JP2796347B2 - Projection exposure method and apparatus - Google Patents

Projection exposure method and apparatus

Info

Publication number
JP2796347B2
JP2796347B2 JP1100026A JP10002689A JP2796347B2 JP 2796347 B2 JP2796347 B2 JP 2796347B2 JP 1100026 A JP1100026 A JP 1100026A JP 10002689 A JP10002689 A JP 10002689A JP 2796347 B2 JP2796347 B2 JP 2796347B2
Authority
JP
Japan
Prior art keywords
substrate
light
exposed
reflected
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1100026A
Other languages
Japanese (ja)
Other versions
JPH02280313A (en
Inventor
良志 押田
稔 田中
哲三 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1100026A priority Critical patent/JP2796347B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to DE69027738T priority patent/DE69027738T2/en
Priority to US07/623,438 priority patent/US5227862A/en
Priority to PCT/JP1990/000520 priority patent/WO1990013000A1/en
Priority to KR1019900702643A priority patent/KR930011884B1/en
Priority to EP90906337A priority patent/EP0426866B1/en
Publication of JPH02280313A publication Critical patent/JPH02280313A/en
Priority to US07/936,661 priority patent/US5392115A/en
Priority to US08/315,841 priority patent/US6094268A/en
Application granted granted Critical
Publication of JP2796347B2 publication Critical patent/JP2796347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被露光基板上にマスクパターンを投影露光
する投影露光方法及びその装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure method and an apparatus for projecting and exposing a mask pattern on a substrate to be exposed.

〔従来の技術〕[Conventional technology]

従来の半導体ウエハ等の被露光基板にマスクに形成し
た回路パターンを投影露光する投影露光装置において、
被露光基板の傾きを検出する手段は、第1の公知例であ
る特開昭61−170605号公報に記載のように第8図のレー
ザダイオード2を出射した光をレンズ14により指向性の
ビームとしウエハ4に上方より照射し、反射光を2次元
位置検出器20で位置検出するものである。
In a conventional projection exposure apparatus for projecting and exposing a circuit pattern formed on a mask on a substrate to be exposed such as a semiconductor wafer,
The means for detecting the inclination of the substrate to be exposed is formed by directing the light emitted from the laser diode 2 shown in FIG. The two-dimensional position detector 20 irradiates the wafer 4 from above and detects the position of the reflected light.

また計測対象を光学的多層構造物体に限らず一般的対
象の距離(高さ)及び傾き計測装置は第2の公知例であ
る第9図の特開昭62−218802号公報に示されている。こ
の公知例では傾きについては垂直に入射し、第1の公知
例と同様第2の受光器で求められ、距離(被測定物6の
面に垂直方向)は第1の光路9により入射角60゜程度で
照射されたスポットを第1の検出器上に結像し、その結
像位置から求めている。
A measuring device for measuring the distance (height) and inclination of a general object is not limited to an optical multi-layer structure object and is shown in FIG. 9 as a second known example in Japanese Patent Application Laid-Open No. Sho 62-218802. . In this known example, the light is incident perpendicularly with respect to the inclination, and is obtained by the second light receiver similarly to the first known example, and the distance (perpendicular to the surface of the DUT 6) is 60 ° by the first optical path 9 and the incident angle is 60 °. The spot irradiated at about で is imaged on the first detector, and is obtained from the imaged position.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は半導体ウエハ等ウエハ表面上に薄膜構
造で形成されたパターンや、その上にフォトレジスト1
〜1μmの厚さで塗布されたものに適用すると照射光は
被測定物の表面で反射するだけでなく、屈折して層構造
の内部にも入射し、下地層で反射した光が、再び表面を
通り、上記の最上面で反射した光に重畳される。この際
最上面と下地面で反射した光は互に干渉しあい、膜の厚
さと照射光の入射角度の微小な変化に対し干渉強度が大
きく変化する。第8図や第9図の距離を検出する系のよ
うに斜めより照射すると第4図に示すように被測定物体
からの反射光の分布は入射時の分布(例えばガウス分
布)とは異なったものとなり、しかも、被測定物体の層
構造や、それを構成する物質の光学定数により分布は異
って来る。この結果、被測定物が異なるたびに測定デー
タにオフセットが発生し、正確な絶対値測定が困難にな
る。また第9図の傾き検出では垂直に照射しているが、
傾きや高さ検出を半導体露光装置や、半導体パターン検
査装置に適用しようとすると、露光光学系や検出光学系
と照射光学系が重なり、光学系の構成が難しくなる。
The above-mentioned prior art discloses a pattern formed in a thin film structure on a wafer surface such as a semiconductor wafer, and a photoresist 1 formed thereon.
When applied to an object coated with a thickness of about 1 μm, the irradiation light not only reflects on the surface of the object to be measured, but also refracts and enters the inside of the layer structure, and the light reflected on the underlayer reappears on the surface again. , And is superimposed on the light reflected on the uppermost surface. At this time, the light reflected by the uppermost surface and the light reflected by the base surface interfere with each other, and the interference intensity greatly changes with a minute change in the thickness of the film and the incident angle of the irradiation light. When irradiating obliquely as in the distance detecting systems of FIGS. 8 and 9, as shown in FIG. 4, the distribution of reflected light from the measured object is different from the distribution at the time of incidence (eg, Gaussian distribution). In addition, the distribution varies depending on the layer structure of the object to be measured and the optical constants of the substances constituting the layer structure. As a result, an offset is generated in the measurement data every time the object to be measured is different, and it is difficult to accurately measure an absolute value. In addition, in the inclination detection of FIG. 9, irradiation is performed vertically,
If the inclination and height detection are applied to a semiconductor exposure apparatus or a semiconductor pattern inspection apparatus, the exposure optical system or the detection optical system and the irradiation optical system overlap, and the configuration of the optical system becomes difficult.

上述の光学的多層物体の干渉による測定誤差の発生は
特に干渉方式により被測定物の表面の傾きや高さを測定
する場合に顕著に問題となる。干渉方式の場合被測定物
の表面で反射した光と参照光とで発生する干渉縞から反
射光の波面の傾きや位相を求め、これが被測定物の傾き
や高さを表わすことになる。しかし多層構造物の場合、
第4図に示すように被測定物に0〜85゜程度の通常の入
射角度で入射すると多層構造物体の表面や内部の各層間
で反射した光が干渉し、被測定物反射直後の光の振幅や
位相は各層の厚さや、その場所による変化により大きく
変化を受ける。この結果参照光を重畳して得る干渉縞は
正確な正弦波形とならず、大きな誤差を発生してしま
う。
The occurrence of the measurement error due to the interference of the optical multilayer object described above becomes a serious problem particularly when the inclination and the height of the surface of the object to be measured are measured by the interference method. In the case of the interference method, the slope and phase of the wavefront of the reflected light are obtained from the interference fringes generated by the light reflected on the surface of the object and the reference light, and this represents the inclination and height of the object. But in the case of multi-layer structures,
As shown in FIG. 4, when the light is incident on the DUT at a normal incident angle of about 0 to 85 °, the light reflected on the surface of the multilayer structure object and between the respective layers inside the multilayer structure interferes, and the light immediately after the reflection of the DUT is reflected. The amplitude and phase greatly change depending on the thickness of each layer and the change depending on the location. As a result, an interference fringe obtained by superimposing the reference light does not have an accurate sine waveform, and a large error occurs.

本発明の目的は、上記従来の課題を解決し、半導体ウ
エハ等層構造からなる被露光基板の傾きまたは高さの少
なくとも一方を、被露光基板の構造や光学特性に関係な
く正確に測定することができるようにして、被露光基板
上にサブミクロンの微細なパターンの投影露光が可能な
投影露光方法及びその装置を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems and to accurately measure at least one of the inclination and the height of a substrate to be exposed having a layer structure such as a semiconductor wafer, regardless of the structure or optical characteristics of the substrate to be exposed. It is an object of the present invention to provide a projection exposure method and apparatus capable of projecting and exposing a submicron fine pattern on a substrate to be exposed.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明においては、投影
露光装置を、原画となるマスクに露光光を照射してマス
ク上に形成されたパターンを被露光基板上に投影して結
像させる露光光学系手段と、被露光基板の表面の投影し
て結像させる箇所またはその近接に85度以上の入射角度
で照射光を入射させる照射手段と、この照射手段により
照射されて被露光基板の表面で反射した反射光を検出す
る検出手段と、この検出手段で検出した被露光基板の表
面で反射した光に基づいて被露光基板の傾き及びまたは
高さを算出する算出手段と、この該算出手段で算出した
結果に基づいて被露光基板の傾き及びまたは高さを補正
する補正手段とを備えて構成した。また、投影露光方法
を、被露光基板表面に露光光とは異なる光源から発射し
た照射光を前記被露光基板の表面に対して85度以上の角
度で入射させて照射し、この照射により被露光基板の表
面で反射した照射光の反射光を検出し、この検出した反
射光に基づいて被露光基板の傾き及びまたは高さを算出
し、この算出した結果に基づいて被露光基板の傾き及び
または高さを補正し、この傾き及びまたは高さを補正し
た被露光基板にマスクを介して露光光を照射する方法を
採用した。
In order to achieve the above object, according to the present invention, there is provided an exposure optics for projecting a pattern formed on a mask by irradiating an exposure light onto a mask serving as an original image onto a substrate to be exposed. System means, irradiating means for irradiating irradiation light at an incident angle of 85 degrees or more at a position or near the place where the surface of the substrate to be exposed is projected and imaged, and the surface of the substrate to be exposed which is irradiated by the irradiation means Detecting means for detecting the reflected light reflected, calculating means for calculating the inclination and / or height of the substrate to be exposed based on the light reflected on the surface of the substrate to be detected detected by the detecting means; and And a correcting means for correcting the inclination and / or height of the substrate to be exposed based on the calculated result. Further, in the projection exposure method, irradiation is performed by irradiating irradiation light emitted from a light source different from the exposure light onto the surface of the substrate to be exposed at an angle of 85 ° or more with respect to the surface of the substrate to be exposed. The reflected light of the irradiation light reflected on the surface of the substrate is detected, the inclination and / or height of the substrate to be exposed is calculated based on the detected reflected light, and the inclination and / or of the substrate to be exposed is calculated based on the calculated result. A method of correcting the height and irradiating exposure light through a mask to the substrate to be exposed whose tilt and / or height has been corrected is adopted.

〔作 用〕(Operation)

被測定物体に入射する光の振幅をS偏光、P偏光に対
しAs,Apとすると、屈折率nの物体の表面で反射及び屈
折する光の振幅Rs,RpおよびDs,Dpは入射角θ、屈折角
(sin=sinθ/n)に対し、以下の式で与えられる。
S-polarized light amplitude of light incident on the object to be measured, P-polarized light with respect to A s, When A p, the amplitude R s of the light reflected and refracted at the surface of the object of the refractive index n, R p and D s, D p is given by the following equation with respect to the incident angle θ and the refraction angle (sin = sin θ / n).

S偏光では入射角が0゜から60゜、P偏光では0゜か
ら75゜程度までは表面反射光より透過光の方が大きく、
下地の多層構造の境界からの反射光により表面反射光と
の間で振幅の大きな干渉が発生する。入射角が上記値か
ら85゜程度までは表面反射光の振幅の方が大きくなる
が、正確な測定を実施するには不十分な条件である。以
下にその理由を示す。第3図に示すように入射角θで入
射した振幅Aの光は屈折角、振幅Dで屈折し、下地で
振幅反射率Rbで反射すると、この反射光の振幅はD・Rb
となる。ここで入射光Aの振幅を1とするとDは振幅透
過率になる。従って下地で反射した光が表面を通過する
とその振幅はRbD2となる。他方振幅A(=1)で入射し
た光は表面で反射しその振幅はRとなる。ここでRやD
は入射光の偏光がSかPかでRs,Ds及びRp,Dpで表わせば
上記(1)〜(4)式が成立する。表面で反射した光R0
と下地で反射した光R1は層の厚さdが薄いと異なり、そ
の結果次式で示す複素振幅ARの光となる。
For S-polarized light, the angle of incidence is 0 ° to 60 °, and for P-polarized light, from 0 ° to 75 °, the transmitted light is larger than the surface reflected light,
Reflected light from the boundary of the underlying multilayer structure causes large-amplitude interference with the surface reflected light. When the angle of incidence is from the above value to about 85 °, the amplitude of the surface reflected light becomes larger, but this is an insufficient condition for performing accurate measurement. The reasons are as follows. Refraction angle light amplitude A which is incident at an incidence angle θ, as shown in FIG. 3, is refracted at an amplitude D, when reflected by the amplitude reflectance R b at the base, the amplitude of the reflected light D · R b
Becomes Here, assuming that the amplitude of the incident light A is 1, D becomes the amplitude transmittance. Thus the light reflected by the base passes through the surface amplitude becomes R b D 2. On the other hand, the light incident with the amplitude A (= 1) is reflected by the surface and the amplitude becomes R. Where R and D
R s-polarized light of the incident light is in the S or P, D s and R p, when expressed by D p (1) to (4) below is satisfied. Light reflected from the surface R 0
Light R 1 reflected by the underlying Unlike thin thickness d of the layer, the light of the complex amplitude A R shown as a result in the following equation.

但しここでλは測定に用いる光の波長である。第3図
に示す膜の厚さdの僅かな変化(波長の1桁下の長さの
変化)に対しても(5)式からARの位相が変化すること
が分る。そこで入射角θとR,Dの関係はS及びP偏光に
対しそれぞれ第5図及び第6図に示す通りであり、この
グラフから更に分り易くするためノイズ成分となる
(5)式の第1項に対する第2項の振幅比Rb・D2/Rを求
めれば、測定に及ぼす誤差の程度を評価することができ
る。そこで最悪のケースとしてRb=1の場合を考え、D2
/Rを入射角度θに対し、また2つの偏光に対して求めた
ものが第7図である。D2/Rは各種検出方法において雑音
(誤差)成分となるため、この値を5%以下に保つには
85゜以上の入射角にする必要があることが分る。またS
偏光状態で入射すれば更に雑音が小さくなり、上記値を
5%以下に保つには、第7図からもわかるように、82度
以上であればよいことが(1)式と(2)式とから求め
られる。
Here, λ is the wavelength of light used for measurement. It can be seen that the phase of A R changes from even (5) with respect to a slight change in thickness d of the film shown in FIG. 3 (a change of one digit of a length of the wavelength). Therefore, the relationship between the incident angle θ and R and D is as shown in FIGS. 5 and 6 for the S and P polarized lights, respectively. To make it easier to understand from this graph, the first component of the equation (5) that becomes a noise component If the amplitude ratio R b · D 2 / R of the second term with respect to the term is obtained, the degree of error exerted on the measurement can be evaluated. Therefore, the worst case is considered when R b = 1, and D 2
FIG. 7 shows the results obtained with respect to the incident angle θ and the two polarized lights. Since D 2 / R is a noise (error) component in various detection methods, to keep this value at 5% or less
It turns out that the incident angle must be 85 ° or more. Also S
If the light is incident in the polarized state, the noise is further reduced. To keep the above value at 5% or less, as can be seen from FIG. It is required from.

比測定物体表面で2度反射させる方法は前述した様に
傾きと高さの検出感度を向上させることになり、精度の
高い測定を可能にする。
The method of reflecting twice on the surface of the ratio measurement object improves the inclination and height detection sensitivity as described above, and enables highly accurate measurement.

また干渉法による検出では下地面からの反射光は干渉
パターンに重畳し干渉縞のピッチャ位相を乱すが、85゜
以上の入射によりまた更にS偏光を用いることにより前
述した通りほとんどこの影響を除くことが可能となり、
精度の高い検出が可能となる。更にこの干渉測定に用い
る参照光の光路を測定光とほぼ同一の光路にすることに
より空気のゆらぎ等の測定環境の影響をほとんど受けな
い安定で高精度の測定を実現する。
In the detection by the interference method, the reflected light from the ground surface is superimposed on the interference pattern and disturbs the pitcher phase of the interference fringes. However, as described above, this effect is almost eliminated by incidence of 85 ° or more and further using S-polarized light. Becomes possible,
Highly accurate detection becomes possible. Further, by setting the optical path of the reference light used for the interference measurement to be substantially the same as the optical path of the measurement light, stable and high-precision measurement hardly affected by the measurement environment such as the fluctuation of air is realized.

上述の傾き及び高さ測定方法を半導体露光装置に適用
すると、露光光学系との空間的干渉がなく、しかも上記
のように高精度にウエハの露光部分の傾きと高さを検出
することが可能なため、この検出値から、ウエハの傾き
や高さを制御し、露光結像面にウエハの表面を精密に合
せることができ、サブミクロンパターンを露光領域全面
に亘り、正確に焼付けることが可能となる。
When the above-described tilt and height measurement method is applied to a semiconductor exposure apparatus, there is no spatial interference with the exposure optical system, and the tilt and height of the exposed portion of the wafer can be detected with high precision as described above. Therefore, it is possible to control the tilt and height of the wafer from these detection values, precisely align the wafer surface with the exposure image forming surface, and print the submicron pattern accurately over the entire exposure area. It becomes possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に示す。第1図は半
導体露光装置の露光状態にありウエハの露光領域の傾き
を検出するものである。81は露光照明系、9はレチクル
であり、8は縮小露光レンズであり、レチクル9のパタ
ーンがウエハ4上に露光される。この際ウエハ表面に塗
布されたフォトレジストの面は、ウエハのうねり、厚さ
むら、ウエハチャックの平面性等により必らずしも平面
でない。そこで1の半導体レーザから出射したレーザ光
をコリメートレンズ11により細い平行ビームとし、ミラ
ー13を介しウエハのレジスト表面のしかも露光領域に85
゜以上の入射角で入射する。反射した光はミラー210、
集光レンズ20により、光位置検出器3′上に集光させ、
その集光位置を検出する。露光領域がα傾いていると正
反射光は2α傾くため集光レンズの焦点距離をfとする
と光位置検出器の集光スポットは2αfずれる。従っ
て、検出された信号は処理回路5′に送られ、ウエハチ
ャックを搭載したチルト機構を駆動し、レチクルパター
ン像面にウエハ上のフォトレジスト面が一致する様に制
御される。この際半導体レーザ出射光161′がウエハ面
にS偏光で入射するように半導体レーザを配置すれば前
述したごとくより正確な傾き検出が可能になる。第1図
の実施例では光位置検出器3′はx,y両方向を検出する
タイプであり、一つの検出系で2方向の傾きを求めるこ
とができる。
FIG. 1 shows an embodiment of the present invention. FIG. 1 detects the inclination of an exposure area of a wafer in an exposure state of a semiconductor exposure apparatus. 81 is an exposure illumination system, 9 is a reticle, 8 is a reduction exposure lens, and the pattern of the reticle 9 is exposed on the wafer 4. At this time, the surface of the photoresist applied to the wafer surface is not necessarily flat due to the undulation of the wafer, uneven thickness, the flatness of the wafer chuck, and the like. Therefore, the laser light emitted from one semiconductor laser is converted into a narrow parallel beam by the collimating lens 11, and is applied to the exposure area on the resist surface of the wafer via the mirror 13.
It is incident at an incident angle of ゜ or more. The reflected light is mirror 210,
The light is focused on the optical position detector 3 'by the focusing lens 20,
The light condensing position is detected. If the exposure area is inclined by α, the specularly reflected light is inclined by 2α, so that if the focal length of the condenser lens is f, the focal spot of the optical position detector is shifted by 2αf. Therefore, the detected signal is sent to the processing circuit 5 'to drive the tilt mechanism equipped with the wafer chuck, so that the photoresist surface on the wafer is controlled to coincide with the reticle pattern image surface. At this time, if the semiconductor laser is arranged so that the semiconductor laser emission light 161 'is incident on the wafer surface as S-polarized light, more accurate tilt detection can be performed as described above. In the embodiment shown in FIG. 1, the optical position detector 3 'is of a type that detects both the x and y directions, and one detection system can determine the inclination in two directions.

第1図で紙面と垂直な方向に第2の検出系を設け、x
とyの方向の傾きを別々に検出してもよい。また光源は
比較的指向性の高い光をウエハに照射できれば半導体レ
ーザに限らない。
In FIG. 1, a second detection system is provided in a direction perpendicular to the paper, and x
And the inclination in the y direction may be separately detected. The light source is not limited to a semiconductor laser as long as it can irradiate the wafer with light having relatively high directivity.

第2図は本発明の一実施例であり、第1図と同一番号
は同一物を表す。半導体レーザ1を出射した光は入射角
85゜以上でウエハに入射し集光レンズ11′により光源像
がウエハ上の露光領域内に形成される。反射した光はミ
ラー210、レンズ21,22により光位置検出器3″上に集光
される。ウエハ表面が露光光学系のレジストパターン結
像位置にあれば光位置検出器3″の中心に、上下にずれ
れば光位置検出器3″の中心から左右にずれるため、光
位置検出器3″の検出信号を処理回路5′に送り、ウエ
ハ上下テーブルを駆動制御すれば、常に正しい焦点合せ
が可能となる。レーザ光の偏光をウエハ面にS偏光で入
射するように構成すればより正確にフォトレジスト表面
の高さを求めることが可能となる。
FIG. 2 shows an embodiment of the present invention, and the same reference numerals as those in FIG. 1 denote the same components. The light emitted from the semiconductor laser 1 is incident angle
The light enters the wafer at an angle of 85 ° or more, and a light source image is formed in the exposure area on the wafer by the condenser lens 11 ′. The reflected light is condensed on the optical position detector 3 "by the mirror 210 and the lenses 21 and 22. If the wafer surface is at the resist pattern image forming position of the exposure optical system, the light is located at the center of the optical position detector 3". If it is shifted vertically, it will be shifted left and right from the center of the light position detector 3 ". Therefore, if the detection signal of the light position detector 3" is sent to the processing circuit 5 'and the drive of the wafer upper and lower tables is controlled, the correct focus is always obtained. It becomes possible. If the polarization of the laser beam is incident on the wafer surface as S-polarized light, the height of the photoresist surface can be determined more accurately.

第10図は本発明の一実施例であり、第1図と同一部品
番号は同一物を表わしている。コリメートレンズ11によ
り得られた平行光はビームスプリッタ19′を通り、ウエ
ハのフォトレジスト面に85゜以上の入射角例えば87゜で
入射する。正反射した光は平面鏡14にほぼ垂直に入射
し、反射光は再びフォトレジスト面で正反射し、ビーム
スプリッタ19′で反射され集光レンズ20により光位置検
出器3′上に集光され、集光スポットの位置が検出され
る。ウエハへの入射角を87゜とし第11図に示すようにS
偏光16sになる様にすると第7図に示すようにDs 2/Rs
0.0065、即ち0.65%となり、ほとんどフォトレジスト内
に入る光1621は無視できるようになり、第11図に示すよ
うに下地層が凹凸していても、その影響は全くほとんど
受けず、平行光のまま正反射する。従って光位置検出器
3′には集光度の高い鋭いスポット光が得られる。更に
本実施例では第12図に示すように平面鏡14で垂直に反射
され、再びウエハに入射するため、ウエハが4から4′
にαだけ傾くと、最終的に光位置検出器に戻って来る光
は4α傾くことになり、第1図の実施例に比べ2倍高い
感度で光位置を検出することが可能となる。この結果S/
N、感度とも従来に比べ非常に優れた傾き検出が可能と
なる。
FIG. 10 shows an embodiment of the present invention, and the same part numbers as those in FIG. 1 represent the same parts. The parallel light obtained by the collimator lens 11 passes through the beam splitter 19 'and is incident on the photoresist surface of the wafer at an incident angle of 85 ° or more, for example, 87 °. The specularly reflected light is incident on the plane mirror 14 almost perpendicularly, and the reflected light is specularly reflected again on the photoresist surface, reflected by the beam splitter 19 'and condensed on the light position detector 3' by the condensing lens 20, The position of the focused spot is detected. As shown in FIG.
When the polarization is set to 16 s , D s 2 / R s becomes as shown in FIG.
0.0065, that is, 0.65%, and the light 1621 almost entering the photoresist becomes negligible. Even if the underlayer is uneven as shown in FIG. 11, it is hardly affected at all, and it remains parallel light. Reflect specularly. Therefore, a sharp spot light having a high light condensing degree is obtained at the light position detector 3 '. Further, in this embodiment, as shown in FIG. 12, the light is vertically reflected by the plane mirror 14 and re-enters the wafer.
When the light is tilted by α, the light finally returning to the optical position detector is tilted by 4α, so that the light position can be detected with twice the sensitivity as compared with the embodiment of FIG. This results in S /
For both N and sensitivity, it is possible to detect a tilt which is much better than before.

第13図は本発明の一実施例であり、第2図と同一番号
は同一物を表す。集光レンズ11′で得られた集光ビーム
はウエハ上の照射位置Aでほぼ集光する。入射角度は85
゜以上である。正反射光はコリメートレンズ141により
平行光にされ、平面鏡14にほぼ垂直に入射する。反射光
は往路とほぼ同一光路を通り、ウエハ上でほぼ集光し、
再び反射し、ビームスプリッタ12を通過し、集光レンズ
22により光位置検出器3″上に集光させる。第14図は実
線で示したウエハの表面(反射面Σ)4が点線の4′
(反射面Σ)に変化した場合のウエハ近傍の集光点の位
置を説明している。反射面がΣの時には往路、復路とも
A点に集光する場合について考える。反射面がΣ′の時
にはΣ′面が鏡面となり、往路のA点はA′点に鏡像を
作る。このA′点から出た光はレンズ141平面鏡14によ
り、復路ではA″に集光する。この集光点はΣ′が鏡面
となりAにA′点の鏡像を作る。従って復路からはあ
たかもAから光が出射するごとく集光レンズ22入射
し、光位置検出器3″にはAの像位置に光が集光す
る。ΣとΣ′の距離、即ちウエハの上下移動両をΔhと
すると AA′=AA″=2Δh AA=AA′+A′A=4Δh …(6) となり、復路の発光点位置はウエハの変位量の4倍(4
Δh)シフトする(第14図参照)。この結果第2図の実
施例に比べ2倍の変位量が光位置検出器3″で検出され
る。この結果高感度でS/Nの高い高さ検出が可能とな
る。
FIG. 13 shows one embodiment of the present invention, and the same reference numerals as those in FIG. 2 denote the same components. The condensed beam obtained by the condensing lens 11 'is almost condensed at the irradiation position A on the wafer. Incident angle is 85
゜ or more. The specularly reflected light is collimated by the collimator lens 141 and is incident on the plane mirror 14 almost perpendicularly. The reflected light passes through almost the same optical path as the outward path, and is almost condensed on the wafer,
The light is reflected again, passes through the beam splitter 12, and is condensed.
The light is condensed on the light position detector 3 "by 22. In FIG. 14, the surface (reflection surface Σ) 4 of the wafer shown by a solid line is a dotted line 4 '.
The position of the focal point near the wafer when changing to (reflection surface Σ) is described. Consider the case where light is condensed at point A when the reflection surface is Σ for both the forward path and the return path. When the reflection surface is Σ ', the Σ' surface becomes a mirror surface, and point A on the outward path forms a mirror image at point A '. The light exiting from the point A 'is converged on the return path A "by the lens 141 plane mirror 14. At the condensing point, Σ' becomes a mirror surface and a mirror image of the point A 'is formed on A. Therefore, it is as if A were from the return path. The light is incident on the condensing lens 22 as the light exits from the light source, and the light is condensed on the light position detector 3 ″ at the image position of A. Assuming that the distance between Σ and Σ ′, that is, both the vertical movement of the wafer is Δh, AA ′ = AA ″ = 2Δh AA = AA ′ + A′A = 4Δh (6), and the position of the light emitting point on the return path is the displacement amount of the wafer. 4 times (4
Δh) shift (see FIG. 14). As a result, a displacement amount twice as large as that in the embodiment shown in Fig. 2 is detected by the optical position detector 3 ". As a result, height detection with high sensitivity and high S / N becomes possible.

第15図は本発明の一実施例図である。第1図と同一番
号は同一物を表わしている。レーザ等可干渉性光源1を
出射した光はコリメータレンズ11により平行光15となり
プリズム10に入射する。プリズム10は入射光15を2つの
平行ビーム16と17に分離する。この2つの平行ビームは
0点で重なる様に互に一定の角度θ−θが付いてい
る。一方の平行ビーム16はウエハに入射角θで入射
し、他方は参照光でありウエハに立てた垂線に対しθ
(>90゜)の角度でウエハには照射せずに進む。ウエハ
で反射した平行ビーム16は平面鏡14にほぼ垂直に入射
し、再びウエハに入射し、往路を逆に辿り、ビームスプ
リッタ12で反射し、レンズ21と22を通過後平行ビームと
なり、一次元センサ3に入射する。他方参照光は0点か
ら直接平面鏡14にほぼ垂直に入射し、反射後往路を逆に
辿り、同じく一次元センサ3に入射し、ウエハで反射さ
せた一方のビームとの間で干渉縞を発生する。ウエハで
反射させた光の復路にはピンホール23と、楔ガラス26が
配置されている。ピンホール23は、参照光路にもあり、
光学部品の裏面で反射したノイズ光を除去する役割を担
っている。他方楔ガラス26はウエハで反射した光を屈折
させることにより、一次元センサ上でウエハ照射位置を
結像させるとともに、参照光と重なるようにしている。
一次元センサ上にはセンサのアレイ方向Xに対し第16図
の実線で示されるような強度の干渉縞が検出されてい
る。ウエハ照射位置(X=0)を中心にウエハが点線で
示されるようにΔθ傾くと、検出される干渉縞は第16図
の点線のようになる。即ちX=0での強度はほとんど変
化しないが、縞のピッチPからP′に変化する。即ちピ
ッチPと傾きΔθの関係は干渉縞の強度I(X)が
(7)式で与えられるため、この式から式(8)で求め
られる。
FIG. 15 is a diagram showing an embodiment of the present invention. The same numbers as those in FIG. 1 represent the same items. The light emitted from the coherent light source 1 such as a laser is converted into parallel light 15 by the collimator lens 11 and enters the prism 10. Prism 10 separates incident light 15 into two parallel beams 16 and 17. The two parallel beams have a fixed angle θ 0 −θ 1 so as to overlap at zero point. One of the parallel beams 16 is incident on the wafer at an incident angle θ 1 , and the other is a reference beam, which is θ 0 with respect to a vertical line set on the wafer.
It proceeds without irradiating the wafer at an angle of (> 90 °). The parallel beam 16 reflected by the wafer is incident on the plane mirror 14 almost perpendicularly, re-enters the wafer, traces the outward path in reverse, is reflected by the beam splitter 12, becomes a parallel beam after passing through the lenses 21 and 22, and becomes a one-dimensional sensor. 3 is incident. On the other hand, the reference light directly enters the plane mirror 14 from the point 0 almost perpendicularly, follows the outward path after reflection, and also enters the one-dimensional sensor 3 to generate interference fringes with one of the beams reflected by the wafer. I do. The pinhole 23 and the wedge glass 26 are arranged on the return path of the light reflected by the wafer. Pinhole 23 is also in the reference optical path,
It plays a role in removing noise light reflected on the back surface of the optical component. On the other hand, the wedge glass 26 refracts the light reflected by the wafer to form an image of the wafer irradiation position on the one-dimensional sensor and overlaps with the reference light.
On the one-dimensional sensor, an interference fringe having an intensity as shown by a solid line in FIG. 16 with respect to the sensor array direction X is detected. When the wafer is tilted by Δθ around the wafer irradiation position (X = 0) as shown by the dotted line, the detected interference fringe becomes as shown by the dotted line in FIG. That is, although the intensity at X = 0 hardly changes, it changes from the stripe pitch P to P ′. That is, the relationship between the pitch P and the inclination Δθ is obtained from the equation (8) from the equation (7) because the interference fringe intensity I (X) is given by the equation (7).

上記(7)式でMはウエハ上の照射位置を一次元セン
サに結像する倍率であるが、話を簡単にするため楔ガラ
スの楔角は0度と仮定している(楔ガラスがない場
合)。
In the above equation (7), M is the magnification at which the irradiation position on the wafer is imaged on the one-dimensional sensor, but it is assumed that the wedge angle of the wedge glass is 0 degree for simplicity (there is no wedge glass). Case).

また(7)式のcosineの中の第2項はウエハ面がΔZ
変化した時の干渉縞の変化を表わしており、第17図に示
すごとくウエハ面がΔz変化すると干渉縞のピッチは変
化せず位相がシフトする。従って本実施例では一次元セ
ンサ3で得られた干渉縞を処理回路5に送り、ここで干
渉縞ピッチと位相を求めることにより、ウエハ面の高さ
と傾きが同時に求められることになる。また本実施例で
は入射角度θを87〜89度に取ることも可能であり、S
偏光を照射光に用いれば第7図からも明らかなように下
地多層構造の影響はほとんど受けずに、傾きと高さを正
確に求めることが可能となる。また本実施例では参考光
はウエハ照射光とほとんど同一の光路を通っており、ま
た使用光学部品もウエハ面での反射を除き総て共通のた
め、空気のゆらぎ等の影響をほとんど受けずに安定な測
定を実現することができる。
The second term in cosine of equation (7) is that the wafer surface is ΔZ
This indicates the change of the interference fringe when it changes, and as shown in FIG. 17, when the wafer surface changes by Δz, the pitch of the interference fringe does not change and the phase shifts. Therefore, in the present embodiment, the interference fringes obtained by the one-dimensional sensor 3 are sent to the processing circuit 5, where the pitch and phase of the interference fringes are obtained, whereby the height and inclination of the wafer surface can be obtained simultaneously. Also in this embodiment it is also possible to take the incident angle theta 1 to 87-89 degrees, S
If polarized light is used as the irradiation light, the inclination and the height can be accurately obtained without being affected by the underlying multilayer structure, as is clear from FIG. Further, in this embodiment, the reference light passes through almost the same optical path as the wafer irradiation light, and the optical components used are all common except for the reflection on the wafer surface, so that they are hardly affected by air fluctuations and the like. Stable measurement can be realized.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、半導体回路製作
過程での様々の多層構造からなるウエハ等光学的多層物
体の傾きもしくは高さを多層構造に影響されずに正確に
測定することが可能となり、半導体露光装置に於る焦点
合せ及びウエハ面の結像面への合せ込みのための傾き制
御を正確に実行することが可能となり、0.8μm以下、
特に0.5μm近傍以下の線幅回路パターンの露光に用い
られる高NAi線縮小露光装置や、エキシマレーザ縮小露
光装置で発生すると予想される浅い焦点深度に伴なう、
露光焦点マージンの減少に対し、極めて顕著な効果を発
揮する。
As described above, according to the present invention, it is possible to accurately measure the inclination or height of an optical multilayer object such as a wafer having various multilayer structures in a semiconductor circuit manufacturing process without being affected by the multilayer structure. , It is possible to accurately execute the tilt control for focusing and alignment of the wafer surface to the image forming surface in the semiconductor exposure apparatus, 0.8 μm or less,
In particular, a high NA i- line reduction exposure apparatus used for exposure of a line width circuit pattern of less than 0.5 μm or less, accompanied by a shallow depth of focus expected to occur in an excimer laser reduction exposure apparatus,
It has a very remarkable effect on the reduction of the exposure focus margin.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は各々本発明の一実施例を示す装置構
成図、第3図は本発明の原理説明のための図、第4図は
従来の課題を説明する図、第5図乃至第7図は本発明の
原理と効果を説明する特性図、第8図及び第9図は従来
技術を説明するための図、第10図は本発明の他の一実施
例を示す構成図、第11図及び第12図は第10図の実施例を
説明するための図、第13図は更に本発明の他の一実施例
図を示す構成図、第14図は第13図に示す実施例を説明す
るための図、第15図は更に本発明の他の一実施例を示す
構成図、第16図及び第17図は第14図に示す実施例を説明
するための図である。 1……光源、11……コリメートレンズ、11′……集光レ
ンズ、20……集光レンズ、21,22……レンズ、13,14,210
……ミラー、16,19……ハーフミラー、3……一次元セ
ンサ、3′,3″……光位置検出器、4……ウエハ、5,
5′……処理回路、7……ステージ、8……縮小露光レ
ンズ、81……照明系、9……リチクル。
1 and 2 are each a device configuration diagram showing an embodiment of the present invention, FIG. 3 is a diagram for explaining the principle of the present invention, FIG. 4 is a diagram for explaining a conventional problem, and FIG. FIG. 7 to FIG. 7 are characteristic diagrams for explaining the principle and effect of the present invention, FIG. 8 and FIG. 9 are diagrams for explaining the prior art, and FIG. 10 is a configuration diagram showing another embodiment of the present invention. , FIGS. 11 and 12 are views for explaining the embodiment of FIG. 10, FIG. 13 is a block diagram showing another embodiment of the present invention, and FIG. FIG. 15 is a diagram for explaining the embodiment, FIG. 15 is a configuration diagram showing still another embodiment of the present invention, and FIGS. 16 and 17 are diagrams for explaining the embodiment shown in FIG. . 1 ... light source, 11 ... collimating lens, 11 '... condensing lens, 20 ... condensing lens, 21, 22, ... lens, 13, 14, 210
… Mirror, 16, 19… half mirror, 3… one-dimensional sensor, 3 ′, 3 ″… optical position detector, 4… wafer, 5,
5 'processing circuit, 7 stage, 8 reduction exposure lens, 81 illumination system, 9 reticle.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−113706(JP,A) 特開 昭56−101112(JP,A) 特開 昭60−136311(JP,A) 特開 昭62−140419(JP,A) 特開 昭61−74338(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/027 G03F 9/00 G01B 11/26 G01B 11/02──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-113706 (JP, A) JP-A-56-101112 (JP, A) JP-A-60-136311 (JP, A) JP-A-62 140419 (JP, A) JP-A-61-74338 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 21/027 G03F 9/00 G01B 11/26 G01B 11/02

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被露光基板表面に露光光とは異なる光源か
ら発射した照射光を前記被露光基板の表面に対して85度
以上の角度で入射させて照射し、該照射により前記被露
光基板の表面で反射した前記照射光の反射光を検出し、
該検出した反射光に基づいて前記被露光基板の傾き及び
または高さを算出し、該算出した結果に基づいて前記被
露光基板の傾き及びまたは高さを補正し、該傾き及びま
たは高さを補正した前記被露光基板にマスクを介して露
光光を照射することを特徴とする投影露光方法。
An irradiation light emitted from a light source different from the exposure light onto the surface of the substrate to be exposed is irradiated onto the surface of the substrate to be exposed at an angle of 85 ° or more, and the substrate is exposed by the irradiation. Detecting the reflected light of the irradiation light reflected on the surface of,
The inclination and / or height of the substrate to be exposed is calculated based on the detected reflected light, and the inclination and / or height of the substrate to be exposed is corrected based on the calculated result, and the inclination and / or height is calculated. A projection exposure method, comprising irradiating the corrected exposure substrate with exposure light via a mask.
【請求項2】被露光基板表面に露光光とは異なる光源か
ら発射した照射光をS偏光させ、該S偏光させた照射光
を前記被露光基板の表面に対して82度以上の角度で入射
させて照射し、該照射により前記被露光基板の表面で反
射した前記照射光の反射光を検出し、該検出した反射光
に基づいて前記被露光基板の傾き及びまたは高さを算出
し、該算出した結果に基づいて前記被露光基板の傾き及
びまたは高さを補正し、該傾き及びまたは高さを補正し
た前記被露光基板にマスクを介して露光光を照射するこ
とを特徴とする投影露光方法。
2. The irradiation light emitted from a light source different from the exposure light is S-polarized on the surface of the substrate to be exposed, and the S-polarized irradiation light is incident on the surface of the substrate at an angle of 82 degrees or more. Irradiating, detecting the reflected light of the irradiating light reflected on the surface of the substrate to be exposed by the irradiation, calculating the inclination and or height of the substrate to be exposed based on the detected reflected light, A projection exposure method comprising: correcting the tilt and / or height of the substrate to be exposed based on the calculated result; and irradiating the substrate with corrected tilt and / or height with exposure light through a mask. Method.
【請求項3】被露光基板表面に露光光とは異なる光源か
ら発射した照射光を、前記被露光基板表面で反射及び屈
折する前記照射光の振幅をR及びDとするときD2/Rが0.
05以下になるようにし前記被露光基板の表面に対して入
射させて照射し、該照射により前記被露光基板の表面で
反射した前記照射光の反射光を検出し、該検出した反射
光に基づいて前記被露光基板の傾き及びまたは高さを算
出し、該算出した結果に基づいて前記被露光基板の傾き
及びまたは高さを補正し、該傾き及びまたは高さを補正
した前記被露光基板にマスクを介して露光光を照射する
ことを特徴とする投影露光方法。
3. A radiation light emitted from different light sources and exposure light exposed substrate surface, wherein the D 2 / R when the amplitude of the illumination light reflected and refracted at the exposed substrate surface and R and D 0.
05 and below, the incident light is irradiated to the surface of the substrate to be exposed and irradiated, and the reflected light of the irradiation light reflected by the surface of the substrate to be exposed by the irradiation is detected, and based on the detected reflected light, Calculating the inclination and / or height of the substrate to be exposed, correcting the inclination and / or height of the substrate to be exposed based on the calculated result, and correcting the inclination and / or height to the substrate to be exposed. A projection exposure method, comprising irradiating exposure light through a mask.
【請求項4】前記傾き及びまたは高さを補正した被露光
基板に、前記マスクを介して露光光を照射することによ
り、前記被露光基板上に0.5μm以下の幅を有するパタ
ーンを露光することを特徴とする請求項1乃至3の何れ
かに記載の投影露光方法。
4. Exposing a pattern having a width of 0.5 μm or less on the substrate to be exposed by irradiating the substrate with the corrected inclination and / or height with exposure light through the mask. The projection exposure method according to claim 1, wherein:
【請求項5】前記反射光を、再度前記被露光基板の表面
に入射させ、該入射による前記反射光の反射光を検出
し、該検出した前記反射光の反射光に基づいて前記被露
光基板の傾き及びまたは高さを算出することを特徴とす
る請求項4に記載の投影露光方法。
5. The method according to claim 5, wherein the reflected light is incident on the surface of the substrate to be exposed again, the reflected light of the reflected light due to the incident light is detected, and the substrate to be exposed is detected based on the detected reflected light of the reflected light. 5. The projection exposure method according to claim 4, wherein the inclination and / or height of the projection exposure is calculated.
【請求項6】原画となるマスクに露光光を照射して前記
マスク上に形成されたパターンを被露光基板上に投影し
て結像させる露光光学系手段と、前記被露光基板の表面
の前記投影して結像させる箇所またはその近接に85度以
上の入射角度で照射光を入射させる照射手段と、該照射
手段により照射されて前記被露光基板の表面で反射した
反射光を検出する検出手段と、該検出手段で検出した前
記被露光基板の表面で反射した光に基づいて前記被露光
基板の傾き及びまたは高さを算出する算出手段と、該算
出手段で算出した結果に基づいて前記被露光基板の傾き
及びまたは高さを補正する補正手段とを備えたことを特
徴とする投影露光装置。
6. An exposure optical system means for irradiating exposure light onto a mask serving as an original image to project a pattern formed on the mask onto a substrate to be exposed to form an image, and Irradiation means for irradiating irradiation light at an incident angle of 85 degrees or more at or near a position where the image is projected and formed, and detection means for detecting reflected light irradiated by the irradiation means and reflected on the surface of the substrate to be exposed Calculating means for calculating the inclination and / or height of the substrate to be exposed based on the light reflected by the surface of the substrate to be detected detected by the detecting means; and calculating the tilt based on the result calculated by the calculating means. A projection exposure apparatus comprising: a correction unit configured to correct a tilt and / or a height of an exposure substrate.
【請求項7】原画となるマスクに露光光を照射して前記
マスク上に形成されたパターンを被露光基板上に投影し
て結像させる露光光学系手段と、前記被露光基板の表面
の前記投影して結像させる箇所またはその近接に82度以
上の入射角度でS偏光した照射光を入射させる照射手段
と、該照射手段により照射されて前記被露光基板の表面
で反射した反射光を検出する検出手段と、該検出手段で
検出した前記被露光基板の表面で反射した光に基づいて
前記被露光基板の傾き及びまたは高さを算出する算出手
段と、該算出手段で算出した結果に基づいて前記被露光
基板の傾き及びまたは高さを補正する補正手段とを備え
たことを特徴とする投影露光装置。
7. An exposure optical system means for irradiating exposure light to a mask serving as an original image to project a pattern formed on the mask onto a substrate to be exposed to form an image, and Irradiation means for irradiating S-polarized irradiation light at an incident angle of 82 degrees or more at or near the position where the image is projected and formed, and detecting reflected light irradiated by the irradiation means and reflected on the surface of the substrate to be exposed Detecting means to calculate the inclination and / or height of the substrate to be exposed based on the light reflected on the surface of the substrate to be detected detected by the detecting means; and And a correcting means for correcting the inclination and / or height of the substrate to be exposed.
【請求項8】原画となるマスクに露光光を照射して前記
マスク上に形成されたパターンを被露光基板上に投影し
て結像させる露光光学系手段と、前記被露光基板の表面
の前記投影して結像させる箇所またはその近接に前記基
板表面で反射及び屈折する前記照射光の振幅をR及びD
とするときD2/Rが0.05以下になるようにして前記基板の
表面に入射させて照射する照射手段と、該照射手段によ
り照射されて前記被露光基板の表面で反射した反射光を
検出する検出手段と、該検出手段で検出した前記被露光
基板の表面で反射した光に基づいて前記被露光基板の傾
き及びまたは高さを算出する算出手段と、該算出手段で
算出した結果に基づいて前記被露光基板の傾き及びまた
は高さを補正する補正手段とを備えたことを特徴とする
投影露光装置。
8. An exposure optical system means for irradiating exposure light onto a mask serving as an original image to project a pattern formed on the mask onto a substrate to be exposed to form an image, and The amplitude of the irradiation light reflected and refracted on the substrate surface at or near the position where the image is projected and formed is represented by R and D.
Irradiating means for irradiating the surface of the substrate by irradiating the substrate so that D 2 / R is 0.05 or less, and detecting the reflected light irradiated by the irradiating means and reflected on the surface of the substrate to be exposed Detecting means, calculating means for calculating the inclination and / or height of the substrate to be exposed based on the light reflected on the surface of the substrate to be detected detected by the detecting means, and based on the result calculated by the calculating means. A projection exposure apparatus comprising: a correction unit configured to correct a tilt and / or a height of the substrate to be exposed.
【請求項9】前記傾き及びまたは高さを補正した基板
に、前記マスクを介して露光光を照射することにより、
前記基板上に0.5μm以下の幅を有するパターンを露光
することを特徴とする請求項6乃至8の何れかに記載の
投影露光装置。
9. By irradiating exposure light to the substrate whose inclination and / or height has been corrected through the mask,
9. The projection exposure apparatus according to claim 6, wherein a pattern having a width of 0.5 [mu] m or less is exposed on the substrate.
【請求項10】前記照射手段は、平行光を前記基板表面
に照射し、前記検出手段で検出した前記平行光の反射光
に基づいて前記算出手段で前記被露光基板の傾きを算出
することを特徴とする請求項9に記載の投影露光装置。
10. The irradiating means irradiates parallel light onto the substrate surface, and calculates the inclination of the substrate to be exposed by the calculating means based on the reflected light of the parallel light detected by the detecting means. The projection exposure apparatus according to claim 9, wherein:
【請求項11】前記照射手段は、集束光を前記基板表面
に照射し、前記検出手段で検出した前記集束光の反射光
に基づいて前記算出手段で前記被露光基板の高さを算出
することを特徴とする請求項9に記載の投影露光装置。
11. The irradiating means irradiates a focused light onto the substrate surface, and calculates the height of the substrate to be exposed by the calculating means based on the reflected light of the focused light detected by the detecting means. The projection exposure apparatus according to claim 9, wherein:
JP1100026A 1989-04-21 1989-04-21 Projection exposure method and apparatus Expired - Fee Related JP2796347B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1100026A JP2796347B2 (en) 1989-04-21 1989-04-21 Projection exposure method and apparatus
US07/623,438 US5227862A (en) 1989-04-21 1990-04-20 Projection exposure apparatus and projection exposure method
PCT/JP1990/000520 WO1990013000A1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
KR1019900702643A KR930011884B1 (en) 1989-04-21 1990-04-20 Projection exposure device and projection exposure method
DE69027738T DE69027738T2 (en) 1989-04-21 1990-04-20 PROJECTION AND PLAYBACK CONTROL AND PROJECTION AND PLAYBACK METHOD
EP90906337A EP0426866B1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
US07/936,661 US5392115A (en) 1989-04-21 1992-08-28 Method of detecting inclination of a specimen and a projection exposure device as well as method of detecting period of periodically varying signal
US08/315,841 US6094268A (en) 1989-04-21 1994-09-30 Projection exposure apparatus and projection exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100026A JP2796347B2 (en) 1989-04-21 1989-04-21 Projection exposure method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8097987A Division JP2861927B2 (en) 1996-04-19 1996-04-19 Method and apparatus for detecting inclination or height of optical multilayer object

Publications (2)

Publication Number Publication Date
JPH02280313A JPH02280313A (en) 1990-11-16
JP2796347B2 true JP2796347B2 (en) 1998-09-10

Family

ID=14263027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100026A Expired - Fee Related JP2796347B2 (en) 1989-04-21 1989-04-21 Projection exposure method and apparatus

Country Status (1)

Country Link
JP (1) JP2796347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530269A (en) * 2019-08-23 2019-12-03 扬州大学 A kind of laser triangulation and optical lever combined type monocular vision measuring device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099596A (en) 1997-07-23 2000-08-08 Applied Materials, Inc. Wafer out-of-pocket detection tool
US6197117B1 (en) 1997-07-23 2001-03-06 Applied Materials, Inc. Wafer out-of-pocket detector and susceptor leveling tool
JP3780221B2 (en) 2002-03-26 2006-05-31 キヤノン株式会社 Exposure method and apparatus
CN107560565B (en) * 2017-08-24 2019-05-07 南京理工大学 Surface shape detection apparatus and detection method based on dynamic sharing inclination carrier frequency interference

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530269A (en) * 2019-08-23 2019-12-03 扬州大学 A kind of laser triangulation and optical lever combined type monocular vision measuring device

Also Published As

Publication number Publication date
JPH02280313A (en) 1990-11-16

Similar Documents

Publication Publication Date Title
JP2514037B2 (en) Detection optical system
CA1139441A (en) Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed
US5241188A (en) Apparatus for detecting a focussing position
JP3996212B2 (en) Alignment apparatus and lithographic apparatus including such an apparatus
US6376329B1 (en) Semiconductor wafer alignment using backside illumination
JPH0546970B2 (en)
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
US4626103A (en) Focus tracking system
JP2796347B2 (en) Projection exposure method and apparatus
JP2676933B2 (en) Position detection device
JP2861927B2 (en) Method and apparatus for detecting inclination or height of optical multilayer object
JP2814538B2 (en) Alignment device and alignment method
JP3003671B2 (en) Method and apparatus for detecting height of sample surface
JPH08219718A (en) Plane position detector
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JP2808595B2 (en) Position detecting apparatus and projection exposure apparatus using the same
JP2513300B2 (en) Position detection device
JP2626076B2 (en) Position detection device
JPH06104158A (en) Position detecting device
JP2786270B2 (en) Interferometric tilt or height detecting device, reduction projection type exposure device and method thereof
JP2775988B2 (en) Position detection device
JP2827251B2 (en) Position detection device
JP2623757B2 (en) Positioning device
JP2791120B2 (en) Position detecting device and method
JP2513281B2 (en) Alignment device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees