JPH01209304A - Device for detecting position - Google Patents

Device for detecting position

Info

Publication number
JPH01209304A
JPH01209304A JP63034669A JP3466988A JPH01209304A JP H01209304 A JPH01209304 A JP H01209304A JP 63034669 A JP63034669 A JP 63034669A JP 3466988 A JP3466988 A JP 3466988A JP H01209304 A JPH01209304 A JP H01209304A
Authority
JP
Japan
Prior art keywords
light
wafer
mark
alignment mark
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63034669A
Other languages
Japanese (ja)
Other versions
JP2517638B2 (en
Inventor
Shigeyuki Suda
須田 繁幸
Minoru Yoshii
実 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63034669A priority Critical patent/JP2517638B2/en
Publication of JPH01209304A publication Critical patent/JPH01209304A/en
Application granted granted Critical
Publication of JP2517638B2 publication Critical patent/JP2517638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Abstract

PURPOSE:To homogenize a distribution of outgoing beams and improve positioning accuracy by a method wherein a plural number of light fluxes are provided and a light flux having a cross section according to the shape of a physical optical element is formed by overlapping a portion of the light fluxes. CONSTITUTION:Light beams emitted from light sources 1, 1a are made parallel by projector lenses 2, 2', respectively, and enters an exposure region including an alignment mark 41M via a beam splitter 92. the alignment mark 41M has a function of a convex lens which focuses the beam to a point Q on a transmission-type zone plate. A wafer alignment mark 41W has a function as a convex mirror which focuses the beams focused to the point Q and forms an image on a detecting plane 90 of a photodetector 38. Difference in position is calculated by the photodetector 38 and a wafer stage 102 is transferred according to this calculated value so as to align a mask 101 and a wafer 102.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高精度な位置合わせ装置、特に半導体露光装置
に於けるマスクまたはレチクルとウェハの相対位置合わ
せ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly accurate alignment device, and particularly to a device for relative alignment between a mask or a reticle and a wafer in a semiconductor exposure apparatus.

〔従来の技術〕[Conventional technology]

近年、半導体の高集積度化が進み、既にI M b i
 tから4 M b i t  D RA Mの量産化
が始まり、更に高集積度化の方向へ進んでいる。
In recent years, semiconductors have become highly integrated, and IMBi
Mass production of 4 Mbit DRAM began in 2013, and the trend is toward higher integration.

この様な高集積度化に伴ない、ウェハ面上の最小線幅も
1μm以下になっており、半導体露光装置に要求される
マスクとウェハの位置合わせ(アラ、イメント)精度は
0.2μm以下となっている。
With this increase in integration density, the minimum line width on the wafer surface has become less than 1 μm, and the alignment (alignment, alignment) accuracy between the mask and wafer required for semiconductor exposure equipment is less than 0.2 μm. It becomes.

従来、アライメントに関しては、マスク及びウェハ上に
アライメントマークを設け、それらの位置情報をもとに
アライメントを行ってきた。
Conventionally, alignment marks have been provided on masks and wafers, and alignment has been performed based on their positional information.

アライメント方式には、マスク及びウェハ上のパターン
ずれを画像処理により検出したり、ゾーンプレートをマ
ークに用い照射ビームの集光点位置を検出したりして評
価を行う、ものがある。中でもマスク及びウェハにそれ
ぞれゾーンプレートを作製し、入射ビームのそれらの位
置ずれを検出する方法がマークの欠損に影響されにくい
という点で注目される(USP4,037,969、特
開昭56−157033)。
There are alignment methods that perform evaluation by detecting pattern deviations on masks and wafers through image processing, or by detecting the focal point position of an irradiation beam using a zone plate as a mark. Among them, the method of fabricating zone plates on the mask and wafer respectively and detecting the positional deviation of the incident beam is attracting attention because it is not easily affected by mark defects (USP 4,037,969, Japanese Patent Application Laid-Open No. 157033-1982). ).

第1O図にその構成を示す。The configuration is shown in FIG. 1O.

光源72から出射した平行ビームは集光レンズ76で集
光され集光点78を通り、マスク68上のアライメント
マーク及びウェハ60上のアライメントマークに照射さ
れる。これらのアライメントマークは反射型のゾーンプ
レートで構成され、それぞれ78を含む光軸と直交する
平面上に集光点をつくる。
The parallel beam emitted from the light source 72 is focused by a condensing lens 76, passes through a condensing point 78, and is irradiated onto the alignment mark on the mask 68 and the alignment mark on the wafer 60. These alignment marks are composed of reflective zone plates, each of which creates a focal point on a plane perpendicular to the optical axis including 78.

この平面上の集光点位置ずれをレンズ76、 80を用
い検出器82上へ導き検出する。この際、マスク用マー
ク、ウェハ用マークからの光の結像関係を詳細に説明し
たものが第11図である。
This displacement of the focal point on the plane is guided onto a detector 82 using lenses 76 and 80 and detected. At this time, FIG. 11 shows a detailed explanation of the imaging relationship of light from the mask mark and the wafer mark.

集光点78から発散された光ビームはマスク68上のマ
スクマークより一部が回折され、集光点78近傍へマス
ク位置をあられす集光点を形成する。
A portion of the light beam diverged from the condensing point 78 is diffracted by the mask mark on the mask 68 to form a condensing point that focuses the mask position in the vicinity of the condensing point 78 .

又、一部はマスク68を0次透過光として透過し、波面
を変えずにウェハ60上のアライメントマークへ照射さ
れる。ウェハマークより回折された光は再びマスク68
を0次透過光として透過し、78近傍に集光し、ウェハ
位置をあられす集光点を形成する。すなわち、ウェハ6
0による集光点を形成するにあたり、マスクは単なる素
通しとしての作用しか持たない。
A part of the light passes through the mask 68 as zero-order transmitted light and is irradiated onto the alignment mark on the wafer 60 without changing the wavefront. The light diffracted from the wafer mark passes through the mask 68 again.
The light is transmitted as zero-order transmitted light and is focused near 78 to form a focusing point that focuses on the wafer position. That is, wafer 6
In forming the focal point of 0 light, the mask only functions as a transparent light.

このようにして形成されたウェハマークによる集光点位
置はウェハのマスクに対するずれΔσに応じ78を含む
光軸と直交する平面に沿ってほぼΔσと同程度Δσ′だ
け移動することになる。このΔσ′ を光電検出器82
で検出することでマスクとウェハの横ずれ量を検出し、
検出器82の出力信号を受けた制御回路84がこの信号
に基づいて微動機構64を駆動させる事によりマスク6
8とウェハ60とを位置合わせする。
The focal point position of the wafer mark thus formed moves by Δσ', which is approximately the same as Δσ, along a plane including 78 and perpendicular to the optical axis in accordance with the deviation Δσ of the wafer with respect to the mask. This Δσ′ is detected by a photoelectric detector 82.
The amount of lateral deviation between the mask and wafer is detected by
The control circuit 84 that receives the output signal of the detector 82 drives the fine movement mechanism 64 based on this signal, thereby adjusting the mask 6.
8 and the wafer 60 are aligned.

〔発明が解決しようとしている問題点〕上述の様にフレ
ネルゾーンプレート等の物理光学素子を用いてマスクと
ウェハとの位置検知をする場合、光源として単色光(あ
るいは準単色光)を用いており、通常はレーザ光を用い
ている為、位置合わせマーク上の照度分布は一般にガウ
シアン分布に近いものとなる。特に、半導体レーザの場
合は第5図に示す様に光束の発散角は活成層の平行方向
と垂直方向で異なる発散角を有しており、一般に垂直方
向の発散角が大きい。第5図は集光レンズ2を設け、半
導体レーザlの光源像を形成した様子を示しており、集
光レンズ2の瞳面近傍上の照度分布は一般にファーフィ
ールドパターン、光源像近傍の照度分布をニアフィール
ドパターンと呼び、半導体レーザの非点収差が充分小さ
い時は光源像の位置(これをビームウェスト位置と呼ぶ
)での波面が平面波となり、その時のスポットのe−2
強度の半径をビームウェスト半径と呼ぶ。
[Problem to be solved by the invention] As mentioned above, when detecting the position between the mask and the wafer using a physical optical element such as a Fresnel zone plate, monochromatic light (or quasi-monochromatic light) is used as the light source. Since a laser beam is usually used, the illuminance distribution on the alignment mark is generally close to a Gaussian distribution. In particular, in the case of a semiconductor laser, as shown in FIG. 5, the divergence angle of the luminous flux is different in the direction parallel to and perpendicular to the active stratification layer, and the divergence angle in the perpendicular direction is generally large. FIG. 5 shows how a light source image of the semiconductor laser 1 is formed by providing a condensing lens 2, and the illuminance distribution near the pupil plane of the condensing lens 2 is generally a far-field pattern, and the illuminance distribution near the light source image is shown in FIG. is called a near-field pattern, and when the astigmatism of the semiconductor laser is sufficiently small, the wavefront at the position of the light source image (this is called the beam waist position) becomes a plane wave, and the e-2 of the spot at that time becomes a plane wave.
The radius of intensity is called the beam waist radius.

一方、半導体露光装置に於ける位置合わせマークは専有
面積を低減する目的でスクライブライン上が好ましく、
その際はスクライブライン幅である20〜100μm以
下(長さ的にも500μm以下)に納める事が通例とな
っている。この時、先に示した集光レンズ2にて集光し
位置合わせマーク上にビームウェストを作る方法が一般
に取られる。
On the other hand, alignment marks in semiconductor exposure equipment are preferably placed on the scribe line in order to reduce the occupied area.
In that case, it is customary to keep the scribe line width within the range of 20 to 100 μm (with a length of 500 μm or less). At this time, the method generally used is to condense the light using the condenser lens 2 shown above and create a beam waist on the alignment mark.

しかし、この時の照度分布は先に述べた様にガウシアン
分布となり、次の様な問題点を有していた。
However, the illuminance distribution at this time becomes a Gaussian distribution as described above, and has the following problems.

即ち、第6図に示す様にビームとマークとが正規位置関
係よりずれてしまい位置合わせマーク上の照度分布が大
きく変動すると集光光束の回折焦点の重心移動を伴なう
現象が生じる為、例えば前述の第10図の例においては
マスク上のグレーティングレンズとウェハ上のグレーテ
ィングレンズのそれぞれで形成されるセンサ面のスポッ
ト重心の移動が起こり、位置合わせ精度を低下させる要
因となる。これは他の物理光学素子においても回折光束
重心変動等の要因となる。これを解決するにはマークに
対する照射光の位置を高精度で行うか、マーク上の照射
スポット径を拡大して中心部分の光を用いる方法が考え
られる。しかしながら、前者は投光及び受光光学系を測
長する複雑な機構を必要とし、後者はセンサ面に到達す
る信号光を減らしてマークのない部分力照明光をあて、
そこからの散乱ノイズ成分を増加させてS/N低下をき
たす欠点を有している。
That is, as shown in FIG. 6, if the beam and the mark deviate from the normal positional relationship and the illuminance distribution on the alignment mark changes greatly, a phenomenon occurs in which the center of gravity of the diffraction focus of the condensed light beam shifts. For example, in the example shown in FIG. 10, the center of gravity of the spot on the sensor surface formed by the grating lens on the mask and the grating lens on the wafer moves, which causes a decrease in alignment accuracy. This also becomes a factor in other physical optical elements, such as variations in the center of gravity of the diffracted light beam. To solve this problem, it is possible to position the irradiation light with respect to the mark with high precision, or to enlarge the diameter of the irradiation spot on the mark and use the light from the center. However, the former requires a complicated mechanism for measuring the length of the light emitting and receiving optical systems, and the latter reduces the signal light reaching the sensor surface and applies partial force illumination light without marks.
This has the disadvantage of increasing the scattered noise component therefrom, resulting in a decrease in S/N.

本発明は前述従来例の欠点に鑑み、物体上のフレネルゾ
ーンプレート等の物理光学素子による偏向光束を検出し
て物体の位置検出を行う時に、ビームとマークとの位置
関係に変動があっても検出精度が悪化しに(<、かつS
/N低下をおこしにくい位置検出装置を提供することを
目的とする。
In view of the drawbacks of the conventional examples described above, the present invention has been developed to detect the position of an object by detecting the deflected light beam by a physical optical element such as a Fresnel zone plate on the object, even if there is a change in the positional relationship between the beam and the mark. Detection accuracy deteriorates (< and S
An object of the present invention is to provide a position detection device that does not easily cause a decrease in /N.

〔問題を解決する為の手段〕[Means to solve the problem]

本発明は上記問題点を解決する為、光束を複数個設は各
光束を1部重ね合わせて物理光学素子の形状に応じた断
面形状を有する光束を形成することにより、位置合わせ
マーク上の照射光のエネルギーを低下させずに分布を実
質的に均一化し、マークとビームとの間に多少変動があ
っても出射光束が変動しないようにしている。
In order to solve the above-mentioned problems, the present invention provides a plurality of light beams and partially overlaps each light beam to form a light beam having a cross-sectional shape according to the shape of the physical optical element, thereby irradiating the alignment mark. The distribution is made substantially uniform without reducing the energy of the light, and even if there is some variation between the mark and the beam, the output luminous flux does not vary.

即ち、複数の光束を所定の間隔に設定して合成された光
束を位置合わせマークを照射し、単一光束を照射する場
合に比べ、照射エネルギー分布を位置合わせマーク内で
は均一化に近ずき同時に位置合わせマーク外はエネルギ
ーが太き(低下する様に配列する。従って、光束重心を
検知する系のS/Nを低下させることな(、且つ投光、
受光系を含むピックアップ筐体の位置合わせマークに対
する設定精度が悪くても位置合わせ精度の劣化を生じな
い位置合わせ装置が提供できる。この概念図を第7図に
示す。
In other words, the alignment mark is irradiated with a combined light beam of multiple light beams set at predetermined intervals, and the irradiation energy distribution becomes closer to uniformity within the alignment mark compared to the case of irradiating a single beam of light. At the same time, they are arranged so that the energy outside the alignment mark is thick (lower).
It is possible to provide an alignment device that does not cause deterioration in alignment accuracy even if the setting accuracy of the alignment mark on the pickup casing including the light receiving system is poor. This conceptual diagram is shown in FIG.

〔実施例〕〔Example〕

第1図(a)、  (b)、  (C)は本発明の特徴
を最も良く示す第1の実施例の位置検知装置を設けたマ
スクアライナ−の図で、第1図(a)は本実施例の位置
検出装置の構成図、第1図(b)は同原理図、第1図(
C)は本実施例における位置検出用マークそれをアライ
ナ−本体95にマスクチャック96を介して支持されて
いる。本体95上部にマスターウェハアライメントヘッ
ド94が配置されている。
FIGS. 1(a), (b), and (C) are views of a mask aligner equipped with a position detection device of the first embodiment that best illustrates the features of the present invention. FIG. The configuration diagram of the position detection device of the embodiment, FIG. 1(b) is a diagram of the same principle, FIG.
C) In this embodiment, the position detection mark is supported by the aligner body 95 via a mask chuck 96. A master wafer alignment head 94 is arranged above the main body 95.

マスク101とウェハ102の位置合わせを行う為にア
ライメントマーク41M及び41Wがそれぞれマスク1
01とウェハ102に焼き付けられている。
In order to align the mask 101 and the wafer 102, alignment marks 41M and 41W are set on the mask 1, respectively.
01 and is printed on the wafer 102.

l及び1′は単色光源である半導体レーザ、2及び2′
 は半導体レーザの光束を集光する為の集光レンズ、3
は2光束を合成する為のハーフミラ−である。
1 and 1' are semiconductor lasers that are monochromatic light sources, 2 and 2'
is a condensing lens for condensing the light beam of the semiconductor laser, 3
is a half mirror for combining two beams of light.

光源1. 1’ から出射された光ビームはそれぞれ投
光レンズ2.2′  により平行光となり、ビームスプ
リッタ−92を通すアライメントマーク41Mを含む露
光領域43へ入射される。アライメントマーク41Mは
透過型ゾーンプレートで、点Qへ集光する凸レンズの作
用を持つ。ウェハアライメントマーク41Wは反射型の
ゾーンプレートで点Qへ集光する光を光電検出器38の
検出面90上へ結像する凸面鏡の作用を持つ。
Light source 1. The light beams emitted from the light beams 1' are each turned into parallel lights by the projection lenses 2 and 2', and are incident on the exposure area 43 including the alignment mark 41M, which passes through the beam splitter 92. The alignment mark 41M is a transmissive zone plate that functions as a convex lens to focus light on the point Q. The wafer alignment mark 41W is a reflective zone plate and functions as a convex mirror that images the light focused on the point Q onto the detection surface 90 of the photoelectric detector 38.

このような配置のもとで、マスク1に対しウェハ2がΔ
σッだけ横ずれすると、検出面90上の光束の光量重心
の位置ずれΔδッは次のように表わされる。
Under this arrangement, the wafer 2 is at Δ with respect to the mask 1.
When there is a lateral shift by σ, the positional shift Δδ of the center of gravity of the luminous flux on the detection surface 90 is expressed as follows.

れる。It will be done.

ば99倍となる。尚、この時ΔδいはΔσッに対し、式
より明らかなように比例関係にあり、センサーの分解能
が0.1μmあるとすれば、検出される位置ずれ量Δσ
ッは0.001μmの位置分解能がある。
It becomes 99 times. At this time, Δδ is proportional to Δσ, as is clear from the equation, and if the resolution of the sensor is 0.1 μm, the detected positional deviation amount Δσ
has a position resolution of 0.001 μm.

この様にして光電検出器38で位置ずれ量Δσ9を求め
、この量に基づいて不図示のウェハステージ駆動手段で
ウェハステージ102aを位置ずれ量Δσッだけずれを
補正する方向に移動させてやることによりマスクとウェ
ハとの位置合わせを精度良く行える。
In this manner, the amount of positional deviation Δσ9 is determined by the photoelectric detector 38, and based on this amount, the wafer stage 102a is moved by the amount of positional deviation Δσ in a direction that corrects the deviation using a wafer stage driving means (not shown). This makes it possible to accurately align the mask and wafer.

2光束を合成する事により、マスク101上に照射され
る光束は第1図(b)に示す様にマーク上に〆 照射される部分の光強度性マークの長手方向(X方向)
でほぼ均一になる。従って、光束入射位置が多少図面上
下方向にずれる事があっても、光束のマークに照射され
る部分の光強度の対称性は実用上くずれる事はない。従
って、前述の光束ずれによる回折光の変動も第7図に示
す様にほとんど発生しない。又、マークの周囲を照明す
る領域は、照射光束のスポット径を拡大して中心部の回
折光変動の少ない部分でマークを照射した場合に比べて
充分小さい。従って、周囲部からの散乱光を含む外乱光
は少な(てすむ。尚、マーク41M、41Wは偏向作用
としてX方向にのみレンズ作用を持ち、X方向には回折
次数に応じて光束の進行方向を一定角度で偏向させる作
用を有する。
By combining the two light beams, the light beam irradiated onto the mask 101 is directed in the longitudinal direction (X direction) of the light intensity mark of the portion irradiated onto the mark, as shown in FIG. 1(b).
becomes almost uniform. Therefore, even if the incident position of the light beam is slightly shifted in the vertical direction of the drawing, the symmetry of the light intensity of the portion of the light beam irradiated onto the mark will not change in practical terms. Therefore, as shown in FIG. 7, the fluctuation of the diffracted light due to the above-mentioned beam deviation hardly occurs. Further, the area for illuminating the periphery of the mark is sufficiently smaller than that in the case where the spot diameter of the irradiation light beam is enlarged and the mark is irradiated in a central portion where there is little variation in diffracted light. Therefore, the amount of disturbance light including scattered light from the surrounding area is small. Note that marks 41M and 41W have a lens action only in the X direction as a deflection action, and in the X direction, the traveling direction of the light flux is It has the effect of deflecting at a certain angle.

第2図及び第3図は別の実施例2及び3を示し、偏光ビ
ームスプリッタ7と2分の1波長板8を用いて合成した
例である。これらは第1の実施例が71−フミラー3で
エネルギーを損失してしまう欠点を改善するものである
。即ち、一般に半導体レーザの偏波面がファーフィール
ドパターンでの短軸方向であることと、偏光ビームスプ
リッタの特性上P偏光を透過し、S偏光を反射すること
を利用し、半導体レーザの活成層の向きと2分の1波長
板の位置を第2図あるいは第3図の様に選択し、ファー
フィールドの長袖側及び短軸側をエネルギー損失を伴な
わずに設定できる。また、2光束合成後の光路で反射側
の6を主光線とする光束はS偏光であり、透過側の6′
 を主光線とする光束はP偏光である為、ともに円偏光
化するために、4分の1波長板9を設置している。これ
は位置合わせマークである物理光学素子の格子間隔が波
長近傍のものを含む場合、格子方向と偏波面の方向によ
り回折効率が異なる特性を示す現象を回避したい場合に
、特に好ましい手段である。格子間隔が波長より充分長
い場合は4分の1波長板9は設定しなくてよい。更に、
別の実施形態として、第4図の様に全反射部10a以外
は透過部の部分反射鏡10と合成レンズ11を組み合わ
せても良い。また、第1図〜第4図に於いて各光束の主
光線はセンサー面の像サイズを太き(させない為、はぼ
平行とすることが好ましい。具体的に光束の重ね方を説
明する。
FIGS. 2 and 3 show other embodiments 2 and 3, which are examples in which a polarizing beam splitter 7 and a half-wave plate 8 are used. These are intended to improve the drawback of the first embodiment that energy is lost in the 71-fumirror 3. That is, in general, the polarization plane of a semiconductor laser is the short axis direction of the far field pattern, and the characteristics of a polarizing beam splitter that transmits P polarized light and reflects S polarized light are used to make the active layer of the semiconductor laser. By selecting the direction and the position of the half-wave plate as shown in FIG. 2 or 3, the long side and short axis side of the far field can be set without energy loss. In addition, in the optical path after combining the two beams, the beam whose principal ray is 6 on the reflection side is S-polarized light, and 6' on the transmission side is S-polarized light.
Since the luminous flux whose principal ray is P-polarized light, a quarter-wave plate 9 is installed to make both circularly polarized light. This is a particularly preferable means when it is desired to avoid a phenomenon in which the diffraction efficiency differs depending on the grating direction and the direction of the polarization plane when the lattice spacing of the physical optical element serving as the alignment mark includes one close to the wavelength. If the grating interval is sufficiently longer than the wavelength, it is not necessary to set the quarter-wave plate 9. Furthermore,
As another embodiment, as shown in FIG. 4, a partially reflecting mirror 10 having a transmitting part except for the totally reflecting part 10a and a composite lens 11 may be combined. In addition, in FIGS. 1 to 4, it is preferable that the chief rays of each light beam be substantially parallel in order to prevent the image size on the sensor surface from becoming thick.The method of overlapping the light beams will be explained in detail.

半導体レーザの発光角は    −半値強度 。The emission angle of a semiconductor laser is - half intensity.

全角にして活成層と平行な側をθ//、垂直な側をθ上
で示されており、便宜上光源と集光レンズの光源側主平
面までの距離はgとする。幾何光学的光源像を無限遠に
形成する所謂コリメートの状態に於いてはgは集光レン
ズの焦点距離fとなる。一方、半導体レーザ等の光強度
分布をI(x、y)とし、先に述べたe−2強度で決め
られる半径をω8、及びω、とすると、一般に 従って、集光レンズの主平面上の半値強度の半径はgt
an [θy// 2 ]及びgtan (θ上/2)
であるから、X軸、y軸を各々θ7/方向とθ上方向に
合致させて考えれば、 g tanθ///2ω// = g tan & h
 / 2ωよと考えられる。
The side parallel to the active stratification layer is shown as θ//, and the side perpendicular to the active stratification layer is shown as θ, and for convenience, the distance between the light source and the main plane on the light source side of the condensing lens is assumed to be g. In a so-called collimated state where a geometrical optical light source image is formed at infinity, g becomes the focal length f of the condenser lens. On the other hand, if the light intensity distribution of a semiconductor laser, etc. is I(x, y), and the radius determined by the e-2 intensity mentioned above is ω8 and ω, then, according to the general rule, The radius of half intensity is gt
an [θy//2] and gtan (θ on/2)
Therefore, if we consider that the X-axis and y-axis match the θ7/ direction and the θ upward direction, respectively, g tanθ///2ω// = g tan & h
/ It is thought to be 2ω.

こうしてω/7.ωよを求めた後は、例えば光学技術]
ンタクトvo1.22.No7 (’84)、P53〜
P65に解析される様なレーザビームの特性を数式をも
って任意のレンズ系を組み合わせた際の強度分布を考察
できる。
Thus ω/7. After finding ωyo, for example, optical technology]
contact vol1.22. No.7 ('84), P53~
The intensity distribution when an arbitrary lens system is combined can be considered using mathematical formulas based on the characteristics of a laser beam as analyzed in P.65.

図−1から4に示す構成に於いて位置合わせマークでビ
ームの並び方向(X方向)、ここでは位置合わせ方向の
照射ビームのビームウェスト半径をω。、ビームの並び
方向の位置合わせマークサイズに投光系がビームを照射
する際に余裕をもたせて広めにとった余分な幅、不確定
幅(一般に片側おのおの5〜20μm程度)を加算した
量(即ち、照射幅)を2a12つのビームの主光線間隔
を2tとすると、 と設定する愈tが好ましい。これは第8図に示す様 。
In the configurations shown in FIGS. 1 to 4, the alignment mark indicates the beam waist radius of the irradiation beam in the alignment direction (X direction), here the alignment direction. , the amount that is the sum of the positioning mark size in the beam alignment direction, the extra width that is made wider to allow room for the projection system to irradiate the beam, and the uncertainty width (generally about 5 to 20 μm on each side) ( That is, assuming that the irradiation width (irradiation width) is 2a1 and the principal ray interval between the two beams is 2t, it is preferable to set the distance t as follows. This is shown in Figure 8.

な信号で照射部中央A点の照度は であり、照射部端C点の照度は であるから上式を満足する設定に於いて■と◎の照度が
等しくなり、これは即ちエネルギー損失が少なく、且つ
照度ムラも少なくなる条件となる。
With a signal of , and the unevenness of illuminance is also reduced.

実用的には 程度の条件が好ましい。Practically speaking Conditions of about 100% are preferable.

これは数値的に分布を評価すると明らかな様に下限値を
下まわると相対的にビーム間隔が狭くマーク周辺の照度
が低下した状況となり、逆に上限値を上まわると相対的
にビーム間隔が広く中央部分での照度低下した状況とな
り、適当な範囲を逸脱してしまう。数値の具体例として
はビームウェストサイズω。を170,1μm1照明エ
リア半径aを140μmと設定するとビーム間隔2tは
210μmとなり、第7図中はぼピーク値となる位置0
点の照 あるいは■:◎の比で1 : 0.89となりムラは少
な(2a内に照射されるエネルギーは全体の66%で高
効率が実現できる。
When the distribution is numerically evaluated, it becomes clear that when the lower limit value is below, the beam spacing becomes relatively narrow and the illuminance around the mark decreases.On the other hand, when the upper limit value is exceeded, the beam spacing becomes relatively narrow. This results in a situation in which the illuminance is broadly reduced in the central area, and it deviates from the appropriate range. A specific example of a numerical value is beam waist size ω. If the illumination area radius a is set to 170 and 1 μm, the beam interval 2t will be 210 μm, and the position 0, which is the peak value in Figure 7, will be
The ratio of point illumination or ■:◎ is 1:0.89, with little unevenness (energy irradiated within 2a is 66% of the total, achieving high efficiency).

以上は2つの光源の例であったが、第8図に示す様にマ
ークサイズや半導体レーザの特性に応じて3個の光源を
用いても良い。また、第2図及び第3図に於いては光束
合成後の系にアフォーカル系でビームを縮小する角倍率
を有する光学系(通常ビームエキスパンダと称する)を
設ける、またはその逆にすることは設計の必要性に応じ
て選択可能である。
The above example uses two light sources, but as shown in FIG. 8, three light sources may be used depending on the mark size and the characteristics of the semiconductor laser. In addition, in FIGS. 2 and 3, an optical system (usually referred to as a beam expander) having an angular magnification that reduces the beam in an afocal system is provided in the system after beam combination, or vice versa. can be selected depending on design needs.

又、本発明は他の、物理光学素子で偏光させた光束を検
出する位置検出装置、例えば従来例に上げた装置にも適
用できる事は明らかである。
It is clear that the present invention can also be applied to other position detection devices that detect light beams polarized by physical optical elements, such as the devices mentioned in the conventional example.

〔発明の効果〕〔Effect of the invention〕

以上、説明した様に本発明により、物理光学素子により
偏光させた光束を検知して物体の位置検出を行う際に、
光束ずれが発生しても精度悪化の緩和が可能になった。
As explained above, according to the present invention, when detecting the polarized light beam using a physical optical element and detecting the position of an object,
Even if a beam shift occurs, it is now possible to alleviate the deterioration in accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)、(c)は本発明の第1実施例の
位置検出装置のそれぞれ構成図、原理図、マーク部詳細
図、 第2図(a)、  (b)は本発明の第2実施例の位置
検出装置の光束合成部の図、 第3図(a)、  (b)は本発明の第3実施例の位置
検出装置の光束合成部の図、 第4図は本発明の第4実施例の位置検出装置の原理図、 第5図は半導体レーザの発光パターンを説明する図、 第6図は従来の問題点を説明する図、 第7図は本発明の効果の概念を説明する図、第8図は本
発明で合成された光束の光強度分布の1例の図、 第9図は本発明の第5実施例の位置検出装置の原理図、 第10図は従来の位置検出装置の構成図、第11図は同
検出原理図である。 図中、 1.1’、1’  ・・・・・・・・・・・半導体レー
ザ2.2’、2″  ・・・・ 集光レンズ(またはコ
リメータレンズ)3.3′  ・・・・・・・・・・・
・ハーフミラ・5,5′  ・・・・・・・・・・・・
マーク中心線6.6’、6’  ・・・・・・・・・投
光光束の主光線7・・・・・・・・・・偏光ビームスプ
リッタ8・・・・・・・・・・・・・・2分の1波長板
9・・・・・・・・・・・・・・4分の1波長板lO・
・・・・・・・・・・・・・・部分反射鏡11・・・・
・・・・・・・・・・・合成レンズである。
FIGS. 1(a), (b), and (c) are a block diagram, a principle diagram, and a detailed view of the mark part of the position detection device according to the first embodiment of the present invention, and FIGS. 2(a) and (b) are 3(a) and 3(b) are diagrams of the beam combining section of the position detecting device according to the third embodiment of the present invention, and FIG. 5 is a diagram illustrating the light emission pattern of a semiconductor laser. FIG. 6 is a diagram illustrating conventional problems. FIG. 7 is a diagram illustrating the problems of the conventional method. A diagram explaining the concept of the effect, FIG. 8 is a diagram of an example of the light intensity distribution of the luminous flux synthesized by the present invention, FIG. 9 is a diagram of the principle of the position detection device according to the fifth embodiment of the present invention, and FIG. The figure is a block diagram of a conventional position detection device, and FIG. 11 is a diagram of the same detection principle. In the figure, 1.1', 1'... Semiconductor laser 2.2', 2''... Condensing lens (or collimator lens) 3.3'...・・・・・・・・・
・Half Mira・5,5' ・・・・・・・・・・・・
Mark center line 6. 6', 6'...Principal ray of projected light beam 7...Polarizing beam splitter 8... ...Half-wave plate 9... Quarter-wave plate lO.
...... Partial reflecting mirror 11...
・・・・・・・・・・・・It is a composite lens.

Claims (1)

【特許請求の範囲】[Claims] (1)位置合わせすべき物体上に設けられた物理光学素
子に光束を照射する手段と、前記照射手段により照射さ
れ、前記物理光学素子により偏向された光束を検出する
事によって前記物体の位置を検出する手段と、を有し、
前記照射手段は複数光束を一部重ね合わせて前記物理光
学素子の形状に応じた断面形状を有する光束を形成し、
該光束を照射する事を特徴とする位置検出装置。
(1) A means for irradiating a light beam onto a physical optical element provided on an object to be aligned, and detecting the light beam irradiated by the irradiation means and deflected by the physical optical element to determine the position of the object. and means for detecting;
The irradiation means partially overlaps the plurality of light beams to form a light beam having a cross-sectional shape according to the shape of the physical optical element,
A position detection device characterized by irradiating the luminous flux.
JP63034669A 1988-02-16 1988-02-16 Position detection device Expired - Fee Related JP2517638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034669A JP2517638B2 (en) 1988-02-16 1988-02-16 Position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034669A JP2517638B2 (en) 1988-02-16 1988-02-16 Position detection device

Publications (2)

Publication Number Publication Date
JPH01209304A true JPH01209304A (en) 1989-08-23
JP2517638B2 JP2517638B2 (en) 1996-07-24

Family

ID=12420836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034669A Expired - Fee Related JP2517638B2 (en) 1988-02-16 1988-02-16 Position detection device

Country Status (1)

Country Link
JP (1) JP2517638B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149594A (en) * 2001-11-16 2003-05-21 Ricoh Co Ltd Laser illumination optical system, and exposure unit, laser processor, and projection unit using the same
JP2003270585A (en) * 2002-03-18 2003-09-25 Ricoh Co Ltd Laser illumination optical system, and exposure device, laser beam machining device and projection device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149594A (en) * 2001-11-16 2003-05-21 Ricoh Co Ltd Laser illumination optical system, and exposure unit, laser processor, and projection unit using the same
JP2003270585A (en) * 2002-03-18 2003-09-25 Ricoh Co Ltd Laser illumination optical system, and exposure device, laser beam machining device and projection device using the same

Also Published As

Publication number Publication date
JP2517638B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
JP2704001B2 (en) Position detection device
JP3275575B2 (en) Projection exposure apparatus and device manufacturing method using the projection exposure apparatus
JP4023695B2 (en) Alignment apparatus and lithographic apparatus provided with the apparatus
US10845720B2 (en) Mark detection apparatus, mark detection method, measurement apparatus, exposure apparatus, exposure method and device manufacturing method
JPH11241908A (en) Position detecting apparatus and manufacture of device employing the same
JPH05243118A (en) Detection of position and device therefor
JPH0245324B2 (en)
JP2676933B2 (en) Position detection device
JPH01209304A (en) Device for detecting position
JP2626076B2 (en) Position detection device
JP2001274059A (en) Inspection device and inspection method of projection optical system, mask for measuring image formation characteristics which is used for that, aligner and exposure method thereof
JP2546356B2 (en) Alignment device
JP3513304B2 (en) Position shift detection method and semiconductor device manufacturing method using the same
JP2615778B2 (en) Positioning device
JP2833145B2 (en) Position detection device
JP2623757B2 (en) Positioning device
JP2513282B2 (en) Alignment device
JPH05206007A (en) Projection aligner
JPH0412523A (en) Position detector
JPH01209305A (en) Device for detecting position
JPH0228535A (en) Position detecting device
JPH0334307A (en) Semiconductor wafer exposing method
JPH05175097A (en) Aligner
JPH0436605A (en) Position detector
JPH04204309A (en) Position detecting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees