JPH0340417A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH0340417A
JPH0340417A JP2064155A JP6415590A JPH0340417A JP H0340417 A JPH0340417 A JP H0340417A JP 2064155 A JP2064155 A JP 2064155A JP 6415590 A JP6415590 A JP 6415590A JP H0340417 A JPH0340417 A JP H0340417A
Authority
JP
Japan
Prior art keywords
light
exposure apparatus
height
projection exposure
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2064155A
Other languages
Japanese (ja)
Other versions
JPH0828319B2 (en
Inventor
Yoshitada Oshida
良忠 押田
Tetsuzo Tanimoto
谷本 哲三
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to US07/623,438 priority Critical patent/US5227862A/en
Priority to KR1019900702643A priority patent/KR930011884B1/en
Priority to PCT/JP1990/000520 priority patent/WO1990013000A1/en
Priority to DE69027738T priority patent/DE69027738T2/en
Priority to EP90906337A priority patent/EP0426866B1/en
Publication of JPH0340417A publication Critical patent/JPH0340417A/en
Priority to US07/936,661 priority patent/US5392115A/en
Priority to US08/315,841 priority patent/US6094268A/en
Publication of JPH0828319B2 publication Critical patent/JPH0828319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately detect the inclination and height of the surface of the photoresist on the material to be exposed by a method wherein the light emitted from a source of coherent light is made to irradiate diagonally, and the grown interference fringes are measured. CONSTITUTION:The light emitted from the coherent light source 1 such as a semiconductor laser and the like is formed into a parallel illumination light 15 by a lens 11. This illumination light 15 is made to irradiate diagonally at the incidence angle theta on the exposure region of the projection optical system, consisting of an illumination system 81, an exposure and projection lens 8 and the like located on the surface of the photoresist on a wafer 4, through the intermediary of a beam splitter 10. The interference fringes, which are obtained by having the reference light 17 formed by splitting the light emitted from a light source 1 by a beam splitter 10 on a pattern detector 3 at the desired angle, is detected. The inclination and the height of the surface of the photoresist on the wafer 4 can be computed from the change of the pitch and phase of the above-mentioned interference fringes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体回路パターン、液晶等表示デバイスパタ
ーン、等微細パターンの投影露光装置に係り、特に、露
光領域全面を高解像度で露光可能とする被露光物体の傾
きと高さを検出する手段を具備した投影露光装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a projection exposure apparatus for fine patterns such as semiconductor circuit patterns, display device patterns such as liquid crystals, etc., and in particular, it is capable of exposing the entire exposure area with high resolution. The present invention relates to a projection exposure apparatus equipped with means for detecting the inclination and height of an object to be exposed.

〔従来の技術〕 半導体集積回路の微細パターンの露光、或いはT F 
T(Thin  Film  Transistor)
液晶テレビに代表される表示デバイスの大視野パターン
中の15゜ 16゜ 17゜ 駆動回路パターンの露光等では露光領域内全体に亘って
線幅ばらつきの少ない、原画に忠実なパターンを露光す
る必要がある。特に半導体集積回路の分野では今後0.
5μmパターン以下の線幅パターンを15問近い領域全
面に露光する必要があるが、パターンの微細化に伴ない
、結像する範囲(焦点深度)は±1μm以下となる。こ
のため、パターン結像面にウェハ上のフォトレジスト面
を正確に一致させることが不可欠となる。これを実現す
るにはウェハ表面(フォトレジスト表面)の露光領域に
おける傾きと高さを正確に検出することが必要となる。
[Prior art] Exposure of fine patterns of semiconductor integrated circuits or TF
T (Thin Film Transistor)
When exposing a 15°, 16°, and 17° drive circuit pattern, which is one of the large field-of-view patterns of display devices such as LCD televisions, it is necessary to expose a pattern that is faithful to the original image and has little variation in line width over the entire exposed area. be. Especially in the field of semiconductor integrated circuits, the future will be 0.
It is necessary to expose the entire area of nearly 15 areas with a line width pattern of 5 μm or less, but as the pattern becomes finer, the imaging range (depth of focus) becomes ±1 μm or less. For this reason, it is essential to accurately align the photoresist surface on the wafer with the pattern image formation surface. To achieve this, it is necessary to accurately detect the inclination and height of the exposed area of the wafer surface (photoresist surface).

従来特開昭63−7626号公報で示されている第1の
公知例では半導体レーザをウェハ表面上に斜め方向から
集光し、その集光位置を検出することにより高さを検出
している。またこの公知例ではウェハの多層構造に伴う
多重反射に対し、3波長の半導体レーザを用いて対応し
、集光位置を斜め入射方向と直角方向に変え、ウェハ上
の異なる場所の高さを求めている。本公知例は高さの検
出を主にしており、斜め入射方向と直角方向に場所を変
え測定し、傾きを検出することも可能であるが、直径2
0mm程度の狭い領域の2カ所を測定しても傾きの正確
な値は得にくい。それは本公知例で高さ検出を高精度に
実現するにはウェハ上の集光を充分に、即ち集光径をで
きるだけ小さくする必要があるが、集光径を小さくする
には集光ビームの集光角(主光線に対する集光束の最外
光線の角)を大きくする必要があり、この結果主光線の
入射角度は小さくせざるを得ない。この角度を小さくす
る(ウェハ面に垂直な線からの角度が小さくなる)とウ
ェハの多層構造に伴なう多重干渉の影響は後述の理由か
ら大きくなる。本公知例ではこの課題に対し3波長を用
いているが、それぞれの波長に対しては干渉の影響を受
けており、根本的な過大解決とならない。
In the first known example disclosed in Japanese Patent Laid-Open No. 63-7626, a semiconductor laser is focused on the wafer surface from an oblique direction, and the height is detected by detecting the focused position. . In addition, in this known example, multiple reflections due to the multilayer structure of the wafer are dealt with by using a three-wavelength semiconductor laser, and the light focusing position is changed to the oblique incident direction and the right angle direction, and the heights of different places on the wafer are determined. ing. This known example mainly detects the height, and it is also possible to detect the inclination by changing the measurement location in the oblique incident direction and the perpendicular direction, but it is also possible to detect the inclination.
It is difficult to obtain an accurate value of the inclination even if two locations in a narrow area of about 0 mm are measured. In order to achieve highly accurate height detection in this known example, it is necessary to sufficiently condense the light on the wafer, that is, to make the condensed diameter as small as possible. It is necessary to increase the condensing angle (the angle of the outermost ray of the condensed beam with respect to the principal ray), and as a result, the angle of incidence of the principal ray must be made small. When this angle is made smaller (the angle from a line perpendicular to the wafer surface becomes smaller), the influence of multiple interference associated with the multilayer structure of the wafer increases for reasons described later. In this known example, three wavelengths are used to solve this problem, but each wavelength is affected by interference, so it is not a fundamental over-solution.

また従来の傾き検出の方法として特開昭63−1994
20号公報で示されている第2の公知例では投影レンズ
を通して露光波長と異なる傾き検出光を照射し1反射光
を集光し、集光位置から傾きを検出しているが、ウェハ
にほぼ垂直或いは浅い角度で入射させるため後述の理由
から下地からの反射光との干渉の影響が無視できなくな
り、正確な検出は困難となる。
In addition, as a conventional method of detecting inclination,
In the second known example shown in Publication No. 20, a tilt detection light different from the exposure wavelength is irradiated through a projection lens, one reflected light is collected, and the tilt is detected from the focused position. Since the light is incident perpendicularly or at a shallow angle, the influence of interference with light reflected from the base cannot be ignored for reasons described later, making accurate detection difficult.

更に従来の多層構造物体に対する高さ検出の方法として
特開昭63−247741号公報で示される第3の公知
例では下地膜からの反射光を別々に分離しているが、こ
のような方法は半導体回路作成のプロセスに登場する薄
い膜に対して実行困難である。
Furthermore, in a third known example of a conventional height detection method for a multilayered object, disclosed in Japanese Patent Application Laid-Open No. 63-247741, the reflected light from the base film is separated separately. It is difficult to perform this method on thin films that appear in the process of creating semiconductor circuits.

〔発明が解決しようとする課題〕 上記従来技術は露光領域内の傾きと高さの情報を、半導
体回路パターンを有するウェハ等多層構造に対し、正確
に得ると言う点について配慮されておらず、今後の0.
5μm以下の回路パターン露光に要求される高精度の傾
き及び高さ制御に対して問題があった。
[Problems to be Solved by the Invention] The above-mentioned conventional technology does not take into account the fact that information on the inclination and height within the exposure area can be accurately obtained for a multilayer structure such as a wafer having a semiconductor circuit pattern. Future 0.
There was a problem with the highly accurate tilt and height control required for circuit pattern exposure of 5 μm or less.

本発明の目的は上記従来の課題を解決し、半導体プロセ
スのいかなるウェハに対しても露光領域におけるフォト
レジスト表面の傾きと高さを正確に検出し、常に結像面
にレジスト表面或いはその近傍の最適位置に合せ、線幅
ばらつきの少ない高解像のパターンを露光する投影露光
装置を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems, to accurately detect the inclination and height of the photoresist surface in the exposure area for any wafer in a semiconductor process, and to always keep the image on the image plane at or near the photoresist surface. An object of the present invention is to provide a projection exposure apparatus that exposes a high-resolution pattern with little variation in line width in an optimal position.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明においては、可干渉光
源より出射した光を平行な照明光とし、ウェハ上のフォ
トレジスト表面上にある投影光学系の露光領域に斜めか
ら入射角θで照射し、反射光と、上記光源から出射した
光を分離して作った参照光をパターン検出器上で互に所
望の角度を付けて入射させ得られる干渉縞を検出する。
In order to achieve the above object, the present invention uses parallel illumination light emitted from a coherent light source and irradiates the exposure area of the projection optical system on the photoresist surface on the wafer obliquely at an incident angle θ. , the reflected light and the reference light created by separating the light emitted from the light source are incident on a pattern detector at a desired angle to detect interference fringes.

この干渉縞ピッチと位相の変化からウェハ上のフォトレ
ジストと表面の傾きと高さの変化を求めることが可能と
なる。また入射角度を85°以上にすることは平行光束
を用いている本発明では容易であり、入射角が大きいた
めフォトレジスト表面での反射が大部分となり、下地の
層構造の各層での反射に伴ない1発生する干渉の影響は
ほとんど無視できるようになる。またフォトレジスト入
射光をS偏光とすれば表面での反射が更に大きくなり精
度が向上する。
From changes in the interference fringe pitch and phase, it is possible to determine changes in the inclination and height of the photoresist on the wafer and the surface. In addition, it is easy to set the incident angle to 85° or more in the present invention, which uses a parallel light beam, and because the incident angle is large, most of the reflection occurs on the photoresist surface, and the reflection on each layer of the underlying layer structure. As a result, the influence of interference that occurs becomes almost negligible. Furthermore, if the light incident on the photoresist is made into S-polarized light, the reflection on the surface will be further increased and the accuracy will be improved.

また上記フォトレジスト表面で反射した光を平面鏡に垂
直に入射し、反射した光を再びフォトレジスト表面に入
射させ、この反射光を物体光として干渉パターンの情報
を得ればウェハの傾きや高さの検出を2倍の感度で実行
することが可能となり、更に精度の高い検出が可能とな
る。
In addition, the light reflected on the photoresist surface is incident perpendicularly on a plane mirror, the reflected light is made incident on the photoresist surface again, and the reflected light is used as object light to obtain information on the interference pattern. It becomes possible to perform detection with twice the sensitivity, and even more accurate detection becomes possible.

また、上記参照光をフォトレジストの照射光および物体
光(反射光)と実効的にほぼ同一の方向に進みかつ同一
の領域を通過するごとく構成することにより、各光路は
空気のゆらぎ等外乱を同じように受け、周囲環境の変化
の影響を受けにくい傾きおよび高さ検出が可能となる。
In addition, by configuring the reference light to travel in substantially the same direction and pass through the same area as the photoresist irradiation light and object light (reflected light), each optical path is free from external disturbances such as air fluctuations. In the same way, it is possible to detect inclination and height that are less susceptible to changes in the surrounding environment.

また得られた干渉縞の情報を高速フーリエ変換し、その
結果である縞のスペクトル近傍の情報から傾きΔθと高
さΔhを求めれば、実時間と看做せる程度に高速にΔθ
、Δhが求まる。またこの時フォトレジスト照射位置が
パターン検出手段であるアレイセンサ受光面と光学的に
共役(結像)な関係にあれば、ウェハ上の所望の領域の
みの情報を選び出し、その部分の傾きと高さを求めるこ
とが可能となる。
In addition, if the information on the obtained interference fringes is subjected to fast Fourier transform and the slope Δθ and height Δh are calculated from the resulting information near the spectrum of the fringes, Δθ can be calculated at a high speed that can be considered as real time.
, Δh are found. At this time, if the photoresist irradiation position is in an optically conjugate (imaging) relationship with the light receiving surface of the array sensor, which is the pattern detection means, information on only the desired area on the wafer can be selected, and the inclination and height of that area can be selected. It becomes possible to seek the

また上述の干渉計測を一波長の光で実行する時、得られ
る干渉縞の位相から高さを求めるが、この位相の変・化
はαから2Ωπ+α(n:整数)に変化してもnは同定
できない、そこで波長の異なる第2の可干渉光を用い、
第1の波長の光と同一の光学系(光路)に導き、検出時
に2つの波長を分離し、2つの干渉縞情報を用い高さを
決定すれば。
Furthermore, when performing the above-mentioned interferometric measurement using light of one wavelength, the height is determined from the phase of the interference fringes obtained. Even if the phase changes from α to 2Ωπ + α (n: integer), n is cannot be identified, so a second coherent light with a different wavelength is used,
If the light of the first wavelength is guided to the same optical system (optical path), the two wavelengths are separated at the time of detection, and the height is determined using the two pieces of interference fringe information.

広い高さ変化の範囲に亘り高さ情報を精密に求めること
が可能となる。またエアーマイクロ等の他のウェハ高さ
検出手段を併用することにより、一波長検出による高さ
方向の不確定要因を除去し、広い高さ変化の範囲に亘り
高さ情報を精密に求めることが可能となる。
It becomes possible to precisely obtain height information over a wide range of height changes. In addition, by using other wafer height detection means such as air micro, the uncertainty factor in the height direction due to single wavelength detection can be removed, and height information can be precisely obtained over a wide range of height changes. It becomes possible.

〔作用〕[Effect]

上記のパターン検出器で得られる干渉縞の情報はピッチ
と位相の情報を有するため、傾きと高さの情報が同時に
得られる。しかも入射角度を85゜以上にすると以下に
説明するようにフォトレジスト表面の傾きや高さが正確
に同時に求まる。以下この入射角と入射光の偏光と検出
の精度について説明する。
Since the interference fringe information obtained by the above-mentioned pattern detector includes pitch and phase information, inclination and height information can be obtained at the same time. Moreover, when the incident angle is set to 85 degrees or more, the inclination and height of the photoresist surface can be determined accurately and simultaneously, as will be explained below. The angle of incidence, the polarization of the incident light, and the accuracy of detection will be explained below.

被測定物体に入射する光の振幅をS偏光、P偏光に対し
As、Apとすると、屈折率nの物体の表面で反射及び
屈折する光の振幅Rs、Rp及びDs。
If the amplitude of light incident on the object to be measured is As and Ap for S-polarized light and P-polarized light, the amplitudes of light reflected and refracted on the surface of the object with refractive index n are Rs, Rp, and Ds.

Dρは入射角θ、屈折角ψ(sinφ= sinθ/ 
n )に対し、以下の式で与えられる。
Dρ is the incident angle θ, the refraction angle ψ (sinφ=sinθ/
n) is given by the following formula.

) 〉 ) 】 S偏光では入射角が0°から60° P偏光では0°か
ら75°程度までは表面反射光より透過光の方が大きく
、下地の多層構造の境界からの反射光により表面反射光
との間で振幅の大きな干渉が発生する。入射角が上記値
から85°程度までは表面反射光の振幅の方が大きくな
るが、正確な測定を実現するには不十分な条件である。
) 〉 ) ] For S-polarized light, the incident angle is from 0° to 60°; for P-polarized light, from 0° to 75°, the transmitted light is larger than the surface reflected light, and the surface reflection is due to the reflected light from the boundary of the underlying multilayer structure. Large-amplitude interference occurs with light. Although the amplitude of the surface reflected light becomes larger when the incident angle is about 85° from the above value, this is an insufficient condition to realize accurate measurement.

以下にその理由を示す。第17図に示すように入射角O
で入射した振幅Aの光は屈折角−振@Dで屈折し、下地
で振幅反射率Rbで反射すると、この反射光の振幅はD
Rbとなる。ここで入射光Aの振幅を1とするとDは振
幅透過率になる。従って下地で反射した光が表面を通過
するとその振幅はRbD’となる。他方振@AC=1)
で入射した光は表面で反射しその振幅はRとなる。ここ
でRやDは入射光の偏光がSかPかでRs、Ds及びR
PtDPで表わせば上記(1)〜(4)式が成立する0
表面で反射した光R8と下地で反射した光R1は層の厚
さdが薄いと重なり、その結果次式で示す複素振幅A1
の光となる。
The reason is shown below. As shown in Figure 17, the angle of incidence O
Light with amplitude A that is incident at
It becomes Rb. Here, if the amplitude of the incident light A is 1, then D is the amplitude transmittance. Therefore, when the light reflected from the base passes through the surface, its amplitude becomes RbD'. Other swing @AC=1)
The incident light is reflected by the surface and its amplitude becomes R. Here, R and D indicate whether the polarization of the incident light is S or P, and Rs, Ds, and R
If expressed in PtDP, the above equations (1) to (4) hold 0
The light R8 reflected on the surface and the light R1 reflected on the underlayer overlap when the layer thickness d is small, resulting in a complex amplitude A1 expressed by the following equation.
It becomes the light of

但しここでλは測定に用いる光の波長である。第3図に
示す膜の厚さdの僅かな変化(波長の1桁下の長さの変
化)に対しても(5)式からA1の位相が変化すること
が分る。そこで入射角θとR,Dの関係はS及びP偏光
に対しそれぞれ第5図及び第6図に示す通りであり、こ
のグラフから更に分り易くするためノイズ成分となる(
5)式の第1項に対する第2項の振幅比RbD”/Rを
求めれば、測定に及ぼす誤差の程度を評価することがで
きる。そこで最悪のケースとしてRb=1の場合を考え
、D” /Rを入射角度θに対し、また2つの偏光に対
して求めたものが第7図である。
However, here, λ is the wavelength of light used for measurement. It can be seen from equation (5) that the phase of A1 changes even when the thickness d of the film shown in FIG. 3 changes slightly (a change in length one digit below the wavelength). Therefore, the relationship between the incident angle θ and R and D is as shown in Figs. 5 and 6 for S and P polarized light, respectively, and to make it easier to understand from this graph, it becomes a noise component (
5) By finding the amplitude ratio RbD"/R of the second term to the first term in the equation, it is possible to evaluate the degree of error that will affect the measurement. Therefore, considering the case where Rb = 1 as the worst case, D" FIG. 7 shows /R determined for the incident angle θ and for the two polarized lights.

D” /Rは各種検出方法において雑音(誤差)成分と
なるため、この値を5%以下に保つには856以上の入
射角にする必要があることが分る。またS偏光状態で入
射すれば更に雑音が小さくなることが第7図から分る。
Since D''/R becomes a noise (error) component in various detection methods, it is clear that in order to keep this value below 5%, it is necessary to set the angle of incidence to 856 or more. It can be seen from FIG. 7 that the noise becomes even smaller.

被測定物体表面で2度反射させる方法は第3図に示すよ
うに面の傾きαに対し4α光が傾き、1度反射させる場
合に比べ傾きと高さの検出感度を2倍向上させることに
なり、精度の高い検出を可能にする。
As shown in Figure 3, the method of reflecting twice on the surface of the object to be measured is such that the 4α light is tilted with respect to the surface inclination α, and the detection sensitivity for tilt and height is doubled compared to the case of reflecting once. This enables highly accurate detection.

また下地面からの反射光は干渉パターンに重畳し干渉縞
のピッチや位相を乱すが、85′以上の入射によりまた
更にS偏光を用いることにより前述した通りほとんどこ
の影響を除くことが可能となり、精度の高い検出が可能
となる。更にこの干渉測定に用いる参照先の光路を測定
光とほぼ同一の光路にすることにより空気のゆらぎ等の
測定環境の影響をほとんど受けない安定で高精度の測定
を実現する。
In addition, the reflected light from the underlying surface is superimposed on the interference pattern and disturbs the pitch and phase of the interference fringes, but by using 85' or more of incidence or by using S-polarized light, it is possible to almost eliminate this effect as mentioned above. Highly accurate detection becomes possible. Furthermore, by making the reference optical path used for this interference measurement almost the same optical path as the measurement light, stable and highly accurate measurement that is almost unaffected by the measurement environment such as air fluctuations can be realized.

また得られた干渉縞情報を高速フーリエ変換(FTT)
プログラムによりスペクトル検出すると縞の周波数に相
当するスペクトルの情報がピッチと位相を表わしている
ため、この値から傾きと高さが同時に求まる。またFF
Tはマトリックス演算であるため並列演算処理が可能で
あり、このような並列演算回路を用いれば1ms以下で
処理が可能となり、傾きと高さを検出し、実時間で制御
することも容易にできる。
In addition, the obtained interference fringe information is subjected to fast Fourier transform (FTT).
When the spectrum is detected by a program, the information on the spectrum corresponding to the frequency of the fringe represents the pitch and phase, so the slope and height can be determined at the same time from this value. Also FF
Since T is a matrix calculation, parallel calculation processing is possible, and if such a parallel calculation circuit is used, processing can be performed in less than 1 ms, and it is also easy to detect tilt and height and control in real time. .

また、干渉検出の場合、干渉縞の一ピッチ分の変化が起
ると、検出される干渉縞は全く同一のものになる。この
ため整数ピンチの移動量を加減したものが検出値の不確
定値として残ることになる。
In addition, in the case of interference detection, if a change of one pitch of interference fringes occurs, the detected interference fringes become exactly the same. Therefore, the amount obtained by adding or subtracting the movement amount of the integer pinch remains as an uncertain value of the detected value.

本発明では第2の波長を検出光として第1波長と同様に
干渉検出し、第1波と第2波長の位相関係から広い範囲
に亘り正確な高さ検出を可能にし、高精度、広範囲の傾
き及び高さ制御を可能にしている。またエアーマイクロ
等の他のウェハ高さ検出手段により一波長検出時の不確
定範囲の検出を行ない広い範囲に亘り正確な高さ検出を
可能にしている。
In the present invention, interference detection is performed using the second wavelength as the detection light in the same way as the first wavelength, and accurate height detection over a wide range is possible from the phase relationship between the first and second wavelengths. Allows for tilt and height control. Further, other wafer height detection means such as an air micro is used to detect an uncertain range when detecting one wavelength, thereby making it possible to accurately detect the height over a wide range.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

露光照明系81より出射した露光光はレチクル9を照明
し、その透過光は縮小投影レンズ8によりステージ7上
のウェハ4の表面にレチクル上のパターンの縮小像とし
て投影される。レチクル9とウェハ4の相対的位置はア
ライメント系800により検出され、レチクル9又はウ
ェハ4のいずれかを微動制御することによりパターンの
重ね露光が行われる。100XはX方向の傾き及び高さ
を検出する系であり、Y方向の傾きについては同様の光
学系が図示されないが存在する。以下検出系について説
明する。
Exposure light emitted from the exposure illumination system 81 illuminates the reticle 9, and the transmitted light is projected by the reduction projection lens 8 onto the surface of the wafer 4 on the stage 7 as a reduced image of the pattern on the reticle. The relative position of the reticle 9 and the wafer 4 is detected by an alignment system 800, and by controlling either the reticle 9 or the wafer 4 by fine movement, overlapping exposure of patterns is performed. 100X is a system for detecting the tilt and height in the X direction, and a similar optical system exists for the tilt in the Y direction, although it is not shown. The detection system will be explained below.

半導体レーザ等可干渉性の光11を出射した光をレンズ
11により平行光15にする。平行光15はビームスプ
リッタプリズム10により平行光16と17に分離され
る。平行光16は照射手段であるビームスプリッタ12
.ミラー13を経て上下および2軸の仰り機構を搭載し
ているステージ7の上の被露光物体であるウェハ4の上
面のフォトレジストに入射角θ、(88°)で入射して
いる。前述のごとくほぼ総ての光がフォトレジスト表面
で反射され、この反射物体光16′は折返し検出光学系
である平面境14に垂直に入射し5元の光路を逆に辿り
、被露光物体4で反射し、物体光26#としてミラー1
3゜ビームスプリッタ12、レンズ21.微小開口板2
3、レンズ22、を経て、パターン検出手段3に至る。
Light emitted from coherent light 11 such as a semiconductor laser is converted into parallel light 15 by a lens 11. The parallel beam 15 is separated into parallel beams 16 and 17 by the beam splitter prism 10. The parallel light 16 is transmitted through a beam splitter 12 which is an irradiation means.
.. The light passes through the mirror 13 and enters the photoresist on the upper surface of the wafer 4, which is the object to be exposed, on the stage 7, which is equipped with a vertical and two-axis lifting mechanism, at an incident angle θ (88°). As mentioned above, almost all of the light is reflected by the photoresist surface, and this reflected object light 16' enters the plane boundary 14, which is the folding detection optical system, perpendicularly and traces the optical path of the 5 elements in the reverse direction, to reach the exposed object 4. reflected by mirror 1 as object light 26#
3° beam splitter 12, lens 21. Micro aperture plate 2
3, the lens 22, and then the pattern detection means 3.

他方ビームスプリッタ10で分離された参照光17は、
照射光16とほぼ同一光路で同一方向に(但し厳密には
ウェハ垂線に対し、92°の角度の方向に)進み、平面
鏡14で垂直に反射し、物体光26′とほぼ同一経路を
参照光27″′として進み、楔ガラス24を経てパター
ン検出手段3に至る。参照光路が物体光路と異なる点は
被露光物体4で反射しない点、及び楔ガラス24を通過
する点である。レンズ21と22は平行光で入射した光
を平行光で出射させるが、ウェハ上の照射光の照射位置
、即ち露光領域Oをほぼパターン検出器上に結像させる
。今もし楔ガラスがないと、ウェハ面で反射し戻って来
た物体光と参照先の交叉点Aはパターン検出手段の受光
面の後方で結像する。このことはこの受光面では両光は
ずれている。そこで参照光(又は物体光)に楔ガラスを
入れ、受光面上で両光が交叉しかつ露光領域Oが結像す
るようにしている。折返し検出光学系内に配置されてい
る微小開口板23は、レンズ21に入射する平行光であ
る物体光と参照先の集光位置にあり、集光点に微小な開
口が有る。この微小開口板は干渉性の高いレーザ光を用
いる場合に問題となるレンズ、ビームスプリッタ等で発
生する裏面反射光を除去し、パターン検出手段の受光面
に雑音光が重畳しないようにしている。パターン検出手
段3で検出される干渉縞は第2図に示すような強度分布
Ixである。パターン検出手段3は一次元アレイセンサ
であり、第2図のX軸上に印された位置で強度値が求ま
り、このデータが処理回路5に伝送される。ウェハの露
光領域の表面が水平で露光結像系によるレチクル9の結
像面と一致すると(第3図の4)第2図の実線のピッチ
Pの干渉縞が得られる。もし露光領域の表面が第3図或
いは第2図の点線LL’ に示すようにαだけ傾くと、
第3図からも明らかな様に1回目の反射光は2α、戻っ
て来た2回目の反射光は4α傾くことになる。この結果
パターン検出手段で得られる干渉縞は第2図の点線に示
すようにピッチP′となる。検出手段で得られた干渉信
号は伝送線31により第4図に示す処理回路5に入力さ
れる。入力信号はまず第2図横軸印の各点に対応したタ
イミングでA/D変換されFF7回路に入力される。こ
のFFT入力信号は第4図(b)のようになっており、
FFTの結果は複素数C(k)で得られ第4図(C)に
示すように(但しこのグラフの縦軸はIc(k)I)一
般にに=oとに=mにスペクトルのピークを持つ。k=
oは正弦波のバイアス成分、k=mは正弦波の周期に対
応している。mはピッチPに対応しているが、出力は離
散的にしか得られないため、真のスペクトルピーク位置
を求めるためにC(m)およびその近傍のデータから内
挿処理して真のピーク位置を求めれば傾きΔφXが求ま
る。また複素数C(m)の位相(tan” (I m(
C(m) ) /Re (C(m) ) )から高さ(
Z)の情報ΔZが得られる。このようにして得られたΔ
φ工、ΔZと第1図には省略されているY方向の検出検
系で得られたy方向の干渉縞情報から処理回路5で同様
にして得られたΔφ7を基にステージ7の上下及び2軸
の仰り機構を制御し、レチクル結像面とフォトレジスト
表面を所望の位置関係に合せる。
On the other hand, the reference beam 17 separated by the beam splitter 10 is
The reference light travels in the same direction on almost the same optical path as the irradiation light 16 (but strictly speaking, at an angle of 92° with respect to the wafer normal), is reflected vertically by the plane mirror 14, and follows almost the same path as the object light 26'. 27″', and reaches the pattern detection means 3 via the wedge glass 24.The reference optical path differs from the object optical path in that it is not reflected by the object to be exposed 4, and it passes through the wedge glass 24.The lens 21 and 22 emits the incident light as parallel light, and the irradiation position of the irradiation light on the wafer, that is, the exposure area O, is almost imaged on the pattern detector.If there is no wedge glass, the wafer surface The intersection point A of the reference beam and the object light that has been reflected back from ), so that the two lights intersect on the light-receiving surface and an image is formed in the exposure area O.The micro-aperture plate 23 arranged in the folded detection optical system enters the lens 21. It is located at the focal point of the object beam, which is parallel light, and the reference target, and has a minute aperture at the focal point.This minute aperture plate is a lens, beam splitter, etc. that causes problems when using highly coherent laser beams. The generated back-reflected light is removed to prevent noise light from being superimposed on the light-receiving surface of the pattern detection means.The interference fringes detected by the pattern detection means 3 have an intensity distribution Ix as shown in FIG. The pattern detection means 3 is a one-dimensional array sensor, and intensity values are determined at the positions marked on the X axis in FIG. 2, and this data is transmitted to the processing circuit 5. When the image formation plane of the reticle 9 formed by the exposure and imaging system coincides with the image formation plane of the reticle 9 (4 in Fig. 3), interference fringes with a pitch P shown by the solid line in Fig. 2 are obtained.If the surface of the exposure area is When tilted by α as shown by the dotted line LL',
As is clear from FIG. 3, the first reflected light is tilted by 2α, and the second reflected light is tilted by 4α. As a result, the interference fringes obtained by the pattern detection means have a pitch P' as shown by the dotted line in FIG. The interference signal obtained by the detection means is input to the processing circuit 5 shown in FIG. 4 via a transmission line 31. The input signal is first A/D converted and input to the FF7 circuit at timings corresponding to the points marked on the horizontal axis in FIG. This FFT input signal is as shown in Figure 4(b),
The FFT result is obtained as a complex number C(k), and as shown in Figure 4 (C) (however, the vertical axis of this graph is Ic(k)I), the spectrum generally has peaks at =o and =m. . k=
o corresponds to the bias component of the sine wave, and k=m corresponds to the period of the sine wave. Although m corresponds to the pitch P, the output can only be obtained discretely, so in order to find the true spectral peak position, interpolation processing is performed from C(m) and its neighboring data to find the true peak position. By finding , the slope ΔφX can be found. Also, the phase (tan” (I m(
C(m) ) /Re (C(m) ) ) to height (
Information ΔZ of Z) is obtained. Δ obtained in this way
The top and bottom of the stage 7 and the The two-axis lifting mechanism is controlled to align the reticle imaging plane and the photoresist surface to a desired positional relationship.

第8図は本発明の一実施例である。第1図と同一番号は
同一物である。また第1図同様y方向の傾き検出系の図
は省略している。半導体レーザ1は波長がλ□、半導体
レーザ1′は波長がλ、であり、例えば、λl = 8
10n m 、λ、 = 750n mである、半導体
レーザ1,1′で出射した光はそれぞれ11と11′ 
により平行光になり、回折格子18.18’により0次
と1次の平行光に分離される・分離された4本の平行ビ
ームは波長分離ミラー19によりλ、の光は透過、λ2
の光は反射し、プリズム110で4本のビームは互に平
行な平行ビームとなる。波長λ1とλ2のビーム16.
16’は全く同一の光路を通りミラー13で反射し、ウ
ェハに01で入射し、反射光は物体光となり、ミラー2
3.レンズ21.22から成る検出光学系を通り、パタ
ーン検出手段3に入射する。他方波長λ、とλ2のビー
ム17と17’は全く同一の参照光路を通り、パターン
検出手段3に、物体光と一定の角度を成し入射する。物
体光路と参照光路はウェハ面での反射を除き、全く同一
光学部品を通る。処理口j!5′は半導体レーザエと1
′を交互に点滅し、パターン検出手段3からλ□とλ2
の波長の干渉縞情報を交互に受信する。第9図は処理回
路で受信されるλ、の波長の干?5縞情報である。実線
は最良の高さ位置に於るものであり、点線はΔZだけ高
さが変化した時のものである。雨検出信号は傾きに変化
がない場合、下記値で示される位相差Δφ2を発生して
いる。
FIG. 8 shows an embodiment of the present invention. The same numbers as in FIG. 1 are the same. Similarly to FIG. 1, the illustration of the y-direction tilt detection system is omitted. The wavelength of the semiconductor laser 1 is λ□, and the wavelength of the semiconductor laser 1' is λ, for example, λl = 8
10 nm, λ, = 750 nm, the light emitted by semiconductor lasers 1 and 1' is 11 and 11', respectively.
becomes parallel light, and is separated into 0th-order and 1st-order parallel light by the diffraction grating 18.18'.The four separated parallel beams are passed through the wavelength separation mirror 19, and the light of λ is transmitted, λ2
The light is reflected, and the four beams become mutually parallel parallel beams at the prism 110. Beams 16 with wavelengths λ1 and λ2.
16' passes through the same optical path, is reflected by mirror 13, and enters the wafer at 01, and the reflected light becomes object light and is reflected by mirror 2.
3. The light passes through a detection optical system consisting of lenses 21 and 22 and enters the pattern detection means 3. On the other hand, the beams 17 and 17' having wavelengths λ and λ2 pass through the same reference optical path and enter the pattern detection means 3 at a constant angle with the object light. The object optical path and the reference optical path pass through exactly the same optical components, except for reflection at the wafer surface. Processing mouth j! 5' is the semiconductor laser and 1
' blinks alternately, and the pattern detection means 3 detects λ□ and λ2.
Interference fringe information of wavelengths is received alternately. Figure 9 shows the difference in wavelength of λ received by the processing circuit. This is 5 stripe information. The solid line is at the best height position, and the dotted line is when the height changes by ΔZ. When there is no change in the slope of the rain detection signal, a phase difference Δφ2 shown by the following value is generated.

しかしながら検出される位相差Δφ2からΔZを求める
場合、下記式で示される不確定性がある。
However, when determining ΔZ from the detected phase difference Δφ2, there is uncertainty as shown by the following equation.

ここでnは整数である。例えばλ□=0.81μm。Here n is an integer. For example, λ□=0.81 μm.

0.22度とすると真の値+11.6 nμmの不確定
値を持つ0本実施例ではこの問題を第2の波長λ2によ
る測定で解決している。第10図(a)はλ□の波長で
検出した時の基準位置(x=xo)でのウェハ面の高さ
変化に対する検出強度1zであり、第10図(b)は同
じくλ2の波長に於るものである。検出されるパターン
の強度は次式となる。
If it is 0.22 degrees, it has an uncertain value of true value + 11.6 nμm. In this embodiment, this problem is solved by measurement using the second wavelength λ2. Figure 10(a) shows the detection intensity 1z for the change in height of the wafer surface at the reference position (x=xo) when detected at a wavelength of λ□, and Figure 10(b) shows the detection intensity 1z when detected at a wavelength of λ2. It is in. The intensity of the detected pattern is expressed by the following equation.

■ (X、ΔZ;λi)=:a+bcos ここでXは検出手段の受光面の座標でありMは結像倍率
である。従ってI z = I (XotΔZ;λi)
となる。λ1で検出し゛た位相値がΔ−1とし、この値
に対応する高さが第10図に示すように・・・P−、、
P−1t p工、p、、p、・・・に対応するものであ
るとすると、これらの内、どの点に対応するΔZが真の
値であるか分らない。λ2で検出した位相値がΔ−2で
あったとすると対応するΔZは第10図の・・・P−、
、P、、Pl、P、・・・となる。
(X, ΔZ; λi)=:a+bcos Here, X is the coordinate of the light receiving surface of the detection means, and M is the imaging magnification. Therefore I z = I (XotΔZ;λi)
becomes. The phase value detected at λ1 is Δ-1, and the height corresponding to this value is P-, as shown in Figure 10.
Assuming that they correspond to P-1t, p, p, , p, . . . , it is not known to which of these points ΔZ corresponds to the true value. If the phase value detected at λ2 is Δ-2, the corresponding ΔZ is...P-,
, P, , Pl, P, . . . .

第10図(a)(b)で同一位相となるΔZ=S、と次
に同一位相となるΔZ=Sよの間隔SiS、は次式で与
えられ、 この間でλ□の位相がΔ−0で、λ□の位相がΔになる
のはΔz0の一点だけであり、この条件を満たす次のΔ
Zの値は次式で与えられる高さとなる。
The interval SiS between ΔZ=S, which has the same phase, and ΔZ=S, which has the same phase in FIGS. Then, the phase of λ□ becomes Δ only at one point Δz0, and the next Δ that satisfies this condition
The value of Z is the height given by the following equation.

ΔZ=ΔZ□+m5XSO=−(10)但しここでmは
整数である。
ΔZ=ΔZ□+m5XSO=-(10) where m is an integer.

λ1=0.81 pm 、λ2::0.75μm、 l
:iL= 2’ではS1S、は145μmとなる。ウェ
ハ面の高さがこの様な広い範囲で変動することはなく、
仮に厚さの異なる種類のウェハを用いる場合には、あら
かじめその値は分っているから問題を生じない。
λ1=0.81 pm, λ2::0.75μm, l
: When iL=2', S1S is 145 μm. The height of the wafer surface does not vary over such a wide range;
If wafers of different thicknesses are used, no problem will occur because the values are known in advance.

なお第1図の実施例では折返し平面鏡を用いウェハ面で
2度反射させているため上記の5180に相当する値は
上記の第8図の実施例の場合の半分となり、72.5μ
mとなる。
In the embodiment shown in FIG. 1, a folding plane mirror is used to reflect the wafer twice, so the value corresponding to 5180 is half that of the embodiment shown in FIG. 8, which is 72.5μ.
m.

第11図は一回の露光でウェハ上に露光される領域41
に対し、X方向とy方向の照明光16及び16を示して
いる。照明光16のウェハ上の場所はパターン検出手段
3の受光面301のアレイ素子の番地と対応している。
FIG. 11 shows an area 41 exposed on the wafer in one exposure.
In contrast, illumination lights 16 and 16 in the X direction and the y direction are shown. The location of the illumination light 16 on the wafer corresponds to the address of the array element on the light receiving surface 301 of the pattern detection means 3.

照明領域全体に対応する番地js”jeの間で、所望の
領域のみを、例えば第11図でIs〜Ie、或いは第1
2図でIs1〜Ie、及びIs2〜Is、を取り出し、
このデータのみを用いてFFTを実行することが容易に
できる。このように任意の部分を指定することが可能な
ため、例えば微細パターンを含む所を検出領域に指定し
、粗いパターンの部分を外すことにより、微細パターン
部分を傾きや高さが正確に求められ、より焦点に近い位
置で露光を行うことが可能となる。
Among the addresses js"je corresponding to the entire illumination area, only a desired area is selected, for example, from Is to Ie in FIG.
In Figure 2, take out Is1 to Ie and Is2 to Is,
FFT can be easily performed using only this data. Since it is possible to specify any part in this way, for example, by specifying a part that includes a fine pattern as the detection area and excluding the coarse pattern part, the slope and height of the fine pattern part can be accurately determined. , it becomes possible to perform exposure at a position closer to the focal point.

第13図は本発明の一実施例である。第1図、第8図と
同一番号は同一物を表している。波長λ、とλ2の半導
体レーザ1及び1より出射した光は、コリメータレンズ
11と11で平行光となり、波長分離ミラー19により
同一光路となる。シリンドリカルレンズ110と120
はy方向のビーム径を広くするために使われている。第
14図はウェハ4上の露光領域41に対し、拡げられた
照射光16 (点線)の範囲を示している。照射部分は
二次元アレイ素子から成るパターン検出手段3′と3#
の受光面302上に結像される。二次元的に得られた照
射部分の干渉縞のうち第14図に示す所望の領域42゜
43のみの情報を演算処理する。42及び43のそれぞ
れの場所でX方向の傾きと高さが求まり41全面として
のX+’j方尚の方向と高さが求まる。
FIG. 13 shows an embodiment of the present invention. The same numbers as in FIGS. 1 and 8 represent the same items. Light emitted from the semiconductor lasers 1 and 1 having wavelengths λ and λ2 becomes parallel light by the collimator lenses 11 and 11, and becomes the same optical path by the wavelength separation mirror 19. Cylindrical lenses 110 and 120
is used to widen the beam diameter in the y direction. FIG. 14 shows the expanded range of the irradiation light 16 (dotted line) with respect to the exposure area 41 on the wafer 4. As shown in FIG. The irradiated portion is pattern detecting means 3' and 3# consisting of two-dimensional array elements.
An image is formed on the light-receiving surface 302 of. Of the two-dimensionally obtained interference fringes of the irradiated area, only the information of the desired area 42.degree. 43 shown in FIG. 14 is processed. The inclination and height in the X direction are determined at each location 42 and 43, and the direction and height in the X+'j direction for the entire surface of 41 is determined.

第15図は本発明の一実施例である。本図は平面図であ
り、投影露光装置の露光光学系は省略されている。ステ
ージの仰り機構のX軸方向の回転軸71とy方向の回転
軸72の回りにwx、wy微小回転可能である。ウェハ
4上の露光領域41にX軸から45°傾いた方向(X方
向)から傾きおよび高さ検出用の照射光が照射され、反
射光が平面鏡14で垂直に戻され、前述の傾きおよび高
さ検出光学系100で検出される。本実施例では2軸の
仰り機構に対し検出光は45°の傾きを持っており、パ
ターン検出手段の二次元撮像面には第16図のごとき干
渉パターンが発生している。ウェハ面が水平を保ってい
る時に干渉パターンが実線であり、y方向に傾いている
場合が点線である。このため撮像面上のX方向とy方向
のピッチと位相を求めれば、Xとy方向の傾きと高さが
一検出光軸系から求めることかできる。また第15図の
実施例で、パターン検出手段の直前で光ビームを2分し
、X方向とy方向を別々のパターン検出手段で検出して
もよい。
FIG. 15 shows an embodiment of the present invention. This figure is a plan view, and the exposure optical system of the projection exposure apparatus is omitted. The stage can be slightly rotated wx and wy around a rotation axis 71 in the X-axis direction and a rotation axis 72 in the y-direction of the stage raising mechanism. Irradiation light for tilt and height detection is irradiated onto the exposure area 41 on the wafer 4 from a direction tilted by 45 degrees from the X axis (X direction), and the reflected light is returned vertically by the plane mirror 14 to detect the aforementioned tilt and height. The light is detected by the detection optical system 100. In this embodiment, the detection light has an inclination of 45° with respect to the two-axis lifting mechanism, and an interference pattern as shown in FIG. 16 is generated on the two-dimensional imaging surface of the pattern detection means. When the wafer surface remains horizontal, the interference pattern is a solid line, and when the wafer surface is tilted in the y direction, it is a dotted line. Therefore, if the pitch and phase in the X and y directions on the imaging plane are determined, the inclination and height in the X and y directions can be determined from one detection optical axis system. Further, in the embodiment shown in FIG. 15, the light beam may be divided into two just before the pattern detection means, and the X direction and the Y direction may be detected by separate pattern detection means.

第18図は本発明の一実施例である。第工図と同一番号
は同一物を表わしている。第1図との相異点は以下S点
である。■レーザ源にHe−Neレーザ等に代表される
チューブ式レーザ101を用い、レーザ光の一部(ガウ
ス分布の中心部)を選択するピンホール板102を折返
し平面鏡14と共役な位置に設けた点、■ビーム15が
ビームスプリッタ12を通り、ミラー14で折返されて
、パターン検出手段3に至るまでの反射回数が参照光路
と物体光路で共に偶数または奇数になるようにした点■
パターン検出手段3と折返し平面鏡14を共役な関係(
結像関係)とし、ウェハ面で反射し戻って来た物体光と
参照先の交叉点Aがパターン検出手段3上に結像するよ
うに平行平面ガラス201を参照光路27#(または物
体光路26“)中に挿入した点、■パターン検出手段3
に入射する物体光および参照光が平面波となるようパタ
ーン検出手段の直前に補正レンズ204を挿入した点、
■ウェハ4の高さ検出にエアーマイクロ82を併用した
点である。
FIG. 18 shows an embodiment of the present invention. The same number as the first engineering drawing represents the same item. The difference from FIG. 1 is the following point S. ■ A tube laser 101 typified by a He-Ne laser or the like is used as a laser source, and a pinhole plate 102 for selecting a part of the laser beam (the center of the Gaussian distribution) is provided at a position conjugate with the folding plane mirror 14. (1) The beam 15 passes through the beam splitter 12, is reflected by the mirror 14, and the number of reflections until it reaches the pattern detection means 3 is an even or odd number for both the reference optical path and the object optical path (■)
The pattern detection means 3 and the folding plane mirror 14 are in a conjugate relationship (
The parallel plane glass 201 is connected to the reference optical path 27 # (or the object optical path 26 “), ■Pattern detection means 3
A correction lens 204 is inserted just before the pattern detection means so that the object light and reference light incident on the pattern become plane waves,
(2) The air micro 82 is also used to detect the height of the wafer 4.

レンズ103を出射した光は折返し平面[14と共役な
位置に設けたピンホール板102の微小開口部に入射し
ガウス分布の中心部を選択する。
The light emitted from the lens 103 enters a minute opening of the pinhole plate 102 provided at a position conjugate with the folding plane [14] and selects the center of the Gaussian distribution.

次にレンズ103.105により所望の太さの平行光1
5にし、ビームスプリッタ106に入射する。平行光1
5はビームスプリッタ106により平行光16と17に
分離する。ここで平行光16はビームスプリッタ106
を透過(反射回数O)させ、平行光17はビームスプリ
ッタ106内で2回反射させている。
Next, lenses 103 and 105 produce parallel light 1 of desired thickness.
5 and enters the beam splitter 106. Parallel light 1
5 is separated into parallel beams 16 and 17 by a beam splitter 106. Here, the parallel light 16 is transmitted to the beam splitter 106
is transmitted (the number of reflections is O), and the parallel light 17 is reflected twice within the beam splitter 106.

これはビーム15がビームスプリッタ12を通り、ミラ
ー14で折返されて、パターン検出手段3に至るまでの
反射回数が参照光路と物体光路で共に偶数または奇数に
なるようにしたもので、反射回数を揃えることによりビ
ームスプリッタ106への入射光15の方向が変動した
際、参照光と物体光の交叉角の変動を小さく押えること
ができ、その結果干渉縞ピッチの変化がほとんど起らず
、高精度の検出が可能となる。本実施例の場合、ビーム
スプリッタ106でビーム分割後パターン検出手段に至
るまでの参照光と物体光の反射回数は共に6回となり偶
数回で揃っている。ビームスプリッタ106を出射した
平行光16はビームスプリッタ12゜ミラー13を経て
上下および2軸のあおり機構を搭載しているステージ7
の上の被露光物体であるウェハ4の上面のフォトレジス
ト表面でほとんど全ての光が反射し、折返し平面i14
に垂直に入射する。折返し平面鏡14で反射した平行光
16は再び元の光路を逆波りし、物体光26“としてミ
ラー13゜ビームスプリッタ12.レンズ202.微小
開口板23゜レンズ203.、204を経てパターン検
出手段3に至る。
This is so that the beam 15 passes through the beam splitter 12, is reflected by the mirror 14, and the number of reflections until it reaches the pattern detection means 3 is an even or odd number for both the reference optical path and the object optical path. By aligning them, when the direction of the incident light 15 to the beam splitter 106 changes, the variation in the intersection angle between the reference light and the object light can be kept small, and as a result, there is almost no change in the interference fringe pitch, resulting in high precision. detection becomes possible. In the case of this embodiment, the number of reflections of the reference beam and the object beam after beam splitting by the beam splitter 106 before reaching the pattern detection means is six, which is an even number. The parallel light 16 emitted from the beam splitter 106 passes through the beam splitter 12° mirror 13 to the stage 7 which is equipped with a vertical and two-axis tilting mechanism.
Almost all the light is reflected by the photoresist surface on the upper surface of the wafer 4, which is the object to be exposed on the
is incident perpendicularly to . The parallel light 16 reflected by the folding plane mirror 14 reverses its original optical path again and becomes an object light 26'' through the mirror 13° beam splitter 12, lens 202, minute aperture plate 23° lens 203., 204, and pattern detection means. 3.

他方ビームスプリッタ106で分離された平行光17は
平行光16とほぼ同一光路で進み、ビームスプリッタ1
2.ミラー13を経て直接折返しミラー14に垂直に入
射した後、再び元の光路を逆戻りし、参照光27#とじ
てミラー13.ビームスプリッタ12゜平行平面ガラス
201.レンズ202.微小開口板23゜レンズ203
.204を経てパターン検出手段3に至る。
On the other hand, the parallel light 17 separated by the beam splitter 106 travels along almost the same optical path as the parallel light 16 and passes through the beam splitter 1.
2. After passing through the mirror 13 and directly entering the folding mirror 14 perpendicularly, the light beam returns along the original optical path again, and returns to the mirror 13. as the reference beam 27#. Beam splitter 12° parallel plane glass 201. Lens 202. Micro aperture plate 23° lens 203
.. It reaches the pattern detection means 3 via 204.

参照光路が物体光路と異なる点は被露光物4で反射しな
い点、平行平面ガラス201を通過する点である。レン
ズ202.203.204は折返し平面鏡14の反射面
と露光中心Oとの間の光軸に垂直な平面をパターン検出
手段3上に結像させる。これは被露光物体の所望の場所
に相当する部分の情報のみから傾きと高さを検出する場
合、干渉縞内の位置とウェハ上の位置の対応が明確にな
っている必要があるためであり、上記構成を採用するこ
とにより、行きと帰りの光路中のウェハの像がほぼ均等
にパターン検出手段3上に結像でき、部分的に検出して
も高い精度で検出できる。しかし折返し平面鏡14の反
射面と露光中心Oとの間の光軸に垂直な平面をパターン
検出手段3上に結像させた場合、露光領域と交叉点Aが
一致していないため、このままではパターン検出手段3
上で参照光と物体光を重ね合わせることはできない、そ
こで平行平面ガラス201を参照光N27′ (または
物体光826’ )中に挿入し、参照光を平行移動させ
てパターン検出手段3上で参照光と物体光が重なり合う
ようにした。レンズ204はレンズ202および203
によって生じた参照光と物体光の球面波を平面波に補正
するためのレンズでパターン検出手段3の直前に配置し
である。両波面を平面波にすることにより干渉縞のピッ
チのばらつきを無くし、高い検出精度が得られる。
The reference optical path differs from the object optical path in that it is not reflected by the object to be exposed 4 and that it passes through the parallel plane glass 201. The lenses 202, 203, and 204 image a plane perpendicular to the optical axis between the reflective surface of the folding plane mirror 14 and the exposure center O onto the pattern detection means 3. This is because when detecting the tilt and height only from information on the part corresponding to the desired location of the exposed object, the correspondence between the position within the interference fringes and the position on the wafer must be clear. By employing the above configuration, the images of the wafer in the forward and return optical paths can be almost equally formed on the pattern detection means 3, and even if only a portion is detected, it can be detected with high accuracy. However, when a plane perpendicular to the optical axis between the reflective surface of the folding plane mirror 14 and the exposure center O is imaged on the pattern detection means 3, the exposure area and the intersection point A do not coincide, so the pattern cannot be detected as it is. Detection means 3
It is not possible to superimpose the reference light and the object light on the above, so the parallel plane glass 201 is inserted into the reference light N27' (or the object light 826'), and the reference light is translated in parallel to be referenced on the pattern detection means 3. I made the light and object light overlap. Lens 204 is the same as lenses 202 and 203
This lens is arranged immediately in front of the pattern detection means 3 to correct the spherical waves of the reference light and object light generated by the above into plane waves. By making both wavefronts plane waves, variations in the pitch of interference fringes can be eliminated and high detection accuracy can be obtained.

本検出法では一波長検出の場合(7)式で示すウェハ高
さの不確定性の問題があった。2波長照明による解決法
を前述したが、他のウェハ高さ検出手段を併用すること
によっても解決可能である。
In this detection method, when detecting one wavelength, there is a problem of uncertainty in the wafer height as shown by equation (7). Although the solution using two wavelength illumination has been described above, it can also be solved by using other wafer height detection means in combination.

本実施例ではエアーマイクロ82を併用することによっ
てこの問題を解決した。即ち(6)式で示す本検出法に
よって確実に高さ検出ができる範囲まではエアーマイク
ロによってウェハ高さを位置決めし、(6)式で示す位
相変化の範囲内では本検出法を用いる。また他の方法と
してウェハの高さ検出はエアーマイクロ等の他の検出手
段、傾き検出は本検出法を用いてもよい。第21図はエ
アーマイクロの原理を示したもので空圧源821からエ
アーマイクロノズル822および参照用エアーマイクロ
823に圧力空気を供給し、エアーマイクロノズル82
2とウェハ4のギャップによって決まるエアーマイクロ
ノズル内の背圧824と参照用エアーマイクロ823の
背圧825の圧力差を差圧変換器826によって電気信
号に変換して処理回路5によってステージ7の高さを制
御し差圧がOになったところで止める。
In this embodiment, this problem was solved by using the air micro 82 in combination. That is, the wafer height is positioned by the air micro to the range where the height can be reliably detected by the present detection method shown by equation (6), and this detection method is used within the range of phase change shown by equation (6). Alternatively, other detection means such as an air micrometer may be used to detect the height of the wafer, and the present detection method may be used to detect the inclination. FIG. 21 shows the principle of the air micro. Pressurized air is supplied from the air pressure source 821 to the air micro nozzle 822 and the reference air micro nozzle 823, and the air micro nozzle 82
The pressure difference between the back pressure 824 in the air micro nozzle 824 determined by the gap between the air micro nozzle 2 and the wafer 4 and the back pressure 825 of the reference air micro nozzle 823 is converted into an electrical signal by the differential pressure converter 826, and the height of the stage 7 is determined by the processing circuit 5. The pressure is controlled and stopped when the differential pressure reaches O.

第19図と第20図は本実施例のガウス分布の一部を選
択して照明する方法の効果を説明するための図で、第1
9図はガウス分布の一部を選択しない場合、第20図は
ガウス分布の一部を選択した場合の参照光(実線)と物
体光(破線)のパターン検出手段3上の照度分布を示し
たものである。縦軸に照度Ix、横軸にパターン検出手
段3の検出位置Xを示す。ウェハが傾くと物体光はパタ
ーン検出手段3上を移動し、参照光と物体光の重なり状
態(斜線部)が変化する。この時、ガウス分布の一部を
選択しない第19図の実施例では参照光と物体光の重な
り部分の照度が大きく変化し、干渉強度が大きく変動す
る。これに対し、第20図のガウス分布の一部を選択し
た照明では、参照光と物体光の重なり部分の照度変化は
小さく、干渉強度の変動も小さい。干渉強度の変動が小
さい方が信号処理の過程で誤差が小さく高精度の検出が
可能となる。本実施例の信号処理に関しては前述しであ
るため説明を省略する。
Figures 19 and 20 are diagrams for explaining the effect of the method of selectively illuminating a part of the Gaussian distribution in this embodiment.
Figure 9 shows the illuminance distribution of the reference light (solid line) and object light (broken line) on the pattern detection means 3 when a part of the Gaussian distribution is not selected, and Figure 20 shows the illuminance distribution when a part of the Gaussian distribution is selected. It is something. The vertical axis shows the illuminance Ix, and the horizontal axis shows the detection position X of the pattern detection means 3. When the wafer is tilted, the object light moves on the pattern detection means 3, and the overlapping state (shaded area) of the reference light and object light changes. At this time, in the embodiment of FIG. 19 in which a part of the Gaussian distribution is not selected, the illuminance of the overlapping portion of the reference light and the object light changes greatly, and the interference intensity changes greatly. On the other hand, in the case of illumination in which a part of the Gaussian distribution shown in FIG. 20 is selected, the change in illuminance at the overlapping portion of the reference light and object light is small, and the fluctuation in interference intensity is also small. The smaller the variation in interference intensity, the smaller the error in the signal processing process, and the more accurate detection becomes possible. Since the signal processing of this embodiment has been described above, the explanation will be omitted.

第22図は本発明の一実施例である。本実施例ではウェ
ハ4の露光領域41の対角線方向にレーザ光を照射する
。100xはX方向の傾きおよび高さを検出する系、1
00Yはy方向の傾きおよび高さを検出する系、14は
折返し平面鏡である。第23図は露光領域41の拡大図
をであり、1つの露光領域内に2つの回路部(メモリー
等〉を有する例である。図において412が回路部を4
13が境界部を示し、レーザ光411は露光領域に対し
て対角線方向に照射している。第24図は第23図のI
−I断面を示すが、一般に回路部412と境界部413
では高さが異なる。このため、露光領域の辺に対して直
角、平行方向でレーザ光を照射した場合、本来検出した
い回路部の傾きと高さではなく、境界部の傾きと高さを
検出してしまう恐れがある。これに対し。
FIG. 22 shows an embodiment of the present invention. In this embodiment, laser light is irradiated diagonally across the exposure area 41 of the wafer 4. 100x is a system that detects the tilt and height in the X direction, 1
00Y is a system for detecting the tilt and height in the y direction, and 14 is a folding plane mirror. FIG. 23 is an enlarged view of the exposure area 41, and is an example in which one exposure area has two circuit sections (memory, etc.). In the figure, 412 indicates the circuit section 4.
13 indicates a boundary, and laser light 411 irradiates the exposure area in a diagonal direction. Figure 24 is I of Figure 23.
-I cross section is shown, but generally the circuit portion 412 and the boundary portion 413
The heights are different. Therefore, if the laser beam is irradiated in a direction perpendicular or parallel to the sides of the exposed area, there is a risk that the inclination and height of the boundary part will be detected instead of the inclination and height of the circuit part that is originally desired to be detected. . Against this.

第23図の如く露光領域の対角線方向にレーザ光を照射
し、必要に応じて任意の検出範囲を選択することにより
回路部の傾きと高さを正確に求めることが可能となる。
As shown in FIG. 23, by irradiating the laser beam in the diagonal direction of the exposure area and selecting an arbitrary detection range as necessary, it is possible to accurately determine the inclination and height of the circuit section.

また露光領域の対角線方向にレーザ光を照射する場合、
照射範囲が最も長くとれ、露光領域の傾きと高さより高
性度に検出できる効果もある。
In addition, when irradiating the laser beam in the diagonal direction of the exposure area,
It also has the effect of providing the longest irradiation range and allowing more accurate detection based on the slope and height of the exposed area.

以上示した実施例では半導体露光装置について説明して
いるが、本発明はその他の液晶デイスプレィ等表示デバ
イス用露光装置等にも同様に適用でき、大きな効果が発
揮できる。
In the embodiments shown above, a semiconductor exposure apparatus has been described, but the present invention can be similarly applied to exposure apparatuses for other display devices such as liquid crystal displays, and can exhibit great effects.

〔発明の効果〕〔Effect of the invention〕

本発明は1以上説明したように構成されているので以下
に記載されるような効果を奏する。
The present invention is constructed as described in one or more ways and provides the advantages described below.

(1)干渉測定により傾きと高さを同時に求めることが
できる。
(1) Inclination and height can be determined simultaneously by interferometric measurement.

(2)参照光が照射、検出光とほぼ同じ場所を通るよう
に構成することにより、空気のゆらぎ等。
(2) By configuring the reference light to pass through almost the same location as the irradiation and detection light, fluctuations in the air, etc. can be avoided.

外乱要因の影響を受けない安定な傾き及び高さ検出がで
きる。
Stable tilt and height detection is possible without being affected by disturbance factors.

(3)被露光物体への入射角を85°以上にすることに
より、又入射光をS偏光にすることにより、フォトレジ
スト表面の傾き及び高さを、・下地の膜構造の影響を受
けることなく、正確に検出することができる。
(3) By setting the angle of incidence on the object to be exposed to 85° or more, and by making the incident light S-polarized, the inclination and height of the photoresist surface can be controlled by the underlying film structure. can be detected accurately.

(4)被露光物体に斜照射した光の反射光を垂直に折返
し、再び被露光物体に照射することにより。
(4) By vertically turning back the reflected light of the light obliquely irradiated onto the exposed object and irradiating it again onto the exposed object.

傾きおよび高さの検出精度を2倍に高めることができる
The accuracy of tilt and height detection can be doubled.

(5)パターン検出手段の撮像面を被露光物体面上のビ
ーム照射位置と共役にし、被露光物体の所望の場所に相
当する部分の情報のみから傾きと高さを検出することに
より、特に精密に焦点合せをする必要のある所に焦点を
合せることができる。
(5) By making the imaging surface of the pattern detection means conjugate with the beam irradiation position on the surface of the object to be exposed and detecting the inclination and height only from the information of the part corresponding to the desired location of the object to be exposed, especially precise You can focus where you need to focus.

以上の説明したように被露光物体の表面の傾きや高さを
下地に影響されることなく高精度に安定に検出すること
が可能となり、特に0.5μ膳以下の線幅のLSI等焦
点深度に余裕のないパターン露光に対し、露光工程の歩
留りの大幅向上に寄与する。
As explained above, it is now possible to stably detect the inclination and height of the surface of the exposed object without being affected by the underlying surface, and especially for LSI equivalent focal depths with line widths of 0.5 μm or less. This contributes to a significant improvement in the yield of the exposure process for pattern exposure where there is little margin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例で折返し検出光学系を含むも
のの構成を示した図、第2図は検出パターン信号波形を
示す図、第3図は折返し検出光学系の効果を説明するた
めの図、第4図は処理回路の実施例を示す図、第5図乃
至第7図は入射角と反射、透過複素振幅の関係及び、雑
音成分率の特性を示す図、第8図は本発明の一実施例で
2波長を用いるものの構成を示す図、第9図は高さ変化
に伴なう検出パターン信号の変化を表わす図、第10図
は2波長λ、、λ2で検出時の高さ変化ΔZに伴なう着
目点の信号Izの変化を表わす図、第11図及び第12
図は露光領域に対する照射光と演算処理領域を示す図、
第13図は本発明の実施例で2波長で2次元的に検出す
るものの構成を示す図、第14図は第13図に示す実施
例の露光領域に対する演算処理領域を示す図、第15図
は本発明の実施例の一検出系で2方向の傾きを検出する
ものを示す図、第16図はその検出パターンを示す図、
第17図は照射検出光の振@成分を説明する図、第18
図は本発明の一実施例でエアーマイクロを併用し、更に
光学系の改善を図ったものの構成を示す図、第19図及
び第20図は各々本発明に係る照明法の効果を説明する
図、第21図は本発明に係るエアーマイクロの原理を示
す図、第22図乃至第24図は各々本発明に係る露光領
域の対角線方向にレーザ光を照射した場合の説明図であ
る。 1・・・レーザ光源、 10.12・・・ビームスプリ
ッタ、14・・・折返し平面鏡、21.22・・・レン
ズ、23・・・微小開口板、24・・・楔ガラス、3.
3’ 、3’・・・パターン検出手段、4・・・ウェハ
、   5・・・処理回路、7・・・ステージ、  8
・・・露光投影レンズ、81・・・照明系、   9・
・・レチクル。 82・・・エアーマイクロ。 第 1 区 第 図 あ (2) し−m− F f o−¥e 叩くom 早Qc i y雪;f■
雪ットー0財笛Qτ□゛翠 第 8 聞 第 0 圓 第 1 図 第 !2図 第 15 閲 第 7g 図 1θ0 第 77図 尺b 〆へン4Z 第 8 図 第rq図 %20関 第2I必 第22図 第ZJ図 第24閲
Fig. 1 is a diagram showing the configuration of an embodiment of the present invention including a folded detection optical system, Fig. 2 is a diagram showing a detection pattern signal waveform, and Fig. 3 is for explaining the effect of the folded detection optical system. , FIG. 4 is a diagram showing an example of the processing circuit, FIGS. 5 to 7 are diagrams showing the relationship between the incident angle, reflection, and transmission complex amplitude, and characteristics of the noise component rate. FIG. 8 is a diagram showing the characteristics of the noise component rate. A diagram showing the configuration of an embodiment of the invention that uses two wavelengths, FIG. 9 is a diagram showing changes in the detection pattern signal due to height changes, and FIG. 11 and 12 are diagrams showing changes in the signal Iz at the point of interest due to the height change ΔZ.
The figure shows the irradiation light for the exposure area and the calculation processing area,
Fig. 13 is a diagram showing the configuration of an embodiment of the present invention that detects two-dimensionally at two wavelengths, Fig. 14 is a diagram showing the calculation processing area for the exposure area of the embodiment shown in Fig. 13, and Fig. 15. 16 is a diagram showing a detection system according to an embodiment of the present invention that detects inclinations in two directions, and FIG. 16 is a diagram showing its detection pattern.
Figure 17 is a diagram explaining the amplitude component of the irradiation detection light, Figure 18
The figure is a diagram showing the configuration of an embodiment of the present invention in which an air micro is used in combination and the optical system is further improved. Figures 19 and 20 are diagrams each illustrating the effects of the illumination method according to the present invention. , FIG. 21 is a diagram showing the principle of the air micro according to the present invention, and FIGS. 22 to 24 are explanatory diagrams of the case where laser light is irradiated in the diagonal direction of the exposure area according to the present invention. 1... Laser light source, 10.12... Beam splitter, 14... Folding plane mirror, 21.22... Lens, 23... Micro aperture plate, 24... Wedge glass, 3.
3', 3'... Pattern detection means, 4... Wafer, 5... Processing circuit, 7... Stage, 8
...Exposure projection lens, 81...Illumination system, 9.
...Reticle. 82...Air Micro. 1st Ward Diagram A (2) Shi-m- F f o-¥e Tapping om Haya Qc i y snow; f ■
Yukitto 0 Zaifue Qτ□゛Suui No. 8 Listen No. 0 En No. 1 Figure No.! 2 Figure 15 View 7g Figure 1θ0 Figure 77 Scale b 〆hen 4Z Figure 8 Figure rq Figure % 20 Section 2I must Figure 22 Figure ZJ Figure 24 View

Claims (1)

【特許請求の範囲】 1、露光照明系とマスク又はレチクルと投影光学系と被
露光物体を保持し、被露光物体を直交する3方向に移動
せしめるステージと、該マスク又はレチクルと該被露光
物体との相対的位置を検出し、位置合せ制御するアライ
メント系とから成る投影露光装置において、可干渉光源
よリ出射した光を平行な照射光とし、該被露光物体表面
上にある投影光学系の露光領域に斜めから入射角θで照
射せしめる少くとも1つの照射手段と、被露光物体で反
射した物体光をパターン検出手段に導く少くとも1つの
検出光学系と、上記可干渉光源より出射した光を分離し
、参照光を発生する手段と、当該参照光を該パターン検
出手段に導き該物体光の光軸に対し、所望の角度を付け
て該パターン検出手段上で重畳し、干渉せしめる少くと
も1つの参照光手段と、該パターン検出手段で得られた
干渉パターンの情報から、被露光物体の傾きもしくは高
さの少くとも一方の情報を得る処理開路と、当該情報に
基づき、被露光物体の少くとも1方向の傾き、もしくは
高さの少くとも一方を制御せしめるステージ制御系とを
備え付けたことを特徴とする投影露光装置。 2、上記照射光および物体光と上記参照光は実行的にほ
ぼ同一方向に進みかつ同一領域を通過することを特徴と
する請求項1記載の投影露光装置。 3、上記入射角θは85゜以上であることを特徴とする
請求項1記載の投影露光装置。 4、上記照射光はS偏光であることを特徴とする請求項
1記載の投影露光装置。 5、折返し平面鏡を配置し、被露光物体で反射した上記
物体光を当該折返し平面鏡でほぼ垂直に反射させ、往路
と同一光路を逆に進め、再び被露光物体で反射させ、上
記パターン検出手段に導く、折返し検出光学系を具備し
、上記参照光との間で上記パターン検出手段上で干渉せ
しめることを特徴とする請求項1記載の投影露光装置。 6、上記参照光が上記物体光と実効的にほぼ同一の方向
、同一の領域を通過するごとく構成した手段を具備する
ことを特徴とする請求項5記載の投影露光装置。 7、上記パターン検出手段はアレイセンサであり、被露
光物体の傾きΔθと高さΔhに応じたピッチPと位相φ
を有する正弦波信号を上記処理回路に伝送し、当該処理
回路で高速フーリエ変換を実行し、Pに対応するスペク
トル近傍の情報から、ΔθとΔhを求めることを特徴と
する請求項1乃至6のいずれか記載の投影露光装置。 8、上記被露光物体上の照射位置は上記検出光学系又は
折返し検出光学系により、ほぼ上記パターン検出手段と
共役な関係(結像関係)にあることを特徴とする請求項
1又は5又は6記載の投影露光装置。 9、上記パターン検出手段に入射する物体光及び参照光
は実効的に平面波であることを特徴とする請求項1又は
5又は6記載の投影露光装置。 10、上記パターン検出手段はアレイセンサであり、上
記被露光物体上の照射位置は上記検出光学系又は折返し
検出光学系により、ほぼ上記パターン検出手段と共役な
関係にあり、上記アレイセンサで得られた情報の所望の
領域のみを選択し、高速フーリエ変換演算を施し、得ら
れたスペクトル情報より、被露光物体の露光領域の所望
の領域の傾きもしくは高さの少なくとも一方を求める処
理回路を具備したことを特徴とする請求項1又は5又は
6記載の投影露光装置。 11、上記検出光学系又は折返し反射光学系と参照光の
光路中に、両光路の光集束部分に微小開口を設け、両光
路中の光学部品の表裏面より反射した雑音的光成分を遮
光することを特徴とする請求項1又は5又は6記載の投
影露光装置。 12、上記可干渉光源とは波長の異なる第2の可干渉光
源を備え、当該第2の可干渉光源より出射した光を上記
照射手段に導入し、上記第1の可干渉光源とほぼ同一光
路の物体光及び参照光を形成し、上記検出光学系或いは
折返し検出光学系中に第1の波長の光から第2の波長の
光を分離する手段を配置し、分離された第2の波長の物
体光および参照光を第2のパターン検出手段で検出し、
第1及び第2のパターン検出手段で得られた干渉縞の情
報から高さ方向の不確定要因を除去し、正確な高さ情報
を広い範囲で検出可能としたことを特徴とする請求項1
又は5又は6記載の投影露光装置。 13、1本のビームがビームスプリッタを通り、パター
ン検出手段に至るまでの参照光と物体光の反射回数を共
に偶数または奇数に揃えたことを特徴とする請求項1又
は5又は6記載の投影露光装置。 14、エアーマイクロ等の他のウェハ高さ検出手段を併
用することにより、一波長検出による高さ方向の不確定
要因を除去し、正確な高さ情報を広い範囲で検出可能と
したことを特徴とする請求項1又は5又は6記載の投影
露光装置。 15、レーザ光を露光領域のほぼ対角線方向に照射した
ことを特徴とする請求項1又は5又は6記載の投影露光
装置。 16、レーザ光の一部を選択するピンホール板を照明光
路中に設けたことを特徴とする請求項1又は5又は6記
載の投影露光装置。 17、レーザ光の一部を選択するピンホール板をほぼ露
光領域と共役位置に設けたことを特徴とする請求項16
記載の投影露光装置。
[Claims] 1. An exposure illumination system, a mask or reticle, a projection optical system, a stage that holds an object to be exposed and moves the object to be exposed in three orthogonal directions, the mask or reticle, and the object to be exposed. In a projection exposure apparatus, the light emitted from the coherent light source is used as parallel irradiation light, and the projection optical system on the surface of the object to be exposed is at least one irradiation means that irradiates the exposure area obliquely at an incident angle θ; at least one detection optical system that guides the object light reflected by the object to be exposed to the pattern detection means; and the light emitted from the coherent light source. at least a means for separating the reference light and generating a reference light, and a means for guiding the reference light to the pattern detecting means and superimposing it on the pattern detecting means at a desired angle with respect to the optical axis of the object light so as to cause interference. one reference light means, a processing circuit for obtaining information on at least one of the inclination or height of the object to be exposed from information on the interference pattern obtained by the pattern detection means; A projection exposure apparatus characterized by being equipped with a stage control system that controls at least one of the inclination in at least one direction or the height. 2. The projection exposure apparatus according to claim 1, wherein the irradiation light, the object light, and the reference light proceed in substantially the same direction and pass through the same area. 3. The projection exposure apparatus according to claim 1, wherein the incident angle θ is 85° or more. 4. The projection exposure apparatus according to claim 1, wherein the irradiation light is S-polarized light. 5. Arranging a folding plane mirror, the object light reflected by the object to be exposed is reflected almost perpendicularly by the folding plane mirror, travels the same optical path as the forward path in the opposite direction, is reflected by the object to be exposed again, and is sent to the pattern detecting means. 2. The projection exposure apparatus according to claim 1, further comprising a folded detection optical system for guiding the pattern, and causing the reference light to interfere with the pattern detection means. 6. The projection exposure apparatus according to claim 5, further comprising means configured such that the reference light passes through substantially the same direction and the same area as the object light. 7. The pattern detection means is an array sensor, and the pitch P and phase φ correspond to the inclination Δθ and height Δh of the exposed object.
7. The method of claim 1, wherein a sine wave signal having a value of A projection exposure apparatus according to any one of the above. 8. Claim 1, 5 or 6, wherein the irradiation position on the object to be exposed is in a substantially conjugate relationship (imaging relationship) with the pattern detection means by the detection optical system or folded detection optical system. The projection exposure apparatus described. 9. The projection exposure apparatus according to claim 1, wherein the object light and the reference light incident on the pattern detection means are effectively plane waves. 10. The pattern detection means is an array sensor, and the irradiation position on the object to be exposed is in a substantially conjugate relationship with the pattern detection means by the detection optical system or the folded detection optical system, and is not obtained by the array sensor. a processing circuit that selects only a desired region of the exposed information, performs a fast Fourier transform operation, and calculates at least one of the slope or the height of the desired region of the exposure region of the exposed object from the obtained spectral information. 7. A projection exposure apparatus according to claim 1, characterized in that: 11. In the optical path of the detection optical system or the folded reflection optical system and the reference light, a minute aperture is provided in the light converging portion of both optical paths to block noise light components reflected from the front and back surfaces of optical components in both optical paths. 7. A projection exposure apparatus according to claim 1, characterized in that: 12. A second coherent light source having a different wavelength from the coherent light source is provided, the light emitted from the second coherent light source is introduced into the irradiation means, and the optical path is approximately the same as that of the first coherent light source. A means for separating the second wavelength light from the first wavelength light is disposed in the detection optical system or the folded detection optical system, and the separated second wavelength light is separated from the first wavelength light. detecting the object light and the reference light with a second pattern detection means;
Claim 1: Uncertainty factors in the height direction are removed from the interference fringe information obtained by the first and second pattern detection means, thereby making it possible to detect accurate height information over a wide range.
Or the projection exposure apparatus according to 5 or 6. 13. The projection according to claim 1, 5 or 6, characterized in that the number of reflections of the reference light and the object light are made equal to even or odd numbers before one beam passes through the beam splitter and reaches the pattern detection means. Exposure equipment. 14. By using other wafer height detection means such as air micro, the uncertainty factor in the height direction due to single wavelength detection is removed, and accurate height information can be detected over a wide range. 7. A projection exposure apparatus according to claim 1, wherein said projection exposure apparatus comprises: 15. The projection exposure apparatus according to claim 1, 5 or 6, wherein the laser beam is irradiated in a substantially diagonal direction of the exposure area. 16. The projection exposure apparatus according to claim 1, further comprising a pinhole plate provided in the illumination optical path for selecting part of the laser beam. 17. Claim 16, characterized in that a pinhole plate for selecting part of the laser beam is provided at a position substantially conjugate to the exposure area.
The projection exposure apparatus described.
JP2064155A 1989-04-21 1990-03-16 Projection exposure device Expired - Lifetime JPH0828319B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US07/623,438 US5227862A (en) 1989-04-21 1990-04-20 Projection exposure apparatus and projection exposure method
KR1019900702643A KR930011884B1 (en) 1989-04-21 1990-04-20 Projection exposure device and projection exposure method
PCT/JP1990/000520 WO1990013000A1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
DE69027738T DE69027738T2 (en) 1989-04-21 1990-04-20 PROJECTION AND PLAYBACK CONTROL AND PROJECTION AND PLAYBACK METHOD
EP90906337A EP0426866B1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
US07/936,661 US5392115A (en) 1989-04-21 1992-08-28 Method of detecting inclination of a specimen and a projection exposure device as well as method of detecting period of periodically varying signal
US08/315,841 US6094268A (en) 1989-04-21 1994-09-30 Projection exposure apparatus and projection exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10002589 1989-04-21
JP1-100025 1989-04-21

Publications (2)

Publication Number Publication Date
JPH0340417A true JPH0340417A (en) 1991-02-21
JPH0828319B2 JPH0828319B2 (en) 1996-03-21

Family

ID=14262998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2064155A Expired - Lifetime JPH0828319B2 (en) 1989-04-21 1990-03-16 Projection exposure device

Country Status (1)

Country Link
JP (1) JPH0828319B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442908B2 (en) 2002-06-28 2008-10-28 Carl Zeiss Smt Ag Method for optically detecting deviations of an image plane of an imaging system from the surface of a substrate
JP2009055068A (en) * 2004-12-30 2009-03-12 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
JP2010192470A (en) * 2009-02-13 2010-09-02 Canon Inc Measurement apparatus, exposure apparatus, and device manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442908B2 (en) 2002-06-28 2008-10-28 Carl Zeiss Smt Ag Method for optically detecting deviations of an image plane of an imaging system from the surface of a substrate
JP2009055068A (en) * 2004-12-30 2009-03-12 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
US7670730B2 (en) 2004-12-30 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8102507B2 (en) 2004-12-30 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8354209B2 (en) 2004-12-30 2013-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2010192470A (en) * 2009-02-13 2010-09-02 Canon Inc Measurement apparatus, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JPH0828319B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
JP6712349B2 (en) Alignment system
EP0467445B1 (en) Apparatus for projecting a mask pattern on a substrate
JP3774476B2 (en) Interferometer system using two wavelengths and lithographic apparatus comprising such a system
JP3996212B2 (en) Alignment apparatus and lithographic apparatus including such an apparatus
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
US5751426A (en) Positional deviation measuring device and method for measuring the positional deviation between a plurality of diffraction gratings formed on the same object
JPH047814A (en) Alignment device of exposure device
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
JPS629211A (en) Optical measuring instrument
JPH0340417A (en) Projection aligner
JP2814538B2 (en) Alignment device and alignment method
JP2796347B2 (en) Projection exposure method and apparatus
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JP2861927B2 (en) Method and apparatus for detecting inclination or height of optical multilayer object
JP2888233B2 (en) Position detecting apparatus, exposure apparatus and method
JP3003671B2 (en) Method and apparatus for detecting height of sample surface
JPH02251707A (en) Position detecting device
JP2517638B2 (en) Position detection device
JP2513282B2 (en) Alignment device
JPH05196567A (en) Complex reflectivity measurement method and device
JPH09119811A (en) Alignment device, apparatus and method for exposure
JPH04188608A (en) Alignment device using diffraction grating
JPH05175097A (en) Aligner
JPH0428217A (en) Positioning device
JPH01198019A (en) Aligner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14

EXPY Cancellation because of completion of term