JPH03111713A - Interference type apparatus for detecting tilt or height, reduction stepper and method therefor - Google Patents

Interference type apparatus for detecting tilt or height, reduction stepper and method therefor

Info

Publication number
JPH03111713A
JPH03111713A JP1249123A JP24912389A JPH03111713A JP H03111713 A JPH03111713 A JP H03111713A JP 1249123 A JP1249123 A JP 1249123A JP 24912389 A JP24912389 A JP 24912389A JP H03111713 A JPH03111713 A JP H03111713A
Authority
JP
Japan
Prior art keywords
beams
height
light
substrate
tilt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1249123A
Other languages
Japanese (ja)
Other versions
JP2786270B2 (en
Inventor
Yoshitada Oshida
良忠 押田
Tetsuzo Tanimoto
谷本 哲三
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1249123A priority Critical patent/JP2786270B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to DE69027738T priority patent/DE69027738T2/en
Priority to EP90906337A priority patent/EP0426866B1/en
Priority to PCT/JP1990/000520 priority patent/WO1990013000A1/en
Priority to US07/623,438 priority patent/US5227862A/en
Priority to KR1019900702643A priority patent/KR930011884B1/en
Publication of JPH03111713A publication Critical patent/JPH03111713A/en
Priority to US07/936,661 priority patent/US5392115A/en
Priority to US08/315,841 priority patent/US6094268A/en
Application granted granted Critical
Publication of JP2786270B2 publication Critical patent/JP2786270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable highly-precise detection of the height and the tilt of the surface of an optical multilayer object by providing monochromatic light sources emitting beams of a plurality of wavelengths, beam splitters, an irradiating optical means, a detecting optical system, a reference light optical system, a processing circuit, etc. CONSTITUTION:Beams having different wavelengths and emitted from laser light sources 1 and 1' are split in two by beam splitters 18 and 18' and then adjusted so that the split beams pass on the same optical paths respectively. One 16 (16') of the beams made parallel through a prism 110 is reflected as a measuring light by a mirror 13 and then falls on a wafer 4 at an incident angle of about 88 deg.. The other one 17 (17') of the beams does not fall on the wafer and the two lights overlap each other as a reference light at a point A. The beams passing through the point A are made to reach a CCD sensor 3 by a mirror 23 and lenses 21 and 22 and the interference fringes of the measuring light reflected by the wafer and the reference light are detected by the sensor. Since a large number of elements are arranged separately in the CCD, discrete signals are subjected to A/D conversion 52 sequentially in a processing circuit 5 and a data processing means 54 detects a tilt and a height accurately. Based on informations on the tilt and the height thus obtained, a wafer stage 7 is controlled by fine adjustment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ウェハ等光学的多層物体の傾きもしくは高さ
を光学的に検出する装置、並びに縮小投影式露光装置及
びその方法に関する0 〔従来の技術〕 従来の半導体ウェハ等の光学的多層構造物体の傾き検出
装置は第1の公知例である特願昭63−146015号
公報の第2図に記載されているごとく、傾きと焦点を検
出している。この公知例では焦点検出にはウェハ上で集
束する光を照射し、その反射光の位置を結像レンズによ
りポジションセンサ上に結像し、その位置から高さ検出
(焦点検出)を行っている。また傾きについてはウエノ
・に平行光を照射し、その反射光を集光レンズIこより
ポジションセンサ上に集光し、その検出位置から傾きを
求めている。このいずれの検出もウニI・への入射角度
2856以上に取ることは難しく、レジストを塗布した
膜内に光が多く屈折入射し、真にレジスト表面を検出す
ることが難しい。このため下地の反射率や、レジストの
厚さにより検出位置と真のレジスト表面の位]dが太き
くずれ、ウニ・・露光の工程ごとに試し露光を行いオフ
セット値を設定しなげ几ばならない。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for optically detecting the inclination or height of an optical multilayer object such as a wafer, and a reduction projection exposure apparatus and method thereof. [Technology] A conventional inclination detection device for an optical multilayer structure object such as a semiconductor wafer detects inclination and focus, as shown in FIG. are doing. In this known example, focus detection is performed by irradiating focused light on the wafer, focusing the position of the reflected light on a position sensor using an imaging lens, and performing height detection (focus detection) from that position. . As for the inclination, parallel light is irradiated onto the lens, the reflected light is focused onto a position sensor through a condensing lens I, and the inclination is determined from the detected position. In any of these detections, it is difficult to obtain an incident angle of 2856 degrees or more to the sea urchin I. A large amount of light is refracted and incident on the film coated with the resist, making it difficult to truly detect the resist surface. Therefore, depending on the reflectance of the base and the thickness of the resist, the detection position and the position of the true resist surface (d) may be significantly different from each other. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術ではウエノ・への入射角度を85°以上に
取ることが難しい0これは、焦点検出の場合、ウェハへ
の集束光の集束角を成る程度取り、集束位置でのビーム
径を小さくしないと十分な検出感度が得られないためで
ある。また傾き検出の場合にも、平行光のビーム径を小
さ(しないと、検出したい露光領域内のみを照射するこ
とができず、この場合にもビーム径が小さすぎると集光
レンズによりセンサ上に絞り込まれるビームスポット径
が大きくなり、十分な検出感度が得られないO従って検
出感度を得るため、入射角度は80°程度となっていた
。ところが入射角度が80°程度となると入射光のかな
りがレジスト内に屈折入射し、レジストの下にあるウェ
ハパターンで反射する元が検出光として寄与するため、
下地のパターンの反射率や、レジスト厚により、検出さ
れる焦点位置(高さ)や傾きが大きく変化することにな
る。このため、ウェハの露光プロセスごとに試し露光を
行い、レジスト表面からの検出ずれをオフセット値とし
て求め、補正を加える必要があった。また同じプロセス
ウェハでもレジスト厚が変化するとオフセット値が変動
する等、高精度検出を阻害する課題が発生していた。
With the above conventional technology, it is difficult to maintain an angle of incidence on the wafer of 85° or more. This is because in the case of focus detection, the angle of convergence of the focused light on the wafer must be set to a certain degree, and the beam diameter at the converging position must not be made small. This is because sufficient detection sensitivity cannot be obtained. Also, in the case of tilt detection, the beam diameter of the parallel light must be made small (otherwise, it will not be possible to irradiate only the exposure area that you want to detect, and in this case too, if the beam diameter is too small, the condenser lens will cause the beam to fall onto the sensor). The narrowed beam spot diameter becomes large, and sufficient detection sensitivity cannot be obtained. Therefore, in order to obtain detection sensitivity, the incident angle has been set to about 80°. However, when the incident angle is about 80°, a large amount of the incident light is The source that is refracted into the resist and reflected by the wafer pattern below the resist contributes as detection light.
The detected focal position (height) and inclination will vary greatly depending on the reflectance of the underlying pattern and the resist thickness. For this reason, it was necessary to perform a trial exposure for each wafer exposure process, to determine the detected deviation from the resist surface as an offset value, and to make corrections. Furthermore, even with the same process wafer, when the resist thickness changes, the offset value fluctuates, creating problems that impede high-precision detection.

本発明の目的は上述の問題を解決し、プロセスごとのウ
ェハ(基板)に無関係に常にウェハ(基板)上に塗布さ
れたレジスト等、最上面の高さや傾きを正確に検出する
ことができるようにした干渉式傾きもしくは高さ検出装
・曖並びに縮小投影式露光装置及びその方法を提供する
ことにある。
The purpose of the present invention is to solve the above-mentioned problems, and to enable accurate detection of the height and inclination of the uppermost surface of resist, etc. coated on a wafer (substrate) at all times, regardless of the wafer (substrate) for each process. An object of the present invention is to provide an interference type tilt or height detection device, an ambiguity, a reduction projection type exposure device, and a method thereof.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するためiこ、本発明においては本発明
者が既に出願している特願平1−100025号に示す
ようにレーザ等可干渉性の平行ビームを光学的多層物体
等の被測定物に大きい入射角で照射し、その反射光と、
上記平行ビームより分離された参照光との間に干渉縞を
発生させ、この干渉縞の位相から焦点(高さ)、ピッチ
から傾きを検出する。この際上述したごとく入射角を大
きくし、特に85°以上にすると、レジスト表面での反
射成分が大きくなり、高精度検出が可能となる。しかし
この場合、下地がAJのように非常に反射率の大きなも
のであると、検出誤差が比較的大きくなる。本発明は特
願平1−100025号を更に高精度化し、下地の物質
や、レジスト厚さに全く影響を受けずに完全にレジスト
表面の高さや傾きを正確に検出する手段を提供するもの
である。このために本発明に於ては検出する波長として
、2以上の異なる波長の単色光を用い、しかもこの複数
波長を選択して、用いている。即ち本発明に於ては、下
地から反射してレジスト表面を透過して来る成分による
誤差発生が、後に詳細に説明するように、レジストの厚
さと下地の反射係数と波長により同期的に変化すること
に着目して、複数波長の単色光を用意し、被測定物の上
記条件に応じて、測定に用いる波長を選択する。この波
長の選択の方法には、レジストの厚さがあらかじめ分っ
ている場合は、そのデータを用い、使用する波長を後述
の理論式等に基づいて決定する。しかしこのようなレジ
スト厚データ等が無い場合でも、クエ/’11こ大きい
角度で入射し、反射する光の光量、即ち反射率を複数の
波長憂こ亘り計測することにより、採用すべき誤差発生
の無視できる波長を選択することが可能となる。
In order to achieve the above object, in the present invention, as shown in Japanese Patent Application No. 1-100025, which has already been filed by the present inventor, a coherent parallel beam such as a laser is used to measure an optical multilayer object, etc. Irradiates the object at a large angle of incidence, and the reflected light and
Interference fringes are generated between the reference beam separated from the parallel beam, and the focus (height) is detected from the phase of the interference fringes, and the inclination is detected from the pitch. At this time, as described above, when the incident angle is increased, particularly to 85° or more, the reflected component on the resist surface becomes large, and highly accurate detection becomes possible. However, in this case, if the base has a very high reflectance like AJ, the detection error will be relatively large. The present invention further improves the precision of Japanese Patent Application No. 1-100025 and provides a means for accurately detecting the height and slope of the resist surface without being affected by the underlying material or resist thickness. be. For this purpose, in the present invention, monochromatic light having two or more different wavelengths is used as the wavelength to be detected, and these plural wavelengths are selected and used. That is, in the present invention, the error caused by the component reflected from the base and transmitted through the resist surface changes synchronously depending on the thickness of the resist, the reflection coefficient of the base, and the wavelength, as will be explained in detail later. Focusing on this, monochromatic light with a plurality of wavelengths is prepared, and the wavelength used for measurement is selected depending on the above-mentioned conditions of the object to be measured. In this wavelength selection method, if the thickness of the resist is known in advance, that data is used to determine the wavelength to be used based on a theoretical formula, etc., which will be described later. However, even if such resist thickness data is not available, it is possible to detect errors that should be adopted by measuring the amount of light that is incident at a large angle and reflected, that is, the reflectance, over multiple wavelengths. It becomes possible to select a wavelength that can be ignored.

〔作用〕 本発明の詳細な説明する。第2図は光学的多層物体を入
射角θで照射している光の境界面での反射、屈折の状況
を示した図である。媒質1は通常空気であり、屈折率n
、は1,0.媒質2は半導体ウェハの場合フォトレジス
トであり通常屈折率n。
[Function] The present invention will be explained in detail. FIG. 2 is a diagram showing the state of reflection and refraction at a boundary surface of light that is irradiating an optical multilayer object at an incident angle θ. Medium 1 is usually air and has a refractive index n
, is 1,0. In the case of a semiconductor wafer, the medium 2 is a photoresist and usually has a refractive index n.

は1.65程度である。媒質5は下地のパターンであり
、プロセスごとに異なりまた多層構造の場合もあるが、
媒質2との境界面からみた屈折率をnbとする。第2図
に示すごとくレジスト表面に入射する振幅Ape(p偏
光)A、(s偏光)の直線偏光の境界面0点に於る反射
、屈折に着目すると、4つの成分の光が存在しているこ
とが分る。即ち、反射光R,、Rs l屈折光Dxp 
I I)1.及び0点にレジスト内から入射するDIp
IDIIである。広く知られているととくp偏光の光は
S偏光に比べ屈折成分が大きくなるので、本発明の表面
を検出する目的にはあまり適さない。そこで5(Iii
l光を入射光とすると、第2図の境界面上の0点におけ
る電場及び磁場の連続性に関する条件より、反射光の振
幅R1は入射角θ、屈折角ψ、入射光の振幅A、を用い
、次式で表わせる。
is about 1.65. The medium 5 is the underlying pattern, which varies depending on the process and may have a multilayer structure.
Let nb be the refractive index seen from the interface with the medium 2. As shown in Figure 2, if we focus on the reflection and refraction at the boundary surface 0 point of linearly polarized light with amplitudes Ape (p polarized light) and Ape (s polarized light) incident on the resist surface, there are four components of light. I know that there is. That is, reflected light R,, Rs l refracted light Dxp
I I)1. and DIp incident from within the resist at the 0 point
It is ID II. It is widely known that p-polarized light has a larger refraction component than S-polarized light, so it is not very suitable for the purpose of detecting the surface of the present invention. So 5(Iiii
If l light is the incident light, the amplitude R1 of the reflected light is given by the angle of incidence θ, the angle of refraction ψ, and the amplitude A of the incident light, according to the conditions regarding the continuity of the electric and magnetic fields at the 0 point on the boundary surface in Figure 2. It can be expressed by the following formula.

苅ψ    nl ここで、α、は下地の反射係数ra(一般にr4は複素
数)及びフォトレジスト内を一往後する間に変化する位
相φ、及びもしレジスト内に吸光材が入っている場合の
吸光係数βを用い次式で与えられる。
nl Here, α is the reflection coefficient ra of the substrate (generally r4 is a complex number), the phase φ that changes during one pass through the photoresist, and the light absorption if there is a light absorbing material in the resist. It is given by the following equation using the coefficient β.

(3)式の()内の第1項は0で反射する光と下地で反
射する光の光路長差に伴う位相差、第2項は吸収による
減衰である。下地がAIの場合、最もrbが大きくなり
、可視域の検出波長ではrbは肌878程度となる。下
地がAJで()内の第2項が00場合即ち、レジストが
検出光を吸光しない場合、最も下地の影響を受は誤差が
大きくなる。下地がAlの場合、パターンを露光する際
定在波が発生するため、吸光材を入れることがある。し
かしこの吸光材はg?1M (456nm>、 i線(
365nm)  やKuFエキシマレーザ光(,2as
nm)に対し吸光するが、傾き及び高さ検出に用いるレ
ーザ光に対し吸光するとは限らない。従って、下地反射
の影響が最も太きく、誤差が大きくなる最悪のケースと
してAIが下地で、吸光係数β=0の場合にも、正確な
検出が保証されれば、他の場合は問題な(、更に高精度
に検出できることになる。
The first term in parentheses of equation (3) is the phase difference due to the optical path length difference between the light reflected at 0 and the light reflected at the base, and the second term is attenuation due to absorption. When the base is AI, rb is the largest, and at a detection wavelength in the visible range, rb is about 878 skin. When the base is AJ and the second term in parentheses is 00, that is, when the resist does not absorb the detection light, the error will be most influenced by the base. When the base is Al, standing waves are generated when exposing the pattern, so a light absorbing material may be added. However, is this light absorbing material g? 1M (456nm>, i-line (
365nm) or KuF excimer laser light (,2as
nm), but not necessarily the laser beam used for tilt and height detection. Therefore, in the worst case where the influence of the reflection from the substrate is the strongest and the error becomes large, even when AI is the substrate and the extinction coefficient β = 0, accurate detection is guaranteed, but in other cases there is no problem ( , detection can be performed with even higher accuracy.

上記のケースを想定し、本発明の詳細な説明を続ける。The detailed description of the present invention will be continued assuming the above case.

β=0として(3)式8(2)式に代入すればR1は複
素数となり次式で表現できる。
If β=0 and substituted into equation (3) and equation (2), R1 becomes a complex number and can be expressed by the following equation.

Re = reIFAs              
  (4)今、仮に下地の反射が0、即ちα、=0とす
ると(り式から、 となり、(4)式と比較するとv=0となる。これは屈
折率n、とn、の境界の反射の式である0(5)式でβ
=0としたのでα、を次式で光わすと、α易 2 rb
 eiφ                     
         (5)(1) 、 (4) 、 (
5)式より、(4)式のR,、Fが次の様に求まる0(
但しrbは取敢えず実数としている)(8) 入射光の振@A、を1とおき(7)式よりE、を求める
Re = reIFAs
(4) Now, if the reflection of the base is 0, that is, α, = 0, (from the equation), and when compared with equation (4), v = 0. This is the boundary between the refractive indexes n and n. β in equation 0(5), which is the reflection equation of
= 0, so if α is illuminated by the following formula, α 2 rb
eiφ
(5) (1) , (4) , (
From equation 5), R, , F in equation (4) can be found as follows: 0(
However, rb is a real number for the time being) (8) Set the amplitude of the incident light @A to 1 and find E from equation (7).

(6)式より求まる厚さdに伴ない変化するφとAI下
地の反射率rb=0.878  及び入射角θと、(2
)式及びレジスト屈折率n、= 1.63、及びθより
求まるψを(8)に代入することにより、θ=88° 
86° 80゜に対しR1は複索平面上に図示でき、第
3〜5図が求まる。各グラフの円周上に示した値はレジ
スト厚に伴ない変化する(6)式で求まるφである。こ
のグラフについて説明する。曲線上の一点と座標原点を
結ぶ線分の長さはlR81であり、下地の影響も含めた
振幅反射率を表わしている。この線分と実座標(横軸)
のなす角度は反射光の位相変化を懺わす。この位相変化
は下地の影響がなく、表面反射のみの場合上述したとと
くφ=0であったので、下地の影響による位相シフと、
即ち下地の影響による高さ検出の誤差となる。この誤差
が干渉検出方式でどの程度になるかを吟味する。後に詳
細に説明する第1図及び第9図に示した検出光学系で得
られる干渉縞とウェハの高さΔ2及び傾きΔθとの関係
は次式で与えられる。
(6), which changes with the thickness d, the reflectance rb of the AI base = 0.878, and the incident angle θ, (2
) and the resist refractive index n, = 1.63, and by substituting ψ found from θ into (8), θ=88°
86° to 80°, R1 can be illustrated on a compound plane, and Figures 3 to 5 can be determined. The value shown on the circumference of each graph is φ determined by equation (6), which changes with the resist thickness. This graph will be explained. The length of the line segment connecting one point on the curve and the coordinate origin is lR81, and represents the amplitude reflectance including the influence of the base. This line segment and real coordinates (horizontal axis)
The angle formed by this indicates the phase change of the reflected light. This phase shift is not affected by the substrate, and in the case of only surface reflection, φ = 0 as described above, so the phase shift due to the effect of the substrate,
In other words, the height detection error is due to the influence of the base. Let's examine how much this error will be in the interference detection method. The relationship between the interference fringes obtained by the detection optical system shown in FIGS. 1 and 9, which will be explained in detail later, and the wafer height Δ2 and inclination Δθ is given by the following equation.

Al (a、b定数でlal > lbl ここで、Xは両党が重なり干渉する位置でのフリンジピ
ッチ方向の座標、θ0.0は参照光及び測定光の垂線に
対する角Δθはウェハ上の着目チップの水平からの傾き
、Δ2はフォーカス方向の高さ変化である。又、ψ0は
測定光学系の初期設定条件で決まる位相定数である0(
9)式のmは第1図のように被測定物に1回照射する場
合には1.第9図の2回照射では2となる0(9)式で
表わせる干渉縞が1ピッチ分変化するのに要するウェハ
の上下移動量Δ2.は次式となる。
Al (lal > lbl with a, b constants) Here, X is the coordinate in the fringe pitch direction at the position where the two elements overlap and interfere, θ0.0 is the angle of the reference beam and measurement beam with respect to the perpendicular line Δθ is the target chip on the wafer from the horizontal, Δ2 is the height change in the focus direction. Also, ψ0 is the phase constant 0(
m in equation 9) is 1. when the object to be measured is irradiated once as shown in Figure 1. In the two-time irradiation shown in FIG. 9, the amount of vertical movement Δ2 of the wafer required for the interference fringes expressed by the equation 0(9) to change by one pitch is 2. is the following formula.

m;1と2の場合について、λ、== 0.6528μ
mとし、θ=800〜89° について求めたものが第
6図である。干渉計測から求められる(9)式の強度か
ら高さΔ21求める際、下地からの反射の影響により測
定光に(8)式で与えられるVの位相シフトがが発生す
ると、測定結果の誤差ΔZe  は(10)式から次式
となる。
m; For cases 1 and 2, λ, == 0.6528μ
FIG. 6 shows the results obtained for θ=800 to 89° with m. When calculating the height Δ21 from the intensity of equation (9) obtained from interferometric measurement, if a phase shift of V given by equation (8) occurs in the measurement light due to the influence of reflection from the base, the error ΔZe of the measurement result will be From equation (10), the following equation is obtained.

θ= 88.5°、88°、86°、80°についてこ
の値をAl下地に対し求めたものが第8図囚である。な
お@8図(B)はVの値を示している。入射角度を88
°、86゜とした時の複素平面上のR1の図、!3図及
び第4図から明らかなように、原点から円8を見込む最
大角FmaX はこの値を(11)式の1に入れること
により、検出の最大誤差を与える。従って円周が第2お
よび第5象現にまで入って米る0≦85°ではVは0〜
360°まで変化するため、検出誤差の最大値はΔzy
  と等しくなり、測定できなくなる。従って入射角を
85°以上にすることがAl下地の場合不可欠となる。
Figure 8 shows the values obtained for the Al base for θ=88.5°, 88°, 86°, and 80°. Note that @8 Figure (B) shows the value of V. The angle of incidence is 88
Diagram of R1 on the complex plane when the angle is 86°! As is clear from FIGS. 3 and 4, the maximum angle FmaX when viewing the circle 8 from the origin gives the maximum detection error by entering this value into 1 of equation (11). Therefore, when the circumference reaches the second and fifth quadrants and is 0≦85°, V is 0~
Since it changes up to 360°, the maximum detection error is Δzy
becomes equal to and cannot be measured. Therefore, in the case of an Al base, it is essential to set the incident angle to 85° or more.

第8図囚にも示される検出誤差ΔZeの最大値Δzem
ax (グラフの極大値)を下地の反射率γbに対し、
種々の入射角度をパラメータに求めたものが第7図であ
る。第7図のグラフ中に示した矢印に託された材料名は
半導体ウェハの下地となる物質であり、この図からもA
l以外の材料に対しては問題とならない程度であるが、
Ajが下地の場合、入射角ヲ85°以上にしても特定レ
ジスト厚(特定のφ)で最大検出誤差が0.6μm程度
にまで達することが分る。第8図の位相φと検出誤差Δ
Zeのグラフは180° までしか描かれていないが、
180〜360°については0〜180°のグラフの曲
線を(180°、0μm)の点を中心に180°回転し
て得られるものとなる。このグラフを見ると、φ=0〜
120°及び240°〜560° の間では検出誤差は
0.1μm程度以下となる。即ちこの範囲で使えるよう
にすれば高い検出精度が得られることになる。
The maximum value Δzem of the detection error ΔZe is also shown in Figure 8.
ax (maximum value of the graph) with respect to the reflectance γb of the base,
FIG. 7 shows various angles of incidence determined as parameters. The name of the material indicated by the arrow in the graph of Fig. 7 is the material that forms the base of the semiconductor wafer, and from this figure it can be seen that
Although it is not a problem for materials other than l,
It can be seen that when Aj is the base, the maximum detection error reaches about 0.6 μm at a specific resist thickness (specific φ) even if the incident angle is set to 85° or more. Phase φ and detection error Δ in Figure 8
Although the graph of Ze is drawn only up to 180°,
Regarding 180 to 360 degrees, it is obtained by rotating the curve of the graph of 0 to 180 degrees by 180 degrees around the point (180 degrees, 0 μm). Looking at this graph, φ=0~
The detection error is about 0.1 μm or less between 120° and 240° to 560°. That is, if it can be used within this range, high detection accuracy can be obtained.

φとレジスト厚d及び測定光の波長λと入射角0の関係
式(6)を基に、この方法を以下に説明する。
This method will be explained below based on the relational expression (6) between φ, the resist thickness d, the wavelength λ of the measurement light, and the incident angle 0.

同一の入射角度で例えば2つの波長λ、= 0.652
8μmとλ、=0.6119μmのレーザ光を被測定物
に入射し、干渉法により測定を行うと、第8図(ト)に
示す測定誤差が0.1μm以上と大きくなる位相値φは
120〜240°の領域である。この領域は式(6)よ
り一定のレジスト厚周期で存在する。′名10図はこの
2つの波長での誤差が大きくなる領域を線分で表わした
ものである。この図から明らかな様に、レジスト厚が約
1.2〜2.4μmの範囲では2つのレーザ光のいずれ
かを用いれば、誤差は十分小さくなり正確な測定が可能
となる。
For example, two wavelengths λ at the same angle of incidence, = 0.652
When a laser beam of 8 μm and λ = 0.6119 μm is incident on the object to be measured and measurement is performed by interferometry, the phase value φ at which the measurement error increases to 0.1 μm or more as shown in Figure 8 (G) is 120. ~240° range. According to equation (6), this region exists at a constant resist thickness period. Figure 10 shows the area where the error at these two wavelengths becomes large using line segments. As is clear from this figure, when the resist thickness is in the range of approximately 1.2 to 2.4 μm, if either of the two laser beams is used, the error is sufficiently small and accurate measurement is possible.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below using examples.

第1図は本発明の一実廁例図であり、縮小投影式露光装
置に適用したものである。81は露光照明系であり、こ
こから出射した露光照明光は、レチクル9を照射し、そ
の透過光は縮小レンズ8により、2方向、及びΔθ(2
直交軸を中心にした傾−41本Aが一1=1g−−軸の
みの説明を行う)の微調機構を有するウェハステージ7
上のウェハ4に、レチクル原画の縮小g1を結像、露光
する0ウニノー上には多数のチップが並び1〜数チツプ
を1回の露光で焼付ける。各チップはウェハが完全に平
坦でないため、露光する直前に、露光領域の高さと傾き
を下記の方法により求め、前記ウニノーステージ7で補
正し、最も解像度の高い状態にウエノ・表面を設定した
後、集光を行う。ウェハの界面Jこはフォトレジストが
1.5μm程度の厚さで塗布されている。このウェハ上
のフォトレジスト表面の高さと傾きを正確に検出するた
め、@1図の実施例に示す干渉式検出を行う0レーザ光
源1は波長λ、が0.6528μmのHe −Neレー
ザである。レーザ光源1′は波長λtが0.6119μ
mの)(6−Neのレーザである。
FIG. 1 is a diagram showing a practical example of the present invention, which is applied to a reduction projection type exposure apparatus. 81 is an exposure illumination system, and the exposure illumination light emitted from this illuminates the reticle 9, and the transmitted light is transmitted through the reduction lens 8 in two directions and Δθ(2
A wafer stage 7 having a fine adjustment mechanism with an inclination centered around an orthogonal axis - 41 A is 1 = 1 g - only the axis will be explained
On the upper wafer 4, a reduced image g1 of the reticle original is imaged and exposed. A large number of chips are lined up on the wafer 4, and one to several chips are printed in one exposure. Since the wafer of each chip is not completely flat, just before exposure, the height and inclination of the exposed area were determined by the method below, and corrected using the Unino stage 7, and the wafer surface was set in the state with the highest resolution. After that, focus the light. A photoresist is coated on the wafer interface to a thickness of about 1.5 μm. In order to accurately detect the height and inclination of the photoresist surface on this wafer, the laser light source 1 that performs the interferometric detection shown in the embodiment shown in Figure 1 is a He-Ne laser with a wavelength λ of 0.6528 μm. . Laser light source 1' has a wavelength λt of 0.6119μ
m) (6-Ne laser).

各レーザ光源を出射したビームは光シャッタ111及び
111′によりオン−オフされる。各レーザは、例えば
グレーティングから成るビームスプリッタ18、18’
 !こより、2分された後、波長選択ミラー19により
、波長λ、の光は透過、波長λ、の光は反射され、各波
長で2分されたビームはそれぞれ同一光路上を通るよう
に調整される。プリズム110は2分した各波長のビー
ムがほぼ平行になるよう機能する。平行となった各ビー
ムの一方L6(16’)は測定光としてミラー13で反
射された後ウェハ曇こ入射角88°で入射する。他方の
ビーム17(17’)はウェハに入射せず、参照光とし
てA点で両党が重る。
The beams emitted from each laser light source are turned on and off by optical shutters 111 and 111'. Each laser has a beam splitter 18, 18' consisting of a grating, for example.
! Therefore, after being split into two, the wavelength selection mirror 19 transmits the light with wavelength λ, reflects the light with wavelength λ, and adjusts the beams split into two at each wavelength so that they pass on the same optical path. Ru. The prism 110 functions so that the two divided beams of each wavelength become substantially parallel. One of the parallel beams L6 (16') is reflected by the mirror 13 as measurement light and then enters the wafer at an incident angle of 88°. The other beam 17 (17') does not enter the wafer, and both beams overlap at point A as a reference beam.

A点を通過したビームはミラー25.レンズ21.22
により、CCDセンセンサに到る。センサの受光面はA
と共役な位置にあり、ウェハで反射した測定光と参照光
の干渉縞が検出される。干渉縞の検出信号は(9)式に
示される強度変化をしているが、CCDは多数の素子が
分離配列しているため、個々の信号は処理回路5内のA
/D変換器52で順次A/D変換され、ディジタル信号
となる。2つの波長憂こ対する測定はシャッタ18.1
8’を順次開閉してなされる。第11図は第1図の処理
回路5で実行されるデータ処理のフローを示した実施例
である。
The beam passing through point A passes through mirror 25. Lens 21.22
This leads to the CCD sensor. The light receiving surface of the sensor is A
The interference fringes between the measurement light and reference light reflected by the wafer are detected. The interference fringe detection signal changes in intensity as shown in equation (9), but since the CCD has many elements arranged separately, each signal is processed by A in the processing circuit 5.
A/D converter 52 sequentially performs A/D conversion to generate a digital signal. Measurements for two wavelengths are performed using shutter 18.1.
This is done by sequentially opening and closing 8'. FIG. 11 is an embodiment showing the flow of data processing executed by the processing circuit 5 of FIG.

A/D変換器52で60に示すようにA/D変換された
干渉縞データFi(Xj)(iは波長λ、のデータに対
し1.λ、に対し2を覗る)は、高速フーリエ変換(F
FT)回路56により61で示すように1m8前後の時
間でフーリエ変換される。高速フーリエ変換回路53で
フーリエ変換されたスペクトルデータIt(ωj)は第
11図(Qに示すようにω=ωo(=0)とω=ωiの
2ケ所にピークを持つ。ω。はDCバイアス成分であり
ωiは干渉縞の周期に対応したスペクトルである。ω=
ω1で局所的最大値を持つが、ωiは離散サンプル点で
あるため、真のピーク位置は、この局所最大値を与える
サンプル点の近くに存在する。この真の極大値を与える
スペクトルωi′はデータ処理手段54により、62で
示すように既に公知の各種方法により、ωiとωi+1
.ωi−1等に於る周辺データとから求めることができ
る0このようにしてデータ処理手段54により62で示
すように2つの波長に対して得られた真のピーク値II
(ω、′)及びIt(ω、′)とω。に於るスペクトル
値■。
The interference fringe data Fi (Xj) (i is 1 for the wavelength λ, and 2 for λ) that has been A/D converted by the A/D converter 52 as shown at 60 is a fast Fourier Conversion (F
FT) circuit 56 performs Fourier transform as shown at 61 in a time of approximately 1m8. The spectrum data It(ωj) subjected to Fourier transformation by the fast Fourier transform circuit 53 has two peaks at ω=ωo (=0) and ω=ωi as shown in FIG. 11 (Q). ω is the DC bias. component, and ωi is a spectrum corresponding to the period of interference fringes. ω=
It has a local maximum at ω1, but since ωi is a discrete sample point, the true peak position exists near the sample point that gives this local maximum. The data processing means 54 calculates the spectrum ωi' giving the true maximum value by using various known methods as shown at 62, ωi and ωi+1.
.. In this way, the true peak value II obtained for the two wavelengths as shown at 62 by the data processing means 54
(ω,′) and It(ω,′) and ω. Spectral value at ■.

(ω0)及びIs(ω0)のそれぞれの比を比較手段5
5により63で示すように比較する。即ち11 = 1
.(ω+’) / L (ω0)r、=I、(ωt’)
 / It (ω0)のr、とr!の大きい方を求める
。例えばrl>γ、なら1o=2とし、1oの方の夜長
を傾き及び高さの検出に用いる。既にFFTのデータは
各波長で得られているのでデータ処理手段54は63で
求められた1=10の方のデータを用い、ω10′とω
10′に於るFFTデータの内挿値l16(ωio’)
 (複素数)を求め、64で示すようにこのl16(ω
io′)の虚数/実数から位相Ll’y2求める。そし
てデータ処理手段54は65で示すように真のピーク位
置ω10′からは干渉縞のピッチ、即ちウェハ表面の傾
きΔθ1位相1からはウェハ表面の高さΔ2がそれぞれ
求まる。これら求まった傾きΔθ、高さΔ2をウェハス
テージ7のフィードバックすることにより、ウェハ4の
部分的傾き及び高さが制御される。ここでrlとrlの
大きい方の1(=io)の波長λioヲ用いると正確な
測定ができる理由を@8図を用いて説明する。第8図(
4)、(B)については既に説明している。
Comparing means 5 for each ratio of (ω0) and Is(ω0)
5 as shown in 63. That is, 11 = 1
.. (ω+') / L (ω0)r, = I, (ωt')
/ It (ω0) r, and r! Find the larger one. For example, if rl>γ, then 1o=2, and the night length of 1o is used to detect the inclination and height. Since FFT data has already been obtained at each wavelength, the data processing means 54 uses the data for 1=10 obtained in step 63 to calculate ω10' and ω.
Interpolated value l16(ωio') of FFT data at 10'
(complex number), and as shown in 64, this l16(ω
The phase Ll'y2 is determined from the imaginary/real numbers of io'). Then, as shown at 65, the data processing means 54 determines the pitch of the interference fringes from the true peak position ω10', that is, the height Δ2 of the wafer surface from the inclination Δθ1 and the phase 1 of the wafer surface. By feeding back the determined inclination Δθ and height Δ2 to the wafer stage 7, the partial inclination and height of the wafer 4 are controlled. Here, the reason why accurate measurement can be performed by using the wavelength λio of 1 (=io), which is the larger of rl and rl, will be explained using Figure @8. Figure 8 (
4) and (B) have already been explained.

第8図C)はAlを下地とする場合の反射光の複素振幅
R1の複素平面上に表わしたグラフ@5図、及び第4図
よ傾、反射光R1の振幅rを求めたものである。第5図
はA14こレジスト塗布したウニノーの複素反射係数の
レジスト厚変動(位相φ変動)に伴う変化を示したもの
である0(入射角θ=88°、 Al振幅反射率rb=
0.878  )。第8図囚のグラフと横軸は一致して
いる。前述したごとくφが120°〜240° に相当
するレジスト厚さになった時、検出誤差ΔZeが大きく
なる。またこの領域のφに於て第8図(C)に示すよう
に反射光R1の振幅rが小さくなる。R1の振幅γが小
さくなると干渉縞の変′v!4度は小さくなり、その結
果、縞の周期に相当するスペクトルのピーク値It(ω
1/ )は小さくなる。光源の光量変動の影響を除去す
るためにIi(ωt’)を前述したようにDCバイアス
成分It(ω0)で割って正規化しておけば、この値(
前述のr、、 rt)はφが120〜240°に於て小
さな値となる。しかるにλ。
Figure 8C) is a graph @Figure 5 showing the complex amplitude R1 of the reflected light on the complex plane when the base is Al, and the slope of Figure 4 and the amplitude r of the reflected light R1 were obtained. . Figure 5 shows the change in the complex reflection coefficient of Uninot coated with A14 resist due to resist thickness fluctuation (phase φ fluctuation).0 (Incidence angle θ = 88°, Al amplitude reflectance rb =
0.878). The graph of the prisoner in Figure 8 and the horizontal axis match. As described above, when φ reaches a resist thickness corresponding to 120° to 240°, the detection error ΔZe becomes large. Further, in this region φ, the amplitude r of the reflected light R1 becomes small as shown in FIG. 8(C). When the amplitude γ of R1 becomes smaller, the interference fringes change ′v! 4 degrees becomes smaller, and as a result, the peak value of the spectrum It(ω
1/ ) becomes smaller. In order to remove the influence of light intensity fluctuations of the light source, if Ii (ωt') is normalized by dividing it by the DC bias component It (ω0) as described above, this value (
The above-mentioned r,, rt) have a small value when φ is 120 to 240°. However, λ.

= 0.6528μmとλ重=0.6119μmに対し
φが120〜240°になるフォトレジスト厚さは@1
0図の線分に示す領域となるが、この2つの波長での線
分が重なるレジスト厚さは1.2μmから2.4μmの
間では存在しない。従って、処理回路5内のデータ処理
手段54により前述したごとく2つの波長での前述のr
、とr1ヲ求め、大きい方の波長の光を用いて測定すれ
ば、このレジスト厚の範囲では測定誤差が0.1μmを
越えることは無く、処理回路5内のデータ処理手段54
正確に傾きと高さを検出することが可能となる。第10
図は検出波長を変えたときの許容値以上の検出誤差の発
生するレジスト厚(上の実線分に対応するレジスト厚)
、及びλ、とλ、を用い波長選択を行った場合の許容値
以内の検出精度が得られるレジスト厚領域(下の線分)
を示すものである。
= 0.6528 μm and λ weight = 0.6119 μm, the photoresist thickness where φ is 120 to 240° is @1
This is the region shown by the line segment in Figure 0, but the resist thickness where the line segments at these two wavelengths overlap does not exist between 1.2 μm and 2.4 μm. Therefore, the data processing means 54 in the processing circuit 5 processes the above-mentioned r at two wavelengths as described above.
, and r1 and measure using light of the larger wavelength, the measurement error will not exceed 0.1 μm within this resist thickness range, and the data processing means 54 in the processing circuit 5
It becomes possible to accurately detect the inclination and height. 10th
The figure shows the resist thickness at which a detection error exceeding the allowable value occurs when the detection wavelength is changed (resist thickness corresponding to the solid line segment above)
, and the resist thickness region (lower line segment) where detection accuracy within the tolerance is obtained when wavelength selection is performed using λ and λ.
This shows that.

本実施例に於ては第1図の処理回路5への入力偏号51
は現在のウェハの下地がAlか、そうでない力)を入力
すればよい0)lについては上述の処理。
In this embodiment, the input polarization 51 to the processing circuit 5 in FIG.
0) For l, process as described above.

Al以外で下地反射率が小さい試料に対しては、λ。For samples other than Al with low base reflectance, λ.

又はλ!の一方の波長と固定しても傾きと高さの精密測
定が可能となる。このようにして得られた傾きと高さの
情報を基にウェハステージ7が微動制御される。
Or λ! Precise measurement of inclination and height is possible even if the wavelength is fixed to one of the wavelengths. The wafer stage 7 is controlled to move slightly based on the information on the inclination and height obtained in this way.

第91.は本発明の一実施例である。@1図と同一部品
番号は同一物を表わす。光源1は波長λ、が851nm
の半導体レーザ、光源1′は波長λ電が810nmの半
導体レーザである。両党源を出射したビームはレンズ1
1及び11′により平行光となり波長選択ミラー19で
λ、は透過、λ、は反射して同一光路に導かれる0シリ
ンドリ力ルレ/ズ110及び120は半導体レーザの平
行ビームを所望のビーム径にしている。ビームスプリッ
タ10は測定光と参照光にビームを分離している。ハー
フミラ−12で反射した測定光はウェハ4の表面で反射
し、折返しミラー14で垂直に戻され、再びウェハ4の
表面で反射後ハーフミラ−12を透過する。他方参照光
はノー−7ミラー12で反射され、直接折返しミラー1
4で垂直に戻され、ハーフミラ−12を透過する。両党
はミラー210.レンズ21.ミラー220.レンズ2
2を通り、波長λ、の両光は波長選択ミラー28を通過
し、レンズ22′により、撮像器3“の撮像面上で重な
り干渉縞を形成する0参照光の光路中の俣ガラス24は
参照光を屈折させ、撮像面と折返しミラー14のミラー
面近傍が共後関係となり、かつ両党が撮像面で重なるよ
うにするために用いられている。同様暑こ波長λ、の光
は波長選択ミラー28により、λ!の干渉縞をし/ズ2
2“を介して撮像器5′に発生させている。両波長の干
渉縞データは同時に検出され、処理口@5に入力される
。処理回路5には、キー入力端末、磁気カード等の入力
手段51′により露光されるウェハの下地の材質等の情
報やレジスト厚情報が入力される。これら情報は、あら
かじめ別装置等で測定されている。これらウェハに関す
る情報が入力手段51′により入力されると、第7図、
第8図、及び第10図等で説明した方法により誤差発生
の小さい方の波長を処理回路5内のソフトウェアで決定
し、その波長の測定データに基づき、傾きと高さが検出
される0 第12図は本発明の一実施例であり、第1図、第9図と
同一部品番号は同一物を表わす。半導体レーザ1,1’
、1“はそれぞれ波長が831nm 、 810nm7
50 nmであり、各半導体レーザには温度コントロー
ルのためにペルチェ素子120 、120’、 120
“が付いてtつ、温度を一定に保〉、発振波長の安定化
ツ 八 を図っている。各半導体レーザの発振は制御回路5“で
コントロールされる。各半導体レーザを出射したビーム
はコリメークレンズ11.11’ 、 11“及びビー
ムスプリッタ18.18’ 、 19.1?’により同
一光路に導かれ、同一光路の参照光17と物体光16を
発生する。物体光はウェハに入射角86°で入射し、C
CDセンサ3で干渉像を検出する。半導体レーザ1,1
′は時系列的に発振させ、各波長での干渉パターンを順
次取り出し、前述のスペクトル比γ。
No. 91. is an embodiment of the present invention. @1 Part numbers that are the same as those in the drawing represent the same parts. Light source 1 has a wavelength λ of 851 nm
The light source 1' is a semiconductor laser having a wavelength λ of 810 nm. The beam emitted from the two-party source passes through lens 1
1 and 11' become parallel beams, which are transmitted by the wavelength selection mirror 19, λ is transmitted, and λ is reflected and guided to the same optical path.0 cylinder redirection lenses 110 and 120 adjust the parallel beam of the semiconductor laser to a desired beam diameter. ing. A beam splitter 10 separates the beam into measurement light and reference light. The measurement light reflected by the half mirror 12 is reflected by the surface of the wafer 4, returned vertically by the folding mirror 14, and transmitted through the half mirror 12 after being reflected again by the surface of the wafer 4. On the other hand, the reference beam is reflected by the No-7 mirror 12 and directly passes through the reflection mirror 1.
4, it is returned vertically and passes through the half mirror 12. Both parties mirror 210. Lens 21. Mirror 220. lens 2
2 and the wavelength λ passes through the wavelength selection mirror 28, and the double glass 24 in the optical path of the 0 reference light that overlaps and forms interference fringes on the imaging surface of the imager 3'' by the lens 22' It is used to refract the reference light so that the imaging surface and the vicinity of the mirror surface of the reflection mirror 14 are in a post-reciprocal relationship, and both sides overlap on the imaging surface.Similarly, the light with the wavelength λ is The selection mirror 28 creates interference fringes of λ!/z2
The interference fringe data of both wavelengths are simultaneously detected and input to the processing port @5.The processing circuit 5 has input terminals such as key input terminals and magnetic cards. Information such as the underlying material of the wafer to be exposed and resist thickness information are inputted by the means 51'.These pieces of information have been measured in advance with a separate device, etc.The information regarding these wafers is inputted by the inputting means 51'. Then, Figure 7,
The software in the processing circuit 5 determines the wavelength at which the error occurs using the method explained in FIGS. 8 and 10, and the slope and height are detected based on the measurement data of that wavelength. FIG. 12 shows an embodiment of the present invention, and the same part numbers as in FIGS. 1 and 9 represent the same parts. Semiconductor laser 1, 1'
, 1" have wavelengths of 831 nm and 810 nm7, respectively.
50 nm, and each semiconductor laser has Peltier elements 120, 120', 120 for temperature control.
The temperature is kept constant and the oscillation wavelength is stabilized.The oscillation of each semiconductor laser is controlled by a control circuit 5. The beams emitted from each semiconductor laser are guided to the same optical path by collimating lenses 11.11', 11'' and beam splitters 18.18', 19.1?', generating a reference beam 17 and an object beam 16 on the same optical path. The object beam is incident on the wafer at an incident angle of 86°, and C
The CD sensor 3 detects the interference image. Semiconductor laser 1,1
′ is caused to oscillate in time series, and the interference pattern at each wavelength is sequentially extracted, and the spectral ratio γ is determined by the above-mentioned spectral ratio γ.

γ、を比較し、大きい方の波長を用いる。この波長の選
択は第13図のプリズム110の後方に参照光を遮光す
るシャッタ(図示せず)を挿入し、物体光のみをCCD
3で検出し、そのレベルから選択を行ってもよい。選択
に用いる2つの波長は比較的接近しているため、これら
波長とは離れた750nmの半導体レーザーを高さ検出
の不確定性除去に用いる。特にウェハをウニ八カセット
(図示せず)から7のウェハステージに搭載した時、ウ
ェハの厚さにばらつき等によりウェハ上のレジスト表面
の高さのばらつきは幅で25μm程度になる。しかるに
86°入射でλ、= 810μmでは(1o)式よりΔ
z。
γ, and use the larger wavelength. This wavelength selection is achieved by inserting a shutter (not shown) behind the prism 110 in FIG.
3, and selection may be made from that level. Since the two wavelengths used for selection are relatively close to each other, a semiconductor laser of 750 nm, which is different from these wavelengths, is used to remove uncertainty in height detection. In particular, when a wafer is loaded from a cassette (not shown) onto a wafer stage 7, the height of the resist surface on the wafer varies by about 25 μm due to variations in the thickness of the wafer. However, at 86° incidence, λ = 810 μm, from equation (1o), Δ
z.

=5.8μm(m=1)となる。即ち一波長では高さ変
化が5.8μmの整数倍では同じ位相値となるため、ウ
ェハステージ7にウェハ4を搭載した時点では真の高さ
が分らない。そこで、750nmと8511mの2つの
波長での位相を比較すれば両波長での位相関係が同じに
なるウェハの高さ変化ΔZlll は次式%式% () 従って高さが55.2μmの範囲では、2波長の位相の
関係から正確に高さが求まる。第12図の実施例では、
上述したように近接する2つの波長を高さの高精度検出
用に、他の波長と前記一方の波長で粗検出を行うことに
より、広い範囲を下地の影響をほとんど受けることなく
、精度良く高さと傾きを求めることができる。λ1とλ
鵞i上述のごとく選択することにより、φが0〜120
°、240°〜360゜となるようにできるため、第8
図囚に示すようにAl下地パター7でも0.1μm以内
の高さ検出精度となる。しかし更に高精度の測定を行う
ことも可能である。あらかじめレジストの厚さが計測で
きていればその値を制御回路5“の入力端51“より入
力することにより、第8図(4)に示すごとく誤差値が
求まるため、この値を補正値として高さ制御値を補正す
ることにより、非常に精度の高い検出、制御が可能とな
る。
=5.8 μm (m=1). That is, for one wavelength, the height change becomes the same phase value for integral multiples of 5.8 μm, so the true height is not known when the wafer 4 is mounted on the wafer stage 7. Therefore, if we compare the phases at two wavelengths, 750 nm and 8511 m, the phase relationship at both wavelengths will be the same.The wafer height change ΔZllll is calculated by the following formula % formula % () Therefore, in the height range of 55.2 μm , the height can be determined accurately from the relationship between the phases of the two wavelengths. In the embodiment of FIG. 12,
As mentioned above, by using two wavelengths that are close to each other for highly accurate height detection, and by performing rough detection using the other wavelength and one of the wavelengths, it is possible to accurately detect height over a wide range with almost no influence from the background. You can find the slope and slope. λ1 and λ
By selecting as described above, φ is 0 to 120.
°, 240° to 360°, so the 8th
As shown in the figure, even with the Al base putter 7, the height detection accuracy is within 0.1 μm. However, it is also possible to perform even more precise measurements. If the thickness of the resist can be measured in advance, by inputting that value through the input terminal 51'' of the control circuit 5'', the error value can be determined as shown in FIG. 8 (4), and this value can be used as the correction value. By correcting the height control value, extremely accurate detection and control becomes possible.

第12図の実施例でλ、を粗検出のみに用いているが、
精検出に用いても良いし、また第4の波長を具備しても
良い。また色素レーザ等波長可変のレーザを用いても本
発明を実現できる。またレーザ光に限らず水銀ランプ等
点光源でパワーが強い光源から、コリメート光を生成し
、狭帯域スペクトルを碍子渉縞を得ても良い。
In the embodiment shown in FIG. 12, λ is used only for rough detection, but
It may be used for precise detection, or may include a fourth wavelength. The present invention can also be realized using a wavelength tunable laser such as a dye laser. Further, collimated light may be generated not only from a laser beam but also from a point light source with a strong power such as a mercury lamp to obtain a narrow band spectrum with insulator fringes.

第1図、第9図、第12図で説明した実施例ではいずれ
も縮小露光装置の露光焦点合せを目的としたものである
が、本発明はこのような用途に限定されるものではな(
、広く、表面の高さと傾きを+、、、 枢クロンメート
ル以下の高精度で検出したり、検ジ 出結果から、検出面の高さや傾きを制御する対象に活用
できることは云うまでもない。
Although the embodiments described in FIGS. 1, 9, and 12 are all intended for exposure focusing of a reduction exposure device, the present invention is not limited to such applications.
Needless to say, it can be widely used to detect the height and inclination of a surface with a high precision of less than 100 cm, and to control the height and inclination of the detection surface based on the detection results.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように光学的多1−物体の下地が
AIのように非常に反射率の高い材質であっても、表面
の高さ及び傾きを0.1μm以内の高精度に検出するこ
とが可能なため、例えば半導体露光装置に於る0、5μ
mL々Sの微細パターン露光時に丁度結像面と、レジス
ト表面を完全番こ一致制御することが可能となり、線幅
ばらつきのほとんどないパターン形成が可能となる。ま
た、この結果、パターン路光の歩留りが大幅に向上し、
大きな経済的効果を発揮する。
As explained above, the present invention is capable of detecting the height and inclination of the surface with high accuracy within 0.1 μm even if the base of the object is made of a material with extremely high reflectivity such as AI. For example, 0.5μ in semiconductor exposure equipment.
When exposing a fine pattern of mL to S, it is possible to control the image plane and the resist surface to perfectly match each other, making it possible to form a pattern with almost no variation in line width. In addition, as a result, the yield of pattern path light is greatly improved,
It has a great economic effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第9図及び第12図は本発明の実施例を示す図
、第2図は本発明の詳細な説明するための表面での光の
反射、屈折図、@5図乃至第5図は各々AIが下地の場
合の反射光の複素撮幅図、第6図は本発明における入射
角と干渉縞ピッチ分の高さ変化を示す図、第7図は下地
の反射率と最大誤差の関係を示す図、@8図はレジスト
厚変化に伴なう位相変化による検出誤差9反射光の位相
9反射光の振幅の関係を示す図、第10図は検出波長を
変えた時の許容検出誤差以上となるレジスト厚を示す図
、第11図は検出された干渉縞情報の処理と波長選択の
方法を示す本発明の一実施例を示す図である。 1.1’、1“・・・干渉用光源
Figures 1, 9, and 12 are diagrams showing embodiments of the present invention, and Figure 2 is a diagram of reflection and refraction of light on a surface for detailed explanation of the present invention. The figures are complex imaging width diagrams of reflected light when AI is the base, Figure 6 is a diagram showing the incident angle and height change corresponding to the interference fringe pitch in the present invention, and Figure 7 is the reflectance of the base and maximum error. Figure @8 is a diagram showing the relationship between detection error 9 phase of reflected light 9 amplitude of reflected light due to phase change due to change in resist thickness, Figure 10 is tolerance when changing detection wavelength FIG. 11, which is a diagram showing the resist thickness exceeding the detection error, is a diagram showing an embodiment of the present invention showing a method of processing detected interference fringe information and wavelength selection. 1.1', 1"... light source for interference

Claims (1)

【特許請求の範囲】 1、波長の異なる複数波長のビームを出射する単色光源
と、該単色光源より出射したビームをほぼ平行光とする
コリメート手段と、上記ビームを複数ビームに分割する
ビームスプリッタと、該ビームスプリッタで分割された
一方の平行ビームを光学的多層物体に照射する照射光学
手段と、該照射光学手段で照射され、光学的多層物体で
反射した物体光を検出器に導く検出光学系と、上記ビー
ムスプリッタで分割された他方の平行ビームを上記検出
器に導き、検出器上で上記検出光学系で得られる物体光
と重畳せしめる参照光光学系と、複数波長の光に対応し
、上記検出器で検出される複数の干渉縞の情報信号の何
れかを選択し、光学的多層物体の傾き若しくは高さを検
出する選択検出手段とを備えたことを特徴とする干渉式
傾きもしくは高さ検出装置。 2、上記選択検出手段における選択を、光学的多層物体
の光学的特性と膜構造の情報とから行なうように構成し
たことを特徴とする請求項1記載の干渉式傾きもしくは
高さ検出装置。 3、上記選択検出手段は、複数波長での物体光を比較す
る比較手段を有することを特徴とする請求項1記載の干
渉式傾きもしくは高さ検出装置。 4、上記選択検出手段は、干渉縞の情報をフーリエ変換
し、該フーリエ変換スペクトルの周波数ω_0(=0)
のバイアス成分I(ω_0)と、干渉縞の周波数に対応
するスペクトル成分I(ω′)の比I(ω′)/I(ω
_0)の値を各波長で比較する比較手段を有することを
特徴とする請求項1記載の干渉式傾きもしくは高さ検出
装置。 5、上記選択検出手段は、光学的多層物体の光学的特性
と膜構造の情報とを用い、選択された波長による測定結
果を補正するように構成したことを特徴とする請求項5
又は4記載の干渉式傾きもしくは高さ検出装置。 6、上記照射光学手段による入射角を85゜以上に構成
したことを特徴とする請求項1〜4の内選ばれた一つ記
載の干渉式傾きもしくは高さ検出装置。 7、上記単色光源は、S偏向の出射するように構成した
ことを特徴とする請求項1〜4の内選ばれた一つ記載の
干渉式傾きもしくは高さ検出装置。 8、基板をステップアンドリピートさせて、縮小投影レ
ンズによりマスク上に形成された回路パターンを基板上
に縮小投影露光する縮小投影式露光装置において、波長
の異なる複数波長のビームを出射する光源と、該光源よ
り出射したビームをほぼ平行光とするコリメート手段と
、上記ビームを複数ビームに分割するビームスプリッタ
と、該ビームスプリツタで分割された一方の平行ビーム
を上記縮小投影レンズと基板との間隙を通して上記基板
上に照射する照射光学手段と、該照射光学手段で照射さ
れ、基板上で反射した物体光を上記縮小投影レンズと基
板との間隙を通して検出器に導く検出光学系と、上記ビ
ームスプリッタで分割された他方の平行ビームを上記検
出器に導き、検出器上で上記検出光学系で得られる物体
光と重畳せしめる参照光光学系と、複数波長の光に対応
し、上記検出器で検出される複数の干渉縞の情報信号の
何れかを選択し、上記基板の部分的傾き若しくは高さを
検出する選択検出手段とを備えたことを特徴とする縮小
投影式露光装置。 9、基板をステップアンドリピートさせて、縮小投影レ
ンズによりマスク上に形成された回路パターンを基板上
に縮小投影露光する縮小投影式露光方法において、光源
より出射された波長の異なる複数波長のビームをほぼ平
行光にして複数ビームに分割し、分割された一方の平行
ビームを上記縮小投影レンズと基板との間隙を通して上
記基板上に照射して基板上で反射した物体光を上記縮小
投影レンズと基板との間隙を通して検出器に導き、分割
された他方の平行ビームを検出器に導いて検出器上で物
体光と重畳せしめ、複数波長の光に対応し、上記検出器
で検出される複数の干渉縞の情報信号の何れかを選択し
、上記基板の部分的傾き若しくは高さを検出することを
特徴とする縮小投影式露光方法。
[Scope of Claims] 1. A monochromatic light source that emits beams of a plurality of different wavelengths, a collimator that converts the beam emitted from the monochromatic light source into substantially parallel light, and a beam splitter that splits the beam into a plurality of beams. , an irradiation optical means for irradiating an optical multilayer object with one of the parallel beams split by the beam splitter, and a detection optical system that guides the object light irradiated by the irradiation optical means and reflected by the optical multilayer object to a detector. and a reference light optical system that guides the other parallel beam split by the beam splitter to the detector and causes it to be superimposed on the detector with the object light obtained by the detection optical system, and is compatible with light of multiple wavelengths, An interference type inclination or height selecting means for selecting one of the information signals of a plurality of interference fringes detected by the detector and detecting the inclination or height of the optical multilayer object. Detection device. 2. The interferometric tilt or height detecting device according to claim 1, wherein the selection in the selection detecting means is made based on the optical characteristics of the optical multilayer object and information on the film structure. 3. The interferometric tilt or height detection device according to claim 1, wherein the selective detection means includes comparison means for comparing object light beams at a plurality of wavelengths. 4. The selection detection means performs Fourier transform on the interference fringe information, and calculates the frequency ω_0 (=0) of the Fourier transform spectrum.
The ratio I(ω')/I(ω
2. The interferometric tilt or height detection device according to claim 1, further comprising comparison means for comparing the values of _0) at each wavelength. 5. Claim 5, wherein the selection detection means is configured to correct the measurement result based on the selected wavelength using the optical characteristics of the optical multilayer object and information on the film structure.
or the interferometric tilt or height detection device according to 4. 6. The interferometric tilt or height detection device according to claim 1, wherein the incident angle of the irradiation optical means is set to 85° or more. 7. The interferometric tilt or height detection device according to claim 1, wherein the monochromatic light source is configured to emit S-polarized light. 8. A light source that emits beams of a plurality of different wavelengths in a reduction projection type exposure apparatus that step-and-repeat the substrate and perform reduction projection exposure of a circuit pattern formed on a mask using a reduction projection lens onto the substrate; a collimator that converts the beam emitted from the light source into substantially parallel light; a beam splitter that splits the beam into a plurality of beams; and a beam splitter that splits one of the parallel beams into a plurality of parallel beams that is split between the reduction projection lens and the substrate. an irradiation optical means for irradiating the substrate through the irradiation optical means; a detection optical system that guides the object light irradiated by the irradiation optical means and reflected on the substrate to a detector through a gap between the reduction projection lens and the substrate; and the beam splitter. A reference beam optical system guides the other parallel beam divided by 1. A reduction projection type exposure apparatus, comprising: selection detection means for selecting one of a plurality of information signals of interference fringes and detecting a partial tilt or height of the substrate. 9. In a reduction projection exposure method in which a circuit pattern formed on a mask is exposed by step-and-repeat on the substrate using a reduction projection lens, beams of multiple different wavelengths emitted from a light source are used. The beam is made almost parallel and divided into a plurality of beams, one of the divided parallel beams is irradiated onto the substrate through the gap between the reduction projection lens and the substrate, and the object light reflected on the substrate is transmitted between the reduction projection lens and the substrate. The other split parallel beam is guided to the detector through a gap between the beam and the object beam, and is superimposed on the object beam on the detector. 1. A reduction projection exposure method, characterized in that one of the striped information signals is selected and a partial tilt or height of the substrate is detected.
JP1249123A 1989-04-21 1989-09-27 Interferometric tilt or height detecting device, reduction projection type exposure device and method thereof Expired - Lifetime JP2786270B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1249123A JP2786270B2 (en) 1989-09-27 1989-09-27 Interferometric tilt or height detecting device, reduction projection type exposure device and method thereof
EP90906337A EP0426866B1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
PCT/JP1990/000520 WO1990013000A1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
US07/623,438 US5227862A (en) 1989-04-21 1990-04-20 Projection exposure apparatus and projection exposure method
DE69027738T DE69027738T2 (en) 1989-04-21 1990-04-20 PROJECTION AND PLAYBACK CONTROL AND PROJECTION AND PLAYBACK METHOD
KR1019900702643A KR930011884B1 (en) 1989-04-21 1990-04-20 Projection exposure device and projection exposure method
US07/936,661 US5392115A (en) 1989-04-21 1992-08-28 Method of detecting inclination of a specimen and a projection exposure device as well as method of detecting period of periodically varying signal
US08/315,841 US6094268A (en) 1989-04-21 1994-09-30 Projection exposure apparatus and projection exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249123A JP2786270B2 (en) 1989-09-27 1989-09-27 Interferometric tilt or height detecting device, reduction projection type exposure device and method thereof

Publications (2)

Publication Number Publication Date
JPH03111713A true JPH03111713A (en) 1991-05-13
JP2786270B2 JP2786270B2 (en) 1998-08-13

Family

ID=17188279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249123A Expired - Lifetime JP2786270B2 (en) 1989-04-21 1989-09-27 Interferometric tilt or height detecting device, reduction projection type exposure device and method thereof

Country Status (1)

Country Link
JP (1) JP2786270B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167139A (en) * 2003-12-05 2005-06-23 Canon Inc Wavelength selection method, position detection method and apparatus, and exposure apparatus
JP2005302791A (en) * 2004-04-06 2005-10-27 Canon Inc Exposure system, its manufacturing method, and wavelength selection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314943C (en) * 2005-10-12 2007-05-09 浙江大学 Micro angular displacement measuring device based on linear array charge-coupled device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178304A (en) * 1983-03-30 1984-10-09 Hitachi Ltd Minute gap measuring method and apparatus therefor
JPS6457107A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Measuring method of distribution of film thickness and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178304A (en) * 1983-03-30 1984-10-09 Hitachi Ltd Minute gap measuring method and apparatus therefor
JPS6457107A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Measuring method of distribution of film thickness and apparatus therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167139A (en) * 2003-12-05 2005-06-23 Canon Inc Wavelength selection method, position detection method and apparatus, and exposure apparatus
JP4677183B2 (en) * 2003-12-05 2011-04-27 キヤノン株式会社 Position detection apparatus and exposure apparatus
JP2005302791A (en) * 2004-04-06 2005-10-27 Canon Inc Exposure system, its manufacturing method, and wavelength selection method

Also Published As

Publication number Publication date
JP2786270B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US4356392A (en) Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed
US6122058A (en) Interferometer system with two wavelengths, and lithographic apparatus provided with such a system
US5153678A (en) Method of determining regularity of a pattern array to enable positioning of patterns thereof relative to a reference position
US5818588A (en) Displacement measuring method and apparatus using plural light beam beat frequency signals
US4999014A (en) Method and apparatus for measuring thickness of thin films
TWI416272B (en) Surface shape measuring apparatus, exposure apparatus, and device manufacturing method
US4748333A (en) Surface displacement sensor with opening angle control
JP3851657B2 (en) Method for repetitively imaging a mask pattern on a substrate and apparatus for carrying out this method
US6198527B1 (en) Projection exposure apparatus and exposure method
CN112987504B (en) Focus calibration system and focus calibration method based on light beam scanning angle modulation
JP2013055338A (en) Level sensor arrangement for lithography apparatus, lithography apparatus and manufacturing method of device
US5191465A (en) Optical apparatus for alignment of reticle and wafer in exposure apparatus
JPH03111713A (en) Interference type apparatus for detecting tilt or height, reduction stepper and method therefor
JPH08219718A (en) Plane position detector
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JPH07134013A (en) Surface shape measuring method and projection aligner
JP3206201B2 (en) Projection exposure method
JP2796347B2 (en) Projection exposure method and apparatus
US20100125432A1 (en) Measurement apparatus, measurement method, computer, program, and exposure apparatus
JP2555051B2 (en) Pattern detection method and device
JPH03249513A (en) Method and device for detecting inclination or height, projection exposure device, and method and device for interference fringe detection
JP3111556B2 (en) Fine pattern forming equipment
JPH0786131A (en) Aligner
JPH0340417A (en) Projection aligner
KR930011884B1 (en) Projection exposure device and projection exposure method