することが明らかであ
る。さらに参照面と測定面との距離Lと平行平板の光学
的厚さnTの比はnT=3.5Lを満たすように設定す
るものとして、その際の距離Lの許容される設定誤差
は、ΔL/L=0.6/3.5=17%を許容できるこ
とが示される。従って、従来法2の許容誤差1.4%の1
2倍以上を実現している。
From the results shown in FIG. 3, it is clear that the maximum measurement accuracy of λ / 600 is realized when the optical thickness of the parallel plate to be measured is in the range of 2.8L < nT < 4.1L. Furthermore, assuming that the ratio of the distance L between the reference surface and the measurement surface and the optical thickness nT of the parallel plate is set to satisfy nT = 3.5L, the allowable setting error of the distance L at that time is ΔL It is shown that /L=0.6/3.5=17% is acceptable. Therefore, the allowable error of the conventional method 2 is 1.4%, which is 1
It has more than doubled.

【0023】図4にさらに平行平板の厚さが大きい場合
にこの解析法を採用した場合の位相値ψの最大最小測
定誤差を示す。平行平板の厚さが2LnT9Lの範
囲にある場合の他に、14LnT21Lの範囲にお
いても誤差の小さい状態で測定することが可能である。
FIG. 4 shows the maximum and minimum measurement error of the phase value ψ 1 when this analysis method is adopted when the thickness of the parallel plate is further large. In addition to the case where the thickness of the parallel plate is in the range of 2L < nT < 9L, it is possible to measure with a small error in the range of 14L < nT < 21L.

【0024】次に、本発明の一実施形態に係る干渉縞解
析方法について、その具体的例を図面を参照しつつ説明
する。図1は、本実施形態に係る干渉縞解析方法を実施
するためのフィゾー型干渉計装置を示すものである。な
お、本実施形態においては、上述した所定の光学面をコ
リメータレンズのレンズ面とした場合を例にあげて説明
する。
Next, a specific example of an interference fringe analysis method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a Fizeau interferometer apparatus for carrying out the interference fringe analysis method according to this embodiment. In this embodiment, the case where the above-mentioned predetermined optical surface is the lens surface of the collimator lens will be described as an example.

【0025】このフィゾー型干渉計装置において、出力
光の波長λを可変とし得るレーザダイオード等の単色の
波長可変レーザ光源11から出射されたレーザ光は、コ
リメータレンズ12によって平行光束とされ、基準板1
3の参照面1および被測定平行平板14の被測定面2に
入射する。参照面1で反射された光束と被測定面2で反
射された光束は互いに干渉しつつ光路を逆行し、半透鏡
15を透過し、CCDカメラ16の撮像面上に被測定面
2の位相情報を有する干渉縞を形成する。
In this Fizeau interferometer device, the laser light emitted from the monochromatic wavelength tunable laser light source 11 such as a laser diode capable of varying the wavelength λ of the output light is collimated by the collimator lens 12 into a parallel light beam, and the reference plate is used. 1
It is incident on the reference surface 1 of 3 and the measured surface 2 of the measured parallel plate 14. The light beam reflected by the reference surface 1 and the light beam reflected by the measured surface 2 interfere with each other, go backward in the optical path, pass through the semi-transparent mirror 15, and the phase information of the measured surface 2 on the imaging surface of the CCD camera 16. To form an interference fringe.

【0026】ここで得られた干渉縞画像情報は演算装置
17において所定の演算処理が施され、有効かつ高精度
な干渉縞解析がなされる。
The interference fringe image information obtained here is subjected to predetermined arithmetic processing in the arithmetic unit 17, and effective and highly accurate interference fringe analysis is performed.

【0027】ところで、このような波長可変レーザ光源
11を用いた干渉計装置においては、平行平板の裏面3
からの反射光と参照面1からの反射光とで干渉縞ノイズ
が発生し、さらに裏面3と測定面2の間を3回、5回、
奇数回反射して半透鏡15に向かう出力光は参照面1か
らの出力光と干渉してCCDカメラに干渉縞ノイズを発
生する。
By the way, in the interferometer device using such a variable wavelength laser light source 11, the back surface 3 of the parallel plate is used.
Interference light is generated by the reflected light from the reference surface 1 and the reflected light from the reference surface 1, and the back surface 3 and the measurement surface 2 are exposed three times, five times,
The output light reflected an odd number of times toward the semi-transparent mirror 15 interferes with the output light from the reference surface 1 to generate interference fringe noise in the CCD camera.

【0028】これらのノイズは、縞強度測定の精度を低
下させる原因となるものである。そこで本実施形態にお
いては、参照面1と測定面2との距離Lと平行平板の光
学的厚さnTの比が2LnT9Lを満たすように距
離Lを設定した場合に、これらのノイズ縞の時間的な位
相変化が信号干渉縞の位相変化と異なる点に着目し、演
算処理により裏面3からの反射光及び裏面3と測定面2
の間を3回反射した出力光による影響を除去して位相検
出をすることができる。
These noises cause the accuracy of fringe intensity measurement to deteriorate. Therefore, in the present embodiment, when the distance L is set so that the ratio of the distance L between the reference surface 1 and the measurement surface 2 and the optical thickness nT of the parallel plate satisfies 2L < nT < 9L, these noises are set. Paying attention to the point that the temporal phase change of the fringes is different from the phase change of the signal interference fringes, the reflected light from the back surface 3 and the back surface 3 and the measurement surface 2 are calculated by calculation processing.
It is possible to detect the phase by removing the influence of the output light reflected three times between.

【0029】ここで、上記方法において具体的数値を示
す。参照面1と測定面2との距離L=3mm, 平行平板
の屈折率n=1.5とするとき、上記の配置で平行平板
の厚さTmmが418および2842を満
たす平行平板を測定することができる。その際特に厚さ
Tmmが5.68.2、13.816.
1、29.632.2、37.840.1
の範囲にある場合はノイズによる測定誤差がλ/600
以下となる。
Here, concrete numerical values in the above method will be shown. When the distance L between the reference surface 1 and the measurement surface 2 is 3 mm, and the refractive index of the parallel plate is n = 1.5, the thickness Tmm of the parallel plate is 4 < T < 18 and 28 < T < 42 in the above arrangement. It is possible to measure a parallel plate satisfying the above conditions. At that time, in particular, the thickness Tmm was 5.6 < T < 8.2, 13.8 < T < 16.
1, 29.6 < T < 32.2, 37.8 < T < 40.1
In the range of, the measurement error due to noise is λ / 600
It becomes the following.

【0030】また、前記干渉計装置を近赤外波長を光源
とするフィゾー型干渉計とし、平行平板がシリコンウェ
ーハとすることにより、シリコンウェーハの内部を観察
するのと同じ波長の光源を用いて、シリコン表面の形状
だけを選択的に検出することができる。従来は表面観察
のためには別の波長の光源を用意しなければならなかっ
たが、光源を同一にすることで、装置の小型化が図れ
る。またシリコンウェーハ透過像から、測定された表面
形状を引き算することにより、シリコンウェーハの内部
欠陥を含め各種欠陥を検出することができる。
Further, the interferometer device is a Fizeau interferometer using a near infrared wavelength as a light source, and a parallel flat plate is a silicon wafer, so that a light source having the same wavelength as observing the inside of the silicon wafer is used. It is possible to selectively detect only the shape of the silicon surface. Conventionally, it was necessary to prepare a light source of another wavelength for surface observation, but by using the same light source, the device can be downsized. Further, by subtracting the measured surface shape from the silicon wafer transmission image, various defects including internal defects of the silicon wafer can be detected.

【0031】[0031]

【発明の効果】以上説明したように、本発明の干渉縞解
析方法によれば、波長可変型照明光源を用いた干渉計装
置において、参照面と被測定平行平板面との距離Lと平
行平板の光学的厚さnTの比を所定の範囲の値に設定
し、照明波長を所定量ずつずらす毎に得られた19枚の
干渉縞画像データを演算することにより、最終的に得ら
れる干渉縞位相から平行平板の裏面および内部での多重
反射から生ずるノイズ干渉縞の影響を排除することがで
きる。これにより高精度で信頼性の高い平行平板面形状
を求めることができる。
As described above, according to the interference fringe analysis method of the present invention, in the interferometer device using the variable wavelength illumination light source, the distance L between the reference plane and the parallel plane to be measured and the parallel plane are measured. The interference fringes finally obtained by setting the ratio of the optical thickness nT of the above to a value in a predetermined range and calculating 19 interference fringe image data obtained every time the illumination wavelength is shifted by a predetermined amount. From the phase, the influence of noise interference fringes resulting from multiple reflections on the back surface and inside of the parallel plate can be eliminated. This makes it possible to obtain a highly accurate and highly reliable parallel plate surface shape.

【0032】また、請求項6に係る発明において、前記
干渉計装置が近赤外波長を光源とするフィゾー型干渉計
であり、平行平板がシリコンウェーハとしたものは、シ
リコンウェーハの内部を観察するのと同じ波長の光源を
用いて、シリコン表面の形状だけを選択的に検出するこ
とができる。従来は表面観察のためには別の波長の光源
を用意しなければならなかったが、光源を同一にするこ
とで、装置の小型化が図れる。またシリコンウェーハ透
過像から、測定された表面形状を引き算することによ
り、シリコンウェーハの内部欠陥を含め各種欠陥を検出
することができる。
Further, in the invention according to claim 6, when the interferometer device is a Fizeau interferometer using a near infrared wavelength as a light source and the parallel plate is a silicon wafer, the inside of the silicon wafer is observed. It is possible to selectively detect only the shape of the silicon surface using a light source having the same wavelength as that of the above. Conventionally, it was necessary to prepare a light source of another wavelength for surface observation, but by using the same light source, the device can be downsized. Further, by subtracting the measured surface shape from the silicon wafer transmission image, various defects including internal defects of the silicon wafer can be detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の干渉縞解析方法を実施するための干渉
計装置を示す概略図である。
FIG. 1 is a schematic diagram showing an interferometer device for carrying out an interference fringe analysis method of the present invention.

【図2】撮像装置に入力する干渉縞信号のある位置にお
ける周波数スペクトルを示す説明図である。
FIG. 2 is an explanatory diagram showing a frequency spectrum at a position of an interference fringe signal input to the image pickup apparatus.

【図3】本発明の19画像干渉縞解析方法を用いて、フ
ィゾー型干渉計で平行平板を測定した場合の測定誤差
(PV値:最大最小誤差)を示すグラフである。
FIG. 3 is a graph showing a measurement error (PV value: maximum / minimum error) when a parallel plate is measured by a Fizeau interferometer using the 19-image interference fringe analysis method of the present invention.

【図4】本発明の19画像干渉縞解析方法を用いて、フ
ィゾー型干渉計で平行平板を測定した場合の測定誤差
(PV値:最大最小誤差)を示すグラフである。
FIG. 4 is a graph showing a measurement error (PV value: maximum / minimum error) when a parallel plate is measured by a Fizeau interferometer using the 19-image interference fringe analysis method of the present invention.

【符号の説明】[Explanation of symbols]

1 参照面 2 被測定面 3 平行平板裏面 11 波長可変レーザー光源 12 コリメータレンズ 13 基準板 14 平行平板 15 半透鏡 16 撮像装置 17 演算装置 1 reference plane 2 Surface to be measured 3 Parallel plate back side 11 Tunable laser source 12 Collimator lens 13 Reference plate 14 parallel plates 15 semi-transparent mirror 16 Imaging device 17 arithmetic unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 波長λで透明な平行平面板の表面の各位
置での高さ、あるいは基板上に作成された透明な薄膜表
面の各位置での高さを測定する方法において、 出力光がコヒーレントでその中心波長λを時間的に変化
させ得る照明光源と、 該照明光源からの光束を平行光束とした後、参照面上お
よび被測定平行平板面上に導く光学系と、 前記参照面と前記被測定面との光軸上での距離Lと前記
平行平板の光学的厚さnTの比が、2LnT9Lを
満たすように距離Lを設定する装置と、 該参照面および該被測定平行平板面からの光束の光干渉
により得られた干渉縞情報を、前記出力光の中心波長λ
をλ/12Lずつ変化させる毎に、連続的に19画像
撮像する撮像手段とを備えた干渉計装置において、 該撮像して得られた19枚の干渉縞画像情報I
−9(x,y),I−8(x,y),・・・,I
(x,y),I(x,y),・・・,I(x,
y)に対して、下式(1)に基づく演算処理を施して被
測定平行平板面の形状に関する位相情報ψ(x,y)を
求めることを特徴とする干渉縞解析方法。 式(1) 【数1】 ここで定数ar、brは以下の値とする。 【数2】
1. A method for measuring the height at each position of the surface of a plane-parallel plate transparent at a wavelength λ or the height of each surface of a transparent thin film formed on a substrate, wherein the output light is An illumination light source that is coherent and can change its central wavelength λ with time; an optical system that guides a light flux from the illumination light source onto a reference plane and a parallel plate surface to be measured; A device for setting the distance L such that the ratio of the distance L on the optical axis to the surface to be measured and the optical thickness nT of the parallel plate satisfies 2L < nT < 9L, and the reference surface and the object to be measured. The interference fringe information obtained by the light interference of the light flux from the plane of measurement parallel plate is measured by the central wavelength λ of the output light.
In the interferometer device equipped with an imaging means for continuously capturing 19 images each time λ 2 / 12L is changed by λ 2 / 12L.
-9 (x, y), I- 8 (x, y), ..., I
0 (x, y), I 1 (x, y), ..., I 9 (x, y
An interference fringe analysis method, characterized in that y) is subjected to arithmetic processing based on the following equation (1) to obtain phase information ψ (x, y) regarding the shape of the parallel plate surface to be measured. Expression (1) Here, the constants ar and br have the following values. [Equation 2]
【請求項2】 前記干渉計装置において、前記参照面と
前記被測定面との光軸上での距離Lと前記平行平板の光
学的厚さnTの比が14LnT21Lを満たすよう
に距離Lを設定した請求項1記載の干渉縞解析方法。
2. In the interferometer device, a ratio of a distance L on the optical axis between the reference surface and the surface to be measured to an optical thickness nT of the parallel plate satisfies 14L < nT < 21L. The interference fringe analysis method according to claim 1, wherein the distance L is set.
【請求項3】 前記干渉計装置において、前記平板の表
面と裏面が完全な平行ではなく、平行光を照射した場合
に両面からの出射光が作る干渉縞が200本以内で観測
できる程度の傾斜角を持っているものに用いる請求項1
記載の干渉縞解析方法。
3. In the interferometer device, the front surface and the back surface of the flat plate are not perfectly parallel, and when the parallel light is irradiated, the interference fringes formed by the light emitted from the both surfaces can be observed within 200 lines. Use for a thing with a horn 1.
The interference fringe analysis method described.
【請求項4】 前記干渉計装置がフィゾー型干渉計であ
ることを特徴とし、被測定面からの測定光と前記参照面
からの参照光との位相差をおよそπ/6ずつずらして1
9枚の画像を撮像する手段を備えている請求項1または
2または3記載の干渉縞解析方法。
4. The interferometer device is a Fizeau interferometer, wherein the phase difference between the measurement light from the surface to be measured and the reference light from the reference surface is shifted by about π / 6, and
The interference fringe analysis method according to claim 1, 2 or 3, further comprising means for capturing nine images.
【請求項5】 前記干渉計装置がミラウ型干渉計である
ことを特徴とし、被測定面からの測定光と参照面からの
参照光との位相差をおよそπ/6ずつずらして19枚の
画像を撮像する手段を備えている請求項1乃至3のいず
れか1つに記載の干渉縞解析方法。
5. The nineteen interferometer devices are Mirau-type interferometers, and the phase difference between the measurement light from the surface to be measured and the reference light from the reference surface is shifted by about π / 6. The interference fringe analysis method according to claim 1, further comprising a unit that captures an image.
【請求項6】 前記干渉計装置が近赤外波長を光源とす
るフィゾー型干渉計であり、平行平板がシリコンウェー
ハであって、被測定面からの測定光と前記参照面からの
参照光との位相差をおよそπ/6ずつずらして19枚の
画像を撮像する手段を備えている請求項1乃至3のいず
れか1つに記載の干渉縞解析方法。
6. The interferometer device is a Fizeau interferometer using a near infrared wavelength as a light source, the parallel plate is a silicon wafer, and the measurement light from the surface to be measured and the reference light from the reference surface are used. 4. The interference fringe analysis method according to claim 1, further comprising means for capturing 19 images by shifting the phase difference by about π / 6.
JP2001254860A 2001-08-24 2001-08-24 Interference fringe analysis method for transparent parallel plates Expired - Lifetime JP4081538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001254860A JP4081538B2 (en) 2001-08-24 2001-08-24 Interference fringe analysis method for transparent parallel plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001254860A JP4081538B2 (en) 2001-08-24 2001-08-24 Interference fringe analysis method for transparent parallel plates

Publications (2)

Publication Number Publication Date
JP2003065709A true JP2003065709A (en) 2003-03-05
JP4081538B2 JP4081538B2 (en) 2008-04-30

Family

ID=19082950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001254860A Expired - Lifetime JP4081538B2 (en) 2001-08-24 2001-08-24 Interference fringe analysis method for transparent parallel plates

Country Status (1)

Country Link
JP (1) JP4081538B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784169B2 (en) 2004-06-24 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire
JP2012132912A (en) * 2010-12-17 2012-07-12 Corning Inc Interferometer with paraboloidal illumination and imaging optics with tilted imaging plane
JP6402273B1 (en) * 2018-05-18 2018-10-10 大塚電子株式会社 Optical measuring apparatus and optical measuring method
CN112344876A (en) * 2020-11-03 2021-02-09 上海港旺新能源科技有限公司 System and method for detecting installation error of light gathering and reflecting plate of groove type solar thermal device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784169B2 (en) 2004-06-24 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire
JP2012132912A (en) * 2010-12-17 2012-07-12 Corning Inc Interferometer with paraboloidal illumination and imaging optics with tilted imaging plane
JP6402273B1 (en) * 2018-05-18 2018-10-10 大塚電子株式会社 Optical measuring apparatus and optical measuring method
JP2019200185A (en) * 2018-05-18 2019-11-21 大塚電子株式会社 Optical measurement unit and optical measurement method
CN110500963A (en) * 2018-05-18 2019-11-26 大塚电子株式会社 Optical detecting device and method of optically measuring
CN110500963B (en) * 2018-05-18 2022-02-11 大塚电子株式会社 Optical measurement device and optical measurement method
CN112344876A (en) * 2020-11-03 2021-02-09 上海港旺新能源科技有限公司 System and method for detecting installation error of light gathering and reflecting plate of groove type solar thermal device

Also Published As

Publication number Publication date
JP4081538B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
US8319975B2 (en) Methods and apparatus for wavefront manipulations and improved 3-D measurements
KR102558264B1 (en) Metrology of multi-layer stacks
US20110149298A1 (en) Spatial wavefront analysis and 3d measurement
JP2007533977A5 (en)
US6717680B1 (en) Apparatus and method for phase-shifting interferometry
TW201825864A (en) A scanning white-light interferometry system for characterization of patterned semiconductor features
JP4667965B2 (en) Light beam measuring device
JP2002202109A (en) Gap measuring method, gap measuring device, shape measuring method, shape measuring device and manufacturing method of liquid crystal device
CN111121661B (en) Narrow-band non-monochromatic light n +1 amplitude phase shift test algorithm for smooth surface topography measurement
JPH04161832A (en) Optical-phase-difference measuring method
CN107923735B (en) Method and device for deducing the topography of an object surface
JP4081538B2 (en) Interference fringe analysis method for transparent parallel plates
JPWO2003036229A1 (en) Surface shape measuring method and apparatus
JP3632078B2 (en) Interference fringe analysis method for surface shape measurement and thickness nonuniformity measurement of transparent parallel plates
JP3533195B2 (en) Coherent beam device for sample observation measurement
JP3960427B2 (en) Method and apparatus for simultaneous measurement of surface shape and film thickness distribution of multilayer film
US7956630B1 (en) Real-time effective-wavelength error correction for HDVSI
JP5518187B2 (en) Deformation measurement method
JP2021032661A (en) Interferometer
JPH0726826B2 (en) Sharing interferometer device
JP2004053307A (en) Microstructure measuring method and its measuring apparatus
JP4218919B2 (en) Interference fringe analysis method
JP4298105B2 (en) Interference fringe measurement analysis method
JP2003090765A (en) Method and apparatus for measuring wavelength fluctuation
JP2001050727A (en) Form measuring method using fringe modulation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Ref document number: 4081538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term