JP2517638B2 - Position detection device - Google Patents
Position detection deviceInfo
- Publication number
- JP2517638B2 JP2517638B2 JP63034669A JP3466988A JP2517638B2 JP 2517638 B2 JP2517638 B2 JP 2517638B2 JP 63034669 A JP63034669 A JP 63034669A JP 3466988 A JP3466988 A JP 3466988A JP 2517638 B2 JP2517638 B2 JP 2517638B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- mark
- mask
- wafer
- alignment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高精度な位置合わせ装置、特に半導体露光装
置に於けるマスクまたはレチクルとウエハの相対位置合
わせ装置に関するものである。The present invention relates to a highly accurate alignment apparatus, and more particularly to a relative alignment apparatus for a mask or reticle and a wafer in a semiconductor exposure apparatus.
近年、半導体の高集積度化が進み、既に1Mbitから4Mb
it DRAMの量産化が始まり、更に高集積化の方向へ進ん
でいる。In recent years, the degree of integration of semiconductors has increased, and already 1Mbit to 4Mb
Mass production of it DRAM has begun, and it is moving toward higher integration.
この様な高集積度化に伴ない、ウエハ面上の最小線幅
も1μm以下になっており、半導体露光装置に要求され
るマスクとウエハの位置合わせ(アライメント)精度は
0.2μm以下となっている。With such higher integration, the minimum line width on the wafer surface has become 1 μm or less, and the alignment accuracy between the mask and the wafer required for the semiconductor exposure apparatus is high.
It is less than 0.2 μm.
従来、アライメントに関しては、マスク及びウエハ上
にアライメントマークを設け、それらの位置情報をもと
にアライメントを行ってきた。Conventionally, regarding alignment, alignment marks have been provided on a mask and a wafer, and alignment has been performed based on the position information of these.
アライメント方式には、マスク及びウエハ上のパター
ンずれを画像処理により検出したり、ゾーンプレートを
マークに用い照射ビームの集光点位置を検出したりして
評価を行うものがある。中でもマスク及びウエハにそれ
ぞれゾーンプレートを作製し、入射ビームのそれらの位
置ずれを検出する方法がマークの欠損に影響されにくい
という点で注目される(USP4,037,969、特開昭56−1570
33)。第10図にその構成を示す。Some alignment methods perform evaluation by detecting a pattern shift on the mask and the wafer by image processing, or by using a zone plate as a mark to detect the position of the focal point of the irradiation beam. Among them, attention is paid to the method in which zone plates are respectively formed on the mask and the wafer and the positional deviation of the incident beam is detected, because they are not easily affected by mark defects (USP 4,037,969, JP-A-56-1570).
33). Figure 10 shows the configuration.
光源72から出射した平行ビームは集光レンズ76で集光
され集光点78を通り、マスク68上のアライメントマーク
及びウエハ60上のアライメントマークに照射される。こ
れらのアライメントマークは反射型のゾーンプレートで
構成され、それぞれ78を含む光軸と直交する平面上に集
光点をつくる。この平面上の集光点位置ずれをレンズ7
6,80を用い検出器82上へ導き検出する。この際、マスク
用マーク,ウエハ用マークからの光の結像関係を詳細に
説明したものが第11図である。The parallel beam emitted from the light source 72 is condensed by the condenser lens 76, passes through the condensing point 78, and is irradiated on the alignment mark on the mask 68 and the alignment mark on the wafer 60. These alignment marks are composed of reflection type zone plates, and form converging points on a plane that includes 78 and is orthogonal to the optical axis. The lens 7
6 and 80 are used to guide and detect on the detector 82. At this time, FIG. 11 shows in detail the image formation relationship of the light from the mask mark and the wafer mark.
集光点78から発散された光ビームはマスク68上のマス
クマークより一部が回折され、集光点78近傍へマスク位
置をあらわす集光点を形成する。又、一部はマスク68を
0次透過光として透過し、波面を変えずにウエハ60上の
アライメントマークへ照射される。ウエハマークより回
折された光は再びマスク68を0次透過光として透過し、
78近傍に集光し、ウエハ位置をあらわす集光点を形成す
る。すなわち、ウエハ60による集光点を形成するにあた
り、マスクは単なる素通しとしての作用しか持たない。A part of the light beam emitted from the converging point 78 is diffracted by the mask mark on the mask 68, and a condensing point representing the mask position is formed in the vicinity of the converging point 78. A part of the light passes through the mask 68 as zero-order transmitted light and is irradiated on the alignment mark on the wafer 60 without changing the wavefront. The light diffracted from the wafer mark passes through the mask 68 again as 0th-order transmitted light,
The light is condensed in the vicinity of 78 to form a light condensing point that represents the wafer position. That is, the mask has only a function of passing through when forming the focal point by the wafer 60.
このようにして形成されたウエハマークによる集光点
位置はウエハのマスクに対するずれΔσに応じ78を含む
光軸と直交する平面に沿ってほぼΔσと同程度Δσ′だ
け移動することになる。このΔσ′を光電検出器82で検
出することでマスクとウエハの横ずれ量を検出し、検出
器82の出力信号を受けた制御回路84がこの信号に基づい
て微動機構64を駆動させる事によりマスク68とウエハ60
とを位置合わせする。The position of the focal point of the wafer mark formed in this manner moves by Δσ ′ to the same extent as Δσ along the plane orthogonal to the optical axis including 78 in accordance with the deviation Δσ of the wafer with respect to the mask. By detecting this Δσ ′ by the photoelectric detector 82, the amount of lateral deviation between the mask and the wafer is detected, and the control circuit 84 which receives the output signal of the detector 82 drives the fine movement mechanism 64 based on this signal to mask the mask. 68 and wafer 60
Align and.
上述の様にフレネルゾーンプレート等の物理光学素子
を用いてマスクとウエハとの位置検知をする場合、光源
として単色光(あるいは準単色光)を用いており、通常
はレーザ光を用いている為、位置合わせマーク上の照度
分布は一般にガウシアン分布に近いものとなる。特に、
半導体レーザの場合は第5図に示す様に光束の発散角は
活成層の平行方向と垂直方向で異なる発散角を有してお
り、一般に垂直方向の発散角が大きい。第5図は集光レ
ンズ2を設け、半導体レーザ1の光源像を形成した様子
を示しており、集光レンズ2の瞳面近傍上の照度分布は
一般にフアーフイールドパターン、光源像近傍の照度分
布をニアフイールドパターンと呼び、半導体レーザの非
点収差が充分小さい時は光源像の位置(これをビームウ
エスト位置と呼ぶ)での波面が平面波となり、その時の
スポツトのe-2強度の半径をビームウエスト半径と呼
ぶ。As described above, when the positions of the mask and the wafer are detected using a physical optical element such as a Fresnel zone plate, monochromatic light (or quasi-monochromatic light) is used as a light source, and usually laser light is used. The illuminance distribution on the alignment mark is generally close to the Gaussian distribution. In particular,
In the case of a semiconductor laser, as shown in FIG. 5, the divergence angle of the light flux has different divergence angles in the vertical direction and the parallel direction of the active layer, and the divergence angle in the vertical direction is generally large. FIG. 5 shows a state in which the light source image of the semiconductor laser 1 is formed by providing the condenser lens 2. The illuminance distribution near the pupil plane of the condenser lens 2 is generally a far field pattern, and the illuminance distribution near the light source image. Is called a near field pattern, and when the astigmatism of the semiconductor laser is sufficiently small, the wavefront at the position of the light source image (this is called the beam waist position) becomes a plane wave, and the radius of the e -2 intensity of the spot at that time is the beam. Called waist radius.
一方、半導体露光装置に於ける位置合わせマークは専
有面積を低減する目的でスクライブライン上が好まし
く、その際はスクライブライン幅である20〜100μm以
下(長さ的にも500μm以下)に納める事が通例となっ
ている。この時、先に示した集光レンズ2にて集光し位
置合わせマーク上にビームウエストを作る方法が一般に
取られる。しかし、この時の照度分布は先に述べた様に
ガウシアン分布となり、次の様な問題点を有していた。
即ち、第6図に示す様にビームとマークとが正規位置関
係よりずれてしまい位置合わせマーク上の照度分布が大
きく変動すると集光光束の回折焦点の重心移動を伴なう
現象が生じる為、例えば前述の第10図の例においてはマ
スク上のグレーテイングレンズとウエハ上のグレーテイ
ングレンズのそれぞれで形成されるセンサ面のスポツト
重心の移動が起こり、位置合わせ精度を低下させる要因
となる。これは他の物理光学素子においても回折光束重
心変動等の要因となる。これを解決するにはマークに対
する照射光の位置を高精度で行うか、マーク上の照射ス
ポツト径を拡大して中心部分の光を用いる方法が考えら
れる。しかしながら、前者は投光及び受光光学系を測長
する複雑な機構を必要とし、後者はセンサ面に到達する
信号光を減らしてマークのない部分に照明光をあて、そ
こからの散乱ノイズ成分を増加させてS/N低下をきたす
欠点を有している。On the other hand, the alignment mark in the semiconductor exposure apparatus is preferably on the scribe line for the purpose of reducing the occupied area, and in that case, the alignment mark may be placed within the scribe line width of 20 to 100 μm or less (the length is 500 μm or less). It is customary. At this time, a method of forming a beam waist on the alignment mark by collecting light with the condenser lens 2 described above is generally used. However, the illuminance distribution at this time is the Gaussian distribution as described above, and has the following problems.
That is, as shown in FIG. 6, when the beam and the mark deviate from the normal positional relationship and the illuminance distribution on the alignment mark fluctuates significantly, a phenomenon accompanied by movement of the center of gravity of the diffracted focus of the focused light beam occurs. For example, in the example of FIG. 10 described above, the spot center of gravity of the sensor surface formed by each of the grating lens on the mask and the grating lens on the wafer moves, which causes a decrease in alignment accuracy. This causes a variation in the center of gravity of the diffracted light beam even in other physical optical elements. To solve this problem, it is possible to position the irradiation light with respect to the mark with high accuracy or to enlarge the irradiation spot diameter on the mark and use the light of the central portion. However, the former requires a complicated mechanism for measuring the light projecting and receiving optical systems, and the latter reduces the signal light reaching the sensor surface and illuminates the unmarked portion with illumination light to eliminate scattered noise components from it. It has the drawback of increasing the S / N ratio.
本発明は前述従来例の欠点に鑑み、物体上のフレネル
ゾーンプレート等の物理光学素子による偏向光束を検出
して物体の位置検出を行う時に、ビームとマークとの位
置関係に変動があっても検出精度が悪化しにくく、かつ
S/N低下をおこしにくい位置検出装置を提供することを
目的とする。In view of the above-mentioned drawbacks of the conventional example, the present invention detects a deflected light beam by a physical optical element such as a Fresnel zone plate on an object to detect the position of the object, even if the positional relationship between the beam and the mark varies. Detection accuracy is less likely to deteriorate, and
It is an object of the present invention to provide a position detection device that is unlikely to cause a decrease in S / N.
本発明は上記問題点を解決する為、光束を複数個設け
各光束を1部重ね合わせて物理光学素子の形状に応じた
断面形状を有する光束を形成することにより、位置合わ
せマーク上の照射光のエネルギーを低下させずに分布を
実質的に均一化し、マークとビームとの間に多少変動が
あっても出射光束が変動しないようにしている。In order to solve the above-mentioned problems, the present invention provides a plurality of light beams and superimposes a part of each light beam to form a light beam having a cross-sectional shape corresponding to the shape of a physical optical element. The distribution is made substantially uniform without lowering the energy of, and the emitted light flux does not fluctuate even if there is some fluctuation between the mark and the beam.
即ち、複数の光束を所定の間隔に設定して合成された
光束を位置合わせマークを照射し、単一光束を照射する
場合に比べ、照射エネルギー分布を位置合わせマーク内
では均一化に近ずき同時に位置合わせマーク外はエネル
ギーが大きく低下する様に配列する。従って、光束重心
を検知する系のS/Nを低下させることなく、且つ投光,
受光系を含むピツクアツプ筐体の位置合わせマークに対
する設定精度が悪くても位置合わせ精度の劣化を生じな
い位置合わせ装置が提供できる。この概念図を第7図に
示す。That is, compared with the case where a plurality of light fluxes are set at a predetermined interval and a combined light flux is applied to the alignment mark and a single light flux is applied, the irradiation energy distribution is closer to uniform within the alignment mark. At the same time, the alignment is arranged so that the energy is significantly reduced outside the alignment mark. Therefore, without lowering the S / N of the system that detects the center of gravity of the luminous flux,
It is possible to provide a positioning device that does not deteriorate the positioning accuracy even if the setting accuracy of the positioning mark of the pickup housing including the light receiving system is poor. This conceptual diagram is shown in FIG.
第1図(a),(b),(c)は本発明の特徴を最も
良く示す第1の実施例の位置検知装置を設けたマスクア
ライナーの図で、第1図(a)は本実施例の位置検知装
置の構成図、第1図(b)は同原理図、第1図(c)は
本実施例における位置検出用マーク部の詳細図である。FIGS. 1 (a), (b) and (c) are views of a mask aligner provided with a position detecting device of the first embodiment which best shows the features of the present invention. FIG. 1 (a) shows the present embodiment. FIG. 1B is a schematic diagram of the position detecting device of the example, FIG. 1B is the same principle diagram, and FIG. 1C is a detailed view of the position detecting mark portion in the present embodiment.
マスク101はメンブレン97に取りつけてあり、それを
アライナー本体95にマスクチヤツク96を介して支持され
ている。本体95上部にマスク−ウエハアライメントヘツ
ド94が配置されている。マスク101とウエハ102の位置合
わせを行う為にアライメントマーク41M及び41Wがそれぞ
れマスク101とウエハ102に焼き付けられている。The mask 101 is attached to the membrane 97, and it is supported by the aligner body 95 via the mask chuck 96. A mask-wafer alignment head 94 is arranged above the main body 95. In order to align the mask 101 and the wafer 102, alignment marks 41M and 41W are printed on the mask 101 and the wafer 102, respectively.
1及び1′は単色光源である半導体レーザ、2及び
2′は半導体レーザの光束を集光する為の集光レンズ、
3は2光束を合成する為のハーフミラーである。1 and 1'are semiconductor lasers which are monochromatic light sources, 2 and 2'are condenser lenses for condensing the light flux of the semiconductor lasers,
Reference numeral 3 is a half mirror for combining the two light fluxes.
光源1,1′から出射された光ビームはそれぞれ投光レ
ンズ2,2′により平行光となり、ビームスプリツター92
を通りアライメントマーク41Mを含む露光領域43へ入射
される。アライメントマーク41Mは透過型ゾーンプレー
トで、点Qへ集光する凸レンズの作用を持つ。ウエハア
ライメントマーク41Wは反射型のゾーンプレートで点Q
へ集光する光を光電検出器38の検出面90上へ結像する凸
面鏡の作用を持つ。The light beams emitted from the light sources 1 and 1'are collimated by the light projecting lenses 2 and 2 ', respectively, and the beam splitter 92
And is incident on the exposure area 43 including the alignment mark 41M. The alignment mark 41M is a transmissive zone plate and has the function of a convex lens that focuses light on the point Q. Wafer alignment mark 41W is a reflection type zone plate and point Q
It has the function of a convex mirror that forms an image of the light condensed on the detection surface 90 of the photoelectric detector 38.
このような配置のもとで、マスク1に対しウエハ2が
ΔσWだけ横ずれすると、検出面90上の光束の光量重心
の位置ずれΔδWは次のように表わされる。When the wafer 2 is laterally displaced from the mask 1 by Δσ W under such an arrangement, the positional deviation Δδ W of the light amount center of gravity of the light flux on the detection surface 90 is expressed as follows.
すなわち、 倍に位置ずれ量が拡大される。 That is, The amount of displacement is doubled.
例えば、マーク41W−Q間隔aW=0.5mm,マーク41W−検
出面間隔bW=50mmとすれば99倍となる。尚、この時Δδ
WはΔσWに対し、式より明らかなように比例関係にあ
り、センサーの分解農が0.1μmあるとすれば、検出さ
れる位置ずれ量ΔσWは0.001μmの位置分解能があ
る。For example, if the mark 41W-Q interval a W = 0.5 mm, and the mark 41W-detection surface interval b W = 50 mm, then it becomes 99 times. At this time, Δδ
W whereas .DELTA..sigma W, is proportional As apparent from the equation, if degradation farming sensor is 0.1 [mu] m, position shift amount .DELTA..sigma W to be detected it is position resolution of 0.001 [mu] m.
この様にして光電検出器38で位置ずれ量ΔσWを求
め、この量に基づいて不図示のウエハステージ駆動手段
でウエハステージ102aを位置ずれ量ΔσWだけずれを補
正する方向に移動させてやることによりマスクとウエハ
との位置合わせを精度良く行える。In this way, the amount of positional deviation Δσ W is obtained by the photoelectric detector 38, and based on this amount, the wafer stage driving means (not shown) moves the wafer stage 102a in the direction for correcting the deviation by the amount of positional deviation Δσ W. As a result, the mask and the wafer can be accurately aligned.
2光束を合成する事により、マスク101上に照射され
る光束は第1図(b)に示す様にマーク上に照射される
部分の光強度がマークの長手方向(x方向)でほぼ均一
になる。従って、光束入射位置が多少図面上下方向にず
れる事があっても、光束のマークに照射される部分の光
強度の対称性は実用上くずれる事はない。従って、前述
の光束ずれによる回折光の変動も第7図に示す様にほと
んど発生しない。又、マークの周囲を照明する領域は、
照射光束のスポツト径を拡大して中心部の回折光変動の
少ない部分でマークを照射した場合に比べて充分小さ
い。従って、周囲部からの散乱光を含む外乱光は少なく
てすむ。尚、マーク41M,41Wは偏向作用としてx方向に
のみレンズ作用を持ち、y方向には回折次数に応じて光
束の進行方向を一定角度で偏向させる作用を有する。By combining the two light fluxes, the light flux radiated on the mask 101 has a substantially uniform light intensity in the longitudinal direction (x direction) of the mark as shown in FIG. 1 (b). Become. Therefore, even if the incident position of the light beam is slightly shifted in the vertical direction in the drawing, the symmetry of the light intensity of the portion of the light beam which is irradiated on the mark is practically maintained. Therefore, the fluctuation of the diffracted light due to the above-mentioned deviation of the light flux hardly occurs as shown in FIG. Also, the area that illuminates the periphery of the mark is
This is sufficiently smaller than the case where the spot diameter of the irradiation light beam is enlarged and the mark is irradiated at the central portion where the fluctuation of the diffracted light is small. Therefore, the amount of ambient light including scattered light from the peripheral portion can be reduced. The marks 41M and 41W have a lens function only in the x direction as a deflection function, and have a function in the y direction to deflect the traveling direction of the light beam at a constant angle in accordance with the diffraction order.
第2図及び第3図は別の実施例2及び3を示し、偏光
ビームスプリツタ7と2分の1波長板8を用いて合成し
た例である。これらは第1の実施例がハーフミラー3で
エネルギーを損失してしまう欠点を改善するものであ
る。即ち、一般に半導体レーザの偏波面がフアーフイー
ルドパターンでの短軸方向であることと、偏光ビームス
プリツタの特性上P偏光を透過し、S偏光を反射するこ
とを利用し、半導体レーザの活成層の向きと2分の1波
長板の位置を第2図あるいは第3図の様に選択し、フア
ーフイールドの長軸側及び短軸側をエネルギー損失を伴
なわずに設定でる。また、2光束合成後の光路で反射側
の6を主光線とする光束はS偏光であり、透過側の6′
を主光線とする光束はP偏光である為、ともに円偏光化
するために、4分の1波長板9を設置している。これは
位置合わせマークである物理光学素子の格子間隔が波長
近傍のものを含む場合、格子方向と偏波面の方向により
回折効率が異なる特性を示す現象を回避したい場合に、
特に好ましい手段である。格子間隔が波長より充分長い
場合は4分の1波長板9は設定しなくてよい。更に、別
の実施形態として、第4図の様に全反射部10a以外は透
過部の部分反射鏡10と合成レンズ11を組み合わせても良
い。また、第1図〜第4図に於いて各光束の主光線はセ
ンサー面の像サイズを大きくさせない為、ほぼ平行とす
ることが好ましい。具体的に光束の重ぬ方を説明する。
半導体レーザの発光角は半値強度全角にして活成層と平
行な側をθ 、垂直な側をθ⊥で示されており、便宜上
光源と集光レンズの光源側主平面までの距離はgとす
る。幾何光学的光源像を無限遠に形成する所謂コリメー
トの状態に於いてはgは集光レンズの焦点距離fとな
る。一方、半導体レーザ等の光強度分布をI(x,y)と
し、先に述べたe-2強度で決められる半径をωX、及び
ωyとすると、一般に で表わされる。 FIGS. 2 and 3 show another embodiment 2 and 3, in which the polarization
Combined using beam splitter 7 and half-wave plate 8
It is an example. These are half mirrors 3 in the first embodiment.
To remedy the drawbacks of losing energy
You. That is, the polarization plane of a semiconductor laser is generally far
And the polarized beam
Due to the characteristics of the printer, it can transmit P-polarized light and reflect S-polarized light.
, And the direction of the active layer of the semiconductor laser and a half wave
Select the position of the long plate as shown in Fig. 2 or 3 and
-The major axis side and the minor axis side of the field are
It can be set without touching. Also, in the optical path after the two-beam combination, the reflection side
Is a S-polarized light beam whose main ray is 6 and is 6'on the transmission side.
Is a P-polarized light, so both are circularly polarized
In order to do so, the quarter wave plate 9 is installed. this is
The lattice spacing of the physical optical element that is the alignment mark is the wavelength
When the neighboring ones are included, it depends on the grating direction and the polarization direction.
If you want to avoid the phenomenon that the diffraction efficiency shows different characteristics,
This is a particularly preferable means. Lattice spacing is much longer than the wavelength
In this case, the quarter wave plate 9 need not be set. Furthermore, another
As an embodiment of the present invention, as shown in FIG.
It is also possible to combine the partial reflecting mirror 10 and the synthetic lens 11 in the excess part.
Yes. Also, in FIGS. 1 to 4, the chief ray of each light beam is
Since the image size on the sensor surface is not increased, it is almost parallel.
Preferably. The one in which the light flux is not heavy will be specifically described.
The emission angle of the semiconductor laser should be full-width half-maximum intensity and flat with the active layer.
Go to the side θ , The vertical side is θ⊥Is shown for convenience,
The distance between the light source and the principal plane of the light source side of the condenser lens is g.
You. A so-called collimator that forms a geometrical optical source image at infinity
In the above condition, g is the focal length f of the condenser lens.
You. On the other hand, let the light intensity distribution of a semiconductor laser be I (x, y).
And then e-2Ω is the radius determined by the strengthX,as well as
ωyThen, in generalIs represented by
従って、集光レンズの主平面上の半値強度の半径はgt
an{θ /2}及びgtan{θ⊥/2}であるから、x軸,y軸
を各々θ 方向とθ⊥方向に合致させて考えれば、 即ち、 ω 1.7tan(θ /2,ω⊥1.7tan(θ⊥/2) と考えられる。 Therefore, the radius of the half-value intensity on the principal plane of the condenser lens is gt
an {θ / 2} and gtan {θ⊥/ 2}, so x-axis and y-axis
Respectively θ Direction and θ⊥If you think according to the direction,That is, ω 1.7 tan (θ / 2, ω⊥1.7 tan (θ⊥/ 2).
こうしてω ,ω⊥を求めた後は、例えば光学技術コ
ンタクトvol.22,No7('84),P53〜P65に解析される様な
レーザビームの特性を数式をもって任意のレンズ系を組
み合わせた際の強度分布を考察できる。 Thus ω , Ω⊥After obtaining the
Contact vol.22, No7 ('84), P53-P65
An arbitrary lens system can be assembled using mathematical expressions for the characteristics of the laser beam.
It is possible to consider the intensity distribution when they are combined.
図−1から4に示す構成に於いて位置合わせマークで
ビームの並び方向(x方向)、ここでは位置合わせ方向
の照射ビームのビームウエスト半径をω0、ビームの並
び方向の位置合わせマークサイズに投光系がビームを照
射する際に余裕をもたせて広めにとった余分な幅、不確
定幅(一般に片側おのおの5〜20μm程度)を加算した
量(即ち、照射幅)を2a、2つのビームの主光線間隔を
2tとすると、 cosh(4at/ω0 2)exp{2(a/ω0)2} と設定することが好ましい。これは第8図に示す様な信
号で照射部中央A点の照度は であり、照射部端C点の照度は であるから上式を満足する設定に於いてとの照度が
等しくなり、これは即ちエネルギー損失が少なく、且つ
照度ムラも少なくなる条件となる。実用的には 程度の条件が好ましい。In the configuration shown in FIGS. 1 to 4, the alignment mark has a beam alignment direction (x direction), where the beam waist radius of the irradiation beam in the alignment direction is ω 0 , and the alignment mark size in the beam alignment direction is When the projection system irradiates the beam, the amount (that is, the irradiation width) that is added to the extra width and uncertain width (generally about 5 to 20 μm on each side) that is widened with a margin, is 2a. The chief ray spacing of
If it is 2t, it is preferable to set it as cosh (4at / ω 0 2 ) exp {2 (a / ω 0 ) 2 }. This is a signal as shown in Fig. 8 and the illuminance at the center A of the irradiation part is And the illuminance at the irradiation point C is Therefore, the illuminance is equal to that in the setting satisfying the above expression, which means that the energy loss is small and the uneven illuminance is small. Practically Moderate conditions are preferred.
これは数値的に分布を評価すると明らかな様に下限値
を下まわると相対的にビーム間隔が狭くマーク周辺の照
度が低下した状況となり、逆に上限値を上まわると相対
的にビーム間隔が広く中央部分での照度低下した状況と
なり、適当な範囲を逸脱してしまう。数値の具体例とし
てはビームウエストサイズω0を170.1μm、照明エリ
ア半径aを140μmと設定するとビーム間隔2tは210μm
となり、第7図中ほぼピーク値となる位置点の照度が であることから、:あるいは:の比で1:0.89と
なりムラは少なく2a内に照射されるエネルギーは全体の
66%で高効率が実現できる。As is clear from the numerical evaluation of the distribution, when the lower limit is exceeded, the beam spacing is relatively narrow and the illuminance around the mark is reduced. Conversely, when the upper limit is exceeded, the beam spacing is relatively low. The illuminance in the central portion is widely reduced, which deviates from the appropriate range. As a concrete example of the numerical values, if the beam waist size ω 0 is set to 170.1 μm and the illumination area radius a is set to 140 μm, the beam interval 2t is 210 μm.
And the illuminance at the position point, which is almost the peak value in FIG. Therefore, the ratio of: or: is 1: 0.89, and there is little unevenness, and the energy irradiated in 2a is
High efficiency can be achieved at 66%.
以上は2つの光源の例であったが、第8図に示す様に
マークサイズや半導体レーザの特性に応じて3個の光源
を用いても良い。また、第2図及び第3図に於いては光
束合成後の系にアフオーカル系でビームを縮小する角倍
率を有する光学系(通常ビームエキスパンダと称する)
を設ける、またはその逆にすることは設計の必要性に応
じて選択可能である。The above is an example of two light sources, but as shown in FIG. 8, three light sources may be used depending on the mark size and the characteristics of the semiconductor laser. In FIGS. 2 and 3, an optical system (usually referred to as a beam expander) having an angular magnification for reducing a beam by an afocal system is added to the system after the light flux combination.
Providing or vice versa is optional depending on design needs.
又、本発明は他の、物理光学素子で偏光させた光束を
検出する位置検出装置、例えば従来例に上げた装置にも
適用できる事は明らかである。Further, it is obvious that the present invention can be applied to other position detecting devices for detecting a light beam polarized by a physical optical element, for example, the device described in the conventional example.
以上、説明した様に本発明により、物理光学素子によ
り偏向させた光束を検知して物体の位置検出を行う際
に、光束ずれが発生しても精度悪化の緩和が可能になっ
た。As described above, according to the present invention, when detecting the position of an object by detecting the light beam deflected by the physical optical element, it becomes possible to mitigate the deterioration of accuracy even if the light beam shift occurs.
第1図(a),(b),(c)は本発明の第1実施例の
位置検出装置のそれぞれ構成図,原理図,マーク部詳細
図、 第2図(a),(b)は本発明の第2実施例の位置検出
装置の光束合成部の図、 第3図(a),(b)は本発明の第3実施例の位置検出
装置の光束合成部の図、 第4図は本発明の第4実施例の位置検出装置の原理図、 第5図は半導体レーザの発光パターンを説明する図、 第6図は従来の問題点を説明する図、 第7図は本発明の効果の概念を説明する図、 第8図は本発明で合成された光束の光強度分布の1例の
図、 第9図は本発明の第5実施例の位置検出装置の原理図、 第10図は従来の位置検出装置の構成図、 第11図は同検出原理図である。 図中、 1,1′,1″……半導体レーザ 2,2′,2″……集光レンズ(またはコリメータレンズ) 3,3′……ハーフミラー 5,5′……マーク中心線 6,6′,6″……投光光束の主光線 7……偏光ビームスプリツタ 8……2分の1波長板 9……4分の1波長板 10……部分反射鏡 11……合成レンズ である。FIGS. 1 (a), (b) and (c) are respectively a structural diagram, a principle diagram, a mark portion detailed diagram of the position detecting device of the first embodiment of the present invention, and FIGS. 2 (a) and (b) are FIG. 4 is a diagram of a light flux combining section of the position detecting device according to the second embodiment of the present invention, and FIGS. 3A and 3B are diagrams of a light flux combining portion of the position detecting device according to the third embodiment of the present invention. Is a principle diagram of a position detecting device according to a fourth embodiment of the present invention, FIG. 5 is a diagram illustrating a light emission pattern of a semiconductor laser, FIG. 6 is a diagram illustrating conventional problems, and FIG. 7 is a diagram illustrating the present invention. FIG. 8 is a diagram for explaining the concept of the effect, FIG. 8 is a diagram of an example of the light intensity distribution of the light fluxes synthesized by the present invention, and FIG. 9 is a principle diagram of the position detecting device of the fifth embodiment of the present invention. FIG. 11 is a block diagram of a conventional position detecting device, and FIG. 11 is a principle diagram of the same. In the figure, 1,1 ′, 1 ″ …… Semiconductor laser 2,2 ′, 2 ″ …… Condenser lens (or collimator lens) 3,3 ′ …… Half mirror 5,5 ′ …… Mark center line 6, 6 ', 6 "... Principal ray of projected light beam 7 ... Polarizing beam splitter 8 ... Half wave plate 9 ... Quarter wave plate 10 ... Partial reflector 11 ... Synthetic lens is there.
Claims (1)
光学素子に光束を照射する手段と、前記照射手段により
照射され、前記物理光学素子により偏向された光束を検
出する事によって前記物体の位置を検出する手段と、を
有し、前記照射手段は複数光束を一部重ね合わせて前記
物理光学素子の形状に応じた断面形状を有する光束を形
成し、該光束を照射する事を特徴とする位置検出装置。1. A means for irradiating a physical optical element provided on an object to be aligned with a light beam, and a light beam irradiated by the irradiation means and deflected by the physical optical element to detect the object. And a means for detecting a position, wherein the irradiation means forms a light beam having a cross-sectional shape corresponding to the shape of the physical optical element by partially overlapping a plurality of light beams, and irradiates the light beam. Position detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63034669A JP2517638B2 (en) | 1988-02-16 | 1988-02-16 | Position detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63034669A JP2517638B2 (en) | 1988-02-16 | 1988-02-16 | Position detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01209304A JPH01209304A (en) | 1989-08-23 |
JP2517638B2 true JP2517638B2 (en) | 1996-07-24 |
Family
ID=12420836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63034669A Expired - Fee Related JP2517638B2 (en) | 1988-02-16 | 1988-02-16 | Position detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2517638B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003149594A (en) * | 2001-11-16 | 2003-05-21 | Ricoh Co Ltd | Laser illumination optical system, and exposure unit, laser processor, and projection unit using the same |
JP2003270585A (en) * | 2002-03-18 | 2003-09-25 | Ricoh Co Ltd | Laser illumination optical system, and exposure device, laser beam machining device and projection device using the same |
-
1988
- 1988-02-16 JP JP63034669A patent/JP2517638B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01209304A (en) | 1989-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6712349B2 (en) | Alignment system | |
JP2704001B2 (en) | Position detection device | |
US6151120A (en) | Exposure apparatus and method | |
JPH11241908A (en) | Position detecting apparatus and manufacture of device employing the same | |
JP2890943B2 (en) | Position detecting method and position detecting device using the same | |
JP3008633B2 (en) | Position detection device | |
WO1998057362A1 (en) | Sensor and method for sensing the position of the surface of object, aligner provided with the sensor and method of manufacturing the aligner, and method of manufacturing devices by using the aligner | |
JP2676933B2 (en) | Position detection device | |
JP2517638B2 (en) | Position detection device | |
JP2626076B2 (en) | Position detection device | |
JP2796347B2 (en) | Projection exposure method and apparatus | |
JP2808595B2 (en) | Position detecting apparatus and projection exposure apparatus using the same | |
JP2775988B2 (en) | Position detection device | |
JP2546356B2 (en) | Alignment device | |
JP2791120B2 (en) | Position detecting device and method | |
JP2623757B2 (en) | Positioning device | |
JP2833145B2 (en) | Position detection device | |
JP2546317B2 (en) | Alignment device | |
JP2569793B2 (en) | Position detecting device and position detecting method using the same | |
JP2615778B2 (en) | Positioning device | |
JP3513304B2 (en) | Position shift detection method and semiconductor device manufacturing method using the same | |
JP2513282B2 (en) | Alignment device | |
JPH0340417A (en) | Projection aligner | |
JPH0274804A (en) | Alignment apparatus | |
JP2698388B2 (en) | Position detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |