JPH03249513A - Method and device for detecting inclination or height, projection exposure device, and method and device for interference fringe detection - Google Patents

Method and device for detecting inclination or height, projection exposure device, and method and device for interference fringe detection

Info

Publication number
JPH03249513A
JPH03249513A JP2045387A JP4538790A JPH03249513A JP H03249513 A JPH03249513 A JP H03249513A JP 2045387 A JP2045387 A JP 2045387A JP 4538790 A JP4538790 A JP 4538790A JP H03249513 A JPH03249513 A JP H03249513A
Authority
JP
Japan
Prior art keywords
information
interference fringe
pitch
light
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2045387A
Other languages
Japanese (ja)
Other versions
JP2892747B2 (en
Inventor
Yoshitada Oshida
良忠 押田
Tetsuzo Tanimoto
谷本 哲三
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2045387A priority Critical patent/JP2892747B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to DE69027738T priority patent/DE69027738T2/en
Priority to US07/623,438 priority patent/US5227862A/en
Priority to PCT/JP1990/000520 priority patent/WO1990013000A1/en
Priority to KR1019900702643A priority patent/KR930011884B1/en
Priority to EP90906337A priority patent/EP0426866B1/en
Publication of JPH03249513A publication Critical patent/JPH03249513A/en
Priority to US07/936,661 priority patent/US5392115A/en
Priority to US08/315,841 priority patent/US6094268A/en
Application granted granted Critical
Publication of JP2892747B2 publication Critical patent/JP2892747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To realize this projection exposure device which exposes a high-resolution pattern by irradiating a body to be measured with light from a coherence light source at a >=85 deg. angle of incidence and finding the inclination of the measured body surface and variation in height from the pitch and phase variation of interference fringes formed with reflected light and reference light. CONSTITUTION:The light from the coherent light source 1 is made into parallel illumination light 16, which irradiates an exposed area on the surface of photoresist on a wafer 4 slantingly at a >=85 deg. angle of incidence. The reflected light of this illumination light 16 and the reference light separate from the light from the light source 1 are reflected by a mirror 14 and superposed on an array sensor 3 to generate the interference fringes. Interference fringe information on them is detected to sample information based upon only the reflected light from the photoresist, the sampled information is used to correct the detected interference fringe information, and information on the pitch or the pitch and phase of the interference fringes is calculated from the corrected interference fringe information. The inclination or height of the surface is detected according to the information on the calculated pitch or the pitch and phase of the interference fringes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体回路パターン、液晶等表示デバイスパタ
ーン、等微細パターンの投影露光装置に係り、特に、露
光領域全面を高解像度で露光可能とする被露光物体の傾
きと高さを検出する手段を具備した投影露光装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a projection exposure apparatus for fine patterns such as semiconductor circuit patterns, display device patterns such as liquid crystals, etc., and in particular, it is capable of exposing the entire exposure area with high resolution. The present invention relates to a projection exposure apparatus equipped with means for detecting the inclination and height of an object to be exposed.

〔従来の技術〕[Conventional technology]

半導体集積回路の微細パターンの露光、或いはTFT 
(Thin  Film Transist。
Exposure of fine patterns for semiconductor integrated circuits or TFT
(Thin Film Transist.

r)液晶テレビに代表される表示デバイスの大視野パタ
ーン中の駆動回路パターンの露光等では露光領域内全体
に亘って線幅ばらつきの少ない、原画に忠実なパターン
を露光する必要がある。特に半導体集積回路の分野では
今後0.5μmパターン以下の線幅パターンを15mm
近い領域全面に露光する必要があるが、パターンの微細
化に伴ない、結像する範囲(焦点深度)は11μm以下
となる。このため、パターン結像面にウェハ上のフォト
レジスト面を正確に一致させることが不可欠となる。こ
れを実現するにはウェハ表面(フォトレジスト表面)の
露光領域における傾きと高さを正確に検出することが必
要となる。
r) When exposing a drive circuit pattern in a large field of view pattern of a display device such as a liquid crystal television, it is necessary to expose a pattern that is faithful to the original image and has little variation in line width over the entire exposure area. Especially in the field of semiconductor integrated circuits, line width patterns of 0.5 μm or less will be reduced to 15 mm in the future.
It is necessary to expose the entire near area, but as the pattern becomes finer, the imaging range (depth of focus) becomes 11 μm or less. For this reason, it is essential to accurately align the photoresist surface on the wafer with the pattern image formation surface. To achieve this, it is necessary to accurately detect the inclination and height of the exposed area of the wafer surface (photoresist surface).

従来特開昭63−7626号公報で示されている第1の
公知例では半導体レーザをウェハ表面上に斜め方向から
集光し、その集光位置を検出することにより高さを検出
している。またこの公知例ではウェハの多層構造に伴う
多重反射に対し、3波長の半導体レーザを用いて対応し
、集光位置を斜め入射方向と直角方向に変え、ウェハ上
の異なる場所の高さを求めている。本公知例は高さの検
出を主にしており、斜め入射方向と直角方向に場所を変
え測定し、傾きを検出することも可能であるが、直径2
0mm程度の狭い領域の2ケ所を測定しても傾きの正確
な値は得にくい。それは本公知例で高さ検出を高精度に
実現するにはウェハ上の集光を充分に、即ち集光径をで
きるだけ小さくする必要があるが、集光径を小さくする
には集光ビームの集光角(主光線に対する集光束の最外
光線の角)を大きくする必要があり、この結果主光線の
入射角度は小さくせざるを得ない。この角度を/hさく
する(ウェハ面に垂直な線からの角度が小さくなる)と
ウェハの多層構造に伴なう多重干渉の影響は大きくなる
。本公知例ではこの課題に対し3波長を用いているが、
それぞれの波長に対しては干渉の影響を受けており、根
本的な課題解決とならない。
In the first known example disclosed in Japanese Patent Laid-Open No. 63-7626, a semiconductor laser is focused on the wafer surface from an oblique direction, and the height is detected by detecting the focused position. . In addition, in this known example, multiple reflections due to the multilayer structure of the wafer are dealt with by using a three-wavelength semiconductor laser, and the light focusing position is changed to the oblique incident direction and the right angle direction, and the heights of different places on the wafer are determined. ing. This known example mainly detects the height, and it is also possible to detect the inclination by changing the measurement location in the oblique incident direction and the perpendicular direction, but it is also possible to detect the inclination.
It is difficult to obtain an accurate value of the inclination even by measuring two places in a narrow area of about 0 mm. In order to achieve highly accurate height detection in this known example, it is necessary to sufficiently condense the light on the wafer, that is, to make the condensed diameter as small as possible. It is necessary to increase the condensing angle (the angle of the outermost ray of the condensed beam with respect to the principal ray), and as a result, the angle of incidence of the principal ray must be made small. When this angle is reduced by /h (the angle from a line perpendicular to the wafer surface becomes smaller), the influence of multiple interference due to the multilayer structure of the wafer increases. In this known example, three wavelengths are used for this problem, but
Each wavelength is affected by interference, so this does not fundamentally solve the problem.

また従来の傾き検出の方法として特開昭63−1994
20号公報で示されている第2の公知例では投影レンズ
を通して露光波長と異なる傾き検出光を照射し、反射光
を集光し、集光位置から傾きを検出しているが、ウェハ
にほぼ垂直或いは浅い角度で入射させるため後述の運出
から下地からの反射光との干渉の影響が無視できなくな
り、正確な検出は困難となる。
In addition, as a conventional method of detecting inclination,
In the second known example shown in Publication No. 20, tilt detection light different from the exposure wavelength is irradiated through a projection lens, the reflected light is focused, and the tilt is detected from the focused position. Since the light is incident perpendicularly or at a shallow angle, the influence of interference with light reflected from the substrate during transport, which will be described later, cannot be ignored, making accurate detection difficult.

更に従来の多層構造物体に対する高さ検出の方法として
特開昭63−247741号公報で示される第3の公知
例では下地膜からの反射光を別々に分離しているが、こ
のような方法は半導体回路作成のプロセスに登場する薄
い膜に対して実行困難である。
Furthermore, in a third known example of a conventional height detection method for a multilayered object, disclosed in Japanese Patent Application Laid-Open No. 63-247741, the reflected light from the base film is separated separately. It is difficult to perform this method on thin films that appear in the process of creating semiconductor circuits.

またLSIの露光工程の後段、例えば配線パターンの露
光工程になると、ウェハ表面の凹凸は大きくなり、この
上に塗布されたフォトレジストももともとのウェハ表面
の凹凸程ではないが、かなりの凹凸を持つようになる。
Furthermore, in the later stages of the LSI exposure process, for example in the wiring pattern exposure process, the unevenness of the wafer surface becomes large, and the photoresist coated on it also has significant unevenness, although not as uneven as the original wafer surface. It becomes like this.

このような構造に上述の従来の方式を適用すると、凹凸
のあるフォトレジストのどの部分の傾きや高さを計測し
ているか分らなくなり、従って精度が悪くなる。
If the above-described conventional method is applied to such a structure, it becomes impossible to know which part of the uneven photoresist is measuring the slope or height, and therefore the accuracy deteriorates.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は露光領域内の傾きと高さの情報を、半導
体回路パターンを有するウェハ等多層構造に対し、正確
に得ると言う点について配慮されておらず、今後の0.
5μm以下の回路パターン露光に要求される高精度の傾
き及び高さ制御に対して問題があった。
The above-mentioned conventional technology does not take into consideration the point of accurately obtaining information on the inclination and height within the exposure area for a multilayer structure such as a wafer having a semiconductor circuit pattern.
There was a problem with the highly accurate tilt and height control required for circuit pattern exposure of 5 μm or less.

本発明の目的は上記従来の課題を解決し、半導体プロセ
スのいかなるウェハに対しても露光領域におけるフォト
レジスト表面の傾きと高さを正確に検出し、常に結像面
にレジスト表面或いはその近傍の最適位置に合せ、線幅
ばらつきの少ない高解像のパターンを露光する投影露光
装置を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems, to accurately detect the inclination and height of the photoresist surface in the exposure area for any wafer in a semiconductor process, and to always keep the image on the image plane at or near the photoresist surface. An object of the present invention is to provide a projection exposure apparatus that exposes a high-resolution pattern with little variation in line width in an optimal position.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明においては、可干渉光
源より出射した光を平行な照明光とし、ウェハ上のフォ
トレジスト表面上にある投影光学系の露光領域に斜めか
ら入射角θで照射し、反射光と、上記光源から出射した
光を分離して作った参照光をパターン検出器上で互に所
望の角度を付けて入射させ得られる干渉縞を検出する。
In order to achieve the above object, the present invention uses parallel illumination light emitted from a coherent light source and irradiates the exposure area of the projection optical system on the photoresist surface on the wafer obliquely at an incident angle θ. , the reflected light and the reference light created by separating the light emitted from the light source are incident on a pattern detector at a desired angle to detect interference fringes.

この干渉縞ピッチと位相の変化からウェハ上のフォトレ
ジスト表面の傾きと高さの変化を求めることが可能とな
る。また入射角度を85°以上にすることは平行光束を
用いている本発明では容易であり、入射角が大きいため
フォトレジスト表面での反射が大部分となり、下地の層
構造の各層での反射に伴ない、発生する干渉の影響はほ
とんど無視できるようになる。またフォトレジスト入射
光をS偏光とすれば表面での反射が更に大きくなり精度
が向上する。
From changes in the interference fringe pitch and phase, it is possible to determine changes in the inclination and height of the photoresist surface on the wafer. In addition, it is easy to set the incident angle to 85° or more in the present invention, which uses a parallel light beam, and because the incident angle is large, most of the reflection occurs on the photoresist surface, and the reflection on each layer of the underlying layer structure. As a result, the influence of interference that occurs can be almost ignored. Furthermore, if the light incident on the photoresist is made into S-polarized light, the reflection on the surface will be further increased and the accuracy will be improved.

また上記フォトレジスト表面で反射した光を平面鏡に垂
直に入射し、反射した光を再びフォトレジスト表面に入
射させ、この反射光を物体光として干渉パターンの情報
を得ればウェハの傾きや高さの検出を2倍の感度で実行
することが可能となり、更に精度の高い検出が可能とな
る。
In addition, the light reflected on the photoresist surface is incident perpendicularly on a plane mirror, the reflected light is made incident on the photoresist surface again, and the reflected light is used as object light to obtain information on the interference pattern. It becomes possible to perform detection with twice the sensitivity, and even more accurate detection becomes possible.

また、上記参照光をフォトレジストの照射光および物体
光(反射光)と実効的にほぼ同一の方向に進み且つほぼ
同一の領域を通過するごとく構成することにより、各光
路は空気のゆらぎ等外乱を同しように受け、周囲環境の
変化の影響を受けにくい傾きおよび高さ検出が可能とな
る。
In addition, by configuring the reference light to travel in substantially the same direction as the photoresist irradiation light and the object light (reflected light) and to pass through substantially the same area, each optical path is free from disturbances such as air fluctuations. This makes it possible to detect inclination and height that are less susceptible to changes in the surrounding environment.

また得られた干渉縞の情報を高速フーリエ変換し、その
結果である縞のスペクトル近傍の情報から傾き/θと高
さ/Zを求めれば、実時間と看做せる程度に高速に/θ
、/zが求まる6またこの時フォトレジスト照射位置が
パターン検出手段であるアレイセンサ受光面と光学的に
共役(結像)な関係にあれば、ウェハ上の所望の領域の
みの情報を選び出し、その部分の傾きと高さを求めるこ
とが可能となる。
In addition, if the information on the obtained interference fringes is subjected to fast Fourier transform, and the slope/θ and height/Z are calculated from the resulting information near the spectrum of the fringes, then /θ can be calculated at a high speed that can be considered as real time.
, /z is determined.6 If the photoresist irradiation position is in an optically conjugate (imaging) relationship with the light-receiving surface of the array sensor, which is the pattern detection means, then information on only the desired area on the wafer is selected, It becomes possible to find the slope and height of that part.

本発明においては、露光工程の後段で発生する比較的大
きなフォトレジスト表面の凹凸に対し、入射角を大きく
することにより、レジストの高い部分に光を照射し、凹
の部分は白部分の影とすることにより、干渉縞検出への
寄与を少くしている。
In the present invention, by increasing the incident angle, the light is irradiated onto the high parts of the resist, and the concave parts are hidden from the shadows of the white parts by increasing the incident angle. By doing so, the contribution to interference fringe detection is reduced.

この結果1本発明においては凸部の上面を検出すること
になり、従来の方式では不確定であった検出面を明確に
している。従って正しくレジスト表面の位置が検出でき
る。またこのように凹凸の大きい被測定物になると凸面
の上面の面積が反射光の強度に影響を与える。この結果
被測定面の場所により凸面の上面の面積比が大きい所で
は巨視的に見て反射光量が大きくなるため、アレイセン
サ受光面で参照光との間で生じる干渉縞の分布が一様で
なくなる。即ち上述のごとく、被測定物とアレイセンサ
がほぼ共役な位置関係にある時、被測定面の凸面の上面
の面積比が大きい部分は干渉縞の振幅は大きく、逆に上
記面積比が小さい部分は振幅は小さくなる。この結果こ
のような振幅が場所により異なる干渉縞をフーリエ変換
し、その縞ピッチに相当するスペクトル情報から傾きと
高さを求めると、精度が低下することになる。このよう
な対象に対し、本発明においては、参照光を重畳させな
い、被測定物からの反射光のみのパターンの強度分布を
上述のアレイセンサで検出しておき、この情報を用いて
上記の干渉縞のパターン情報を補正しその後にフーリエ
変換を行なう。このようにすれば補正された干渉縞パタ
ーンは場所によらずほぼどの場所でも同し振幅となり、
スペクトル情報から正確に傾きと高さを求めることがで
きるようになる。
As a result, in the present invention, the upper surface of the convex portion is detected, and the detection surface, which was uncertain in the conventional method, is clarified. Therefore, the position of the resist surface can be detected correctly. Furthermore, when the object to be measured has large irregularities, the area of the upper surface of the convex surface affects the intensity of reflected light. As a result, depending on the location of the measured surface, the amount of reflected light increases macroscopically where the area ratio of the top surface of the convex surface is large, so the distribution of interference fringes that occur between the array sensor light receiving surface and the reference light is uniform. It disappears. In other words, as mentioned above, when the object to be measured and the array sensor are in a nearly conjugate positional relationship, the amplitude of the interference fringes is large in the area where the area ratio of the convex top surface of the measured surface is large, and conversely, the amplitude of the interference fringes is large in the area where the area ratio is small. The amplitude becomes smaller. As a result, if such interference fringes whose amplitudes differ depending on the location are subjected to Fourier transform and the slope and height are determined from spectrum information corresponding to the fringe pitch, the accuracy will decrease. For such objects, in the present invention, the above-mentioned array sensor detects the intensity distribution of the pattern of only the reflected light from the measured object without superimposing the reference light, and uses this information to detect the above-mentioned interference. The stripe pattern information is corrected and then Fourier transform is performed. In this way, the corrected interference fringe pattern will have the same amplitude almost everywhere, regardless of the location.
It becomes possible to accurately determine slope and height from spectral information.

〔作用〕 上記のパターン検出器で得られる干渉縞の情報はピッチ
と位相の情報を有するため、傾きと高さの情報が同時に
得られる。しかも入射角度を85゜以上にするとフォト
レジスト表面での反射が大きくなり、フォトレジスト表
面の傾きや高さが正確に同時に求まる。
[Operation] Since the interference fringe information obtained by the above pattern detector includes pitch and phase information, inclination and height information can be obtained at the same time. Furthermore, when the incident angle is set to 85 degrees or more, the reflection on the photoresist surface becomes large, and the inclination and height of the photoresist surface can be determined accurately and at the same time.

更に前述したごとく露光工程の後段でフォトレジストの
凹凸が大きいウェハに対し、被測定物からの反射光のみ
を検出し、この検出強度分布のデータを補正値として用
いることにより、レジスト表面の凸部の上面を主にその
高さと傾きが正確に求まる。この作用を以下に詳しく説
明する。今もし第10図のようにウェハ4の断面構造が
Si基板43の上に比較的大きな段差を持つ凹凸の42
の層が重なっていると、この上に塗布したフォトレジス
ト41は、42の凹凸の層の段差に比へれば小さいが、
凹凸の段差が残る。このような凹凸のフォトレジスト表
面に垂直線に対して入射角度が85°以上(例えば88
°)の平行レーザビームを照射すると、第10図で斜線
で示した部分のみが正反射し、それ以外の部分であるビ
ームは第11図に第10図の拡大図として示すように、
A工、B1.C□の光線に示すように正反射光の方向と
は異なる方向に散乱的に反射する。この結果後述するよ
うに正反射光のみを取り出す検出系にはA1.B工、C
1の光線のように凸部の上面以外に当る光は到達しない
。このように凹凸部分から成る断面構造の場合凸部の上
面の面積にほぼ比例した強度の光が検出器に達する。
Furthermore, as mentioned above, in the latter stage of the exposure process, for wafers with large photoresist irregularities, only the reflected light from the object to be measured is detected, and data on this detected intensity distribution is used as a correction value to detect the convexities on the resist surface. Mainly the height and inclination of the top surface can be accurately determined. This effect will be explained in detail below. Now, if the cross-sectional structure of the wafer 4 is an uneven 42 with relatively large steps on the Si substrate 43 as shown in FIG.
When the layers 41 and 42 overlap, the photoresist 41 applied thereon is small compared to the uneven layer 42, but
Uneven steps remain. If the incident angle is 85° or more (for example, 88
When irradiated with a parallel laser beam (°), only the shaded part in Fig. 10 is specularly reflected, and the other parts of the beam are reflected as shown in Fig. 11 as an enlarged view of Fig. 10.
A, B1. As shown by the ray C□, the light is scattered and reflected in a direction different from the direction of the specularly reflected light. As a result, as will be described later, the detection system that extracts only specularly reflected light has A1. B engineering, C
Light that hits anything other than the top surface of the convex portion, such as the light ray 1, does not reach the top surface of the convex portion. In the case of such a cross-sectional structure consisting of concave and convex portions, light with an intensity approximately proportional to the area of the upper surface of the convex portion reaches the detector.

しかも、ウェハ面とアレイセンサの受光面はほぼ共役な
関係になっているので、結局断面構造が、はとんど平坦
か、あるいは凹凸があっても凸の上面の面積比が大きい
部分に対応する所の強度が大きく、その逆はtJsさく
なる。その結果被測定物からの反射光のアレイセンサ上
での強度分布Oxは例えば第5図のように場所によりレ
ベルが異なって来る。このような分布の光と、第6図の
ように一定レベルの参照光Rxが干渉すると、第7図に
示すように干渉縞の強度Ixの縞の振幅は場所により異
なって来る。以上説明した現象を更に理論的、定量的に
説明する。アレイセンサに入射する被測定物からの反射
光の強度をOx、入射角をC2、他方参照光の強度をR
x、入射角を一α、(マイナスはアレイセンサ面の法線
に対し、被測定物からの反射光と逆の側に傾いているこ
とを示す)とし、これら両光がX方向に傾いていると、
X方向に変化する縞を検出する。得られる干渉縞強度工
x (X)は ここでλは検出光の波長であり、 八〇は被測定物 の傾きであり、nは後述する被測定物での反射の回数で
あり、mは検出光学系の結像倍率である。
Moreover, since the wafer surface and the light-receiving surface of the array sensor have an almost conjugate relationship, the cross-sectional structure is mostly flat, or even if there is unevenness, it corresponds to a part where the area ratio of the convex top surface is large. tJs is large where it is strong, and vice versa. As a result, the intensity distribution Ox of the reflected light from the object to be measured on the array sensor varies in level depending on the location, as shown in FIG. 5, for example. When the light having such a distribution interferes with the reference light Rx at a constant level as shown in FIG. 6, the amplitude of the interference fringe intensity Ix will vary depending on the location, as shown in FIG. The phenomenon explained above will be further explained theoretically and quantitatively. The intensity of the reflected light from the measured object that enters the array sensor is Ox, the incident angle is C2, and the intensity of the other reference light is R.
x, the incident angle is 1α (minus indicates that the light is tilted to the opposite side of the reflected light from the object to be measured with respect to the normal to the array sensor surface), and both of these lights are tilted in the X direction. When you are there,
Detect stripes that change in the X direction. The obtained interference fringe intensity factor x (X) is where λ is the wavelength of the detection light, 80 is the inclination of the object to be measured, n is the number of reflections on the object to be measured, which will be described later, and m is This is the imaging magnification of the detection optical system.

φ(Z)は高さの変化に伴なう位相変化である。φ(Z) is a phase change due to a change in height.

(1)式は△θ〈くα1〈〈1よりn=1の時次のよう
になる。
Equation (1) becomes as follows when n=1 since △θ〈×α1〈〈1.

Ix(X)=Ox+Rx +    25 cost:   (2sin a、−
へj’cosa□)X+φ(Z))  −=  (1)
’もし、Ox、RxがXに依らず一定値を取るならば(
1)′式で与えられる検品信号をフーリエ変換すること
により得られるフーリエスペクトルの縞周期に対応する
スペクトルピーク位置とその近傍のデータを用いて、/
θとφ(Z)の値を求めることが可能となる。しかし一
般にはOx、Rxは一定ではなく、特に前述したように
ウェハのレジスト表面の凹凸の状況が場所により異なる
場合には第5図のようにOxが変化する。第5図のOx
に対し、仮に参照光の分布Rxが第6図に示すように一
定値Rcであっても(1)′式で与えられる干渉縞強度
は第7図のように場所により縞の振幅が異る。このよう
な振幅変化があるとTxのにピーク値のまわりで拡がり
を持ち、本来の縞周期(傾き)や位相(高さ)の情報が
かくれ、精度が低下してしまう。
Ix (X) = Ox + Rx + 25 cost: (2 sin a, -
to j'cosa□)X+φ(Z)) −= (1)
'If Ox and Rx take constant values regardless of X, then (
1) Using the spectral peak position corresponding to the fringe period of the Fourier spectrum obtained by Fourier transforming the inspection signal given by the formula ' and the data in its vicinity, /
It becomes possible to obtain the values of θ and φ(Z). However, in general, Ox and Rx are not constant, and especially when the unevenness of the resist surface of the wafer differs depending on the location as described above, Ox changes as shown in FIG. 5. Ox in Figure 5
On the other hand, even if the reference light distribution Rx is a constant value Rc as shown in Fig. 6, the interference fringe intensity given by equation (1)' varies in amplitude depending on the location as shown in Fig. 7. . When such an amplitude change occurs, Tx has a spread around the peak value, and information about the original fringe period (inclination) and phase (height) is hidden, resulting in a decrease in accuracy.

そこで干渉縞の検出に先立ち、参照光を遮光しておき、
被測定物からの反射光のみを同一の検出系で検出してお
く。この値は当然○Xとなる。また第6図の例のように
Rx=Rcでない場合、例えばRxが第14図のような
場合には参照光のみの強度分布Rxを測定しておく。こ
の2つの測定値(Ox、Rx)又はRx=Rcの場合に
は1つの測定値(Ox)を補正値として、次の補正演算
を行ない、補正信号Icxを導出する。
Therefore, before detecting interference fringes, the reference light is blocked.
Only the reflected light from the object to be measured is detected by the same detection system. This value is naturally ○X. Furthermore, when Rx=Rc is not the case as in the example of FIG. 6, for example when Rx is as shown in FIG. 14, the intensity distribution Rx of only the reference light is measured. Using these two measured values (Ox, Rx) or one measured value (Ox) as a correction value when Rx=Rc, the following correction calculation is performed to derive a correction signal Icx.

Ixは(1)式で与えられるから λ が求まる。Since Ix is given by formula (1) λ is found.

この補正信号Icxをフーリエ変換す −ク僅のまわりの拡がりがなくなり、純粋な三角関数の
鋭いスペクトルが得られ、正確に傾きと高さが求まる。
When this correction signal Icx is Fourier-transformed, the spread around the curve disappears, a sharp spectrum of a pure trigonometric function is obtained, and the slope and height can be determined accurately.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

第1図は本発明の一実施例である。本実施例では半導体
露光装置の露光チップに本発明の傾き及び高さ検出を適
用したものである。9はウェハ4に回路パターンを露光
するために用いるパターン原版が描画されたレチクルで
ある。このレチクル9には露光照明系81より水銀ラン
プ(図示せず)から出射したg線やi縁戚いはエキシマ
レーザ−より出射した遠紫外光が照射される。レチクル
を透過した光は縮小レンズ8を透過することにより、ウ
ニハスチーシフ上に固定されたウェハ4に塗布されたレ
ジストの表面上にレチクルの像として投射される。ウェ
ハ4上に描画されるパターンがサブミクロン、ハーフミ
クロン、更には0.3μm前後と細くなるのに伴ない焦
点深度は浅くなり、線幅が0.5μm以下になると傾き
と高さをそれぞれ±10  ’rad、±Q、1μm以
内の精度で検出・制御しないと、製品歩留りが低下する
FIG. 1 shows an embodiment of the present invention. In this embodiment, the inclination and height detection of the present invention is applied to an exposure chip of a semiconductor exposure apparatus. Reference numeral 9 denotes a reticle on which a pattern original plate used for exposing a circuit pattern onto the wafer 4 is drawn. This reticle 9 is irradiated by an exposure illumination system 81 with g-rays emitted from a mercury lamp (not shown), i-rays, or far ultraviolet light emitted from an excimer laser. The light that has passed through the reticle passes through the reduction lens 8 and is projected as an image of the reticle onto the surface of the resist coated on the wafer 4 fixed on the surface of the wafer. As the pattern drawn on the wafer 4 becomes thinner to submicron, half micron, or even around 0.3 μm, the depth of focus becomes shallower, and when the line width becomes 0.5 μm or less, the slope and height are adjusted to ± If detection and control are not performed with an accuracy of within 10' rad, ±Q, 1 μm, product yield will decrease.

第1図の100Xはウェハ上のレジスト表面のX方向の
水平度、即ちy軸を軸とする回転に伴う傾きと、高さを
求める検出系である。・第1図には100Xと同様にX
方向の水平度を検出する100Yは省略している。1は
半導体レーザ、或いはガスレーザ等の指向性の高い光源
であり、この光源を出射した光はほぼ平行で所望の広が
りを持たせた状態でビームスプリッタ10により2分す
る。
100X in FIG. 1 is a detection system that determines the horizontality of the resist surface on the wafer in the X direction, that is, the inclination and height associated with rotation about the y-axis. - In Figure 1, there is an X as well as 100X.
100Y, which detects the levelness of the direction, is omitted. Reference numeral 1 designates a highly directional light source such as a semiconductor laser or a gas laser, and the light emitted from this light source is split into two by a beam splitter 10 in a substantially parallel state with a desired spread.

2分した一方の光16はビームスプリッタ12゜ミラー
13を経由してウェハ4のレジスト表面に垂直線に対し
て85°以上の入射角でかつS偏光で照射する。レジス
トはこの照射光に対し、透明であるが、入射角が大きく
、S偏光であるため、90%近い光はレジスト内部に入
らず直接反射し、折返しミラー14にほぼ垂直に入射す
る。折返された光26′は往路と同一で逆方向の光路を
辿り、ビームスプリッタで反射され検出光路に向う光2
6′になる。他方ビームスプリンタ10で分離されたも
う一方のビーム17は参照光として用いられる。ビーム
17はシャッタ(遮光手段)330により所望のタイミ
ングで0N−OFFされる。
One of the two divided beams 16 passes through a beam splitter 12° mirror 13 and irradiates the resist surface of the wafer 4 at an incident angle of 85° or more with respect to the vertical line and as S-polarized light. The resist is transparent to this irradiation light, but since the incident angle is large and the light is S-polarized, nearly 90% of the light does not enter the resist and is directly reflected, and enters the folding mirror 14 almost perpendicularly. The reflected light 26' follows the same optical path as the outgoing path but in the opposite direction, is reflected by the beam splitter, and becomes light 2 heading toward the detection optical path.
It becomes 6'. The other beam 17 separated by the beam splinter 10 is used as a reference beam. The beam 17 is turned off at a desired timing by a shutter (light shielding means) 330.

シャッタ330がON状態になると参照光はビームスプ
リッタ12とミラー13を通過して、直接折返しミラー
14に垂直に入射する。折返されたビーム27′は往路
と同一で逆方向の光路を辿り、ビームスプリンタ12で
反射され検出光路に向う光27′になる。検出光路に向
う2つの上記ビーム26′と271はレンズ21.22
及びノイズ除去用のピンホール或いは微小矩形開口を有
する遮光板23を通り、アレイセンサ3上にそれぞれほ
ぼ平行の状態で重畳される。アレイセンサ3上には第2
図及び第3図の実線で示されるような干渉縞が発生し、
この強度分布Ixがアレイセンサ3で検出される。ウェ
ハ4の平行度が悪かったり、或いは各種工程を経るに伴
いウェハが反ることにより、ステップアンドリピートで
ウェハ4をチップ或いは複数チップ単位で露光していく
と、縮小レンズの結像面とレジスト表面が傾き及び高さ
の点で一致しなくなるので、上記のアレイセンサ3の検
出情報を元に下記の方法により、この傾きおよび高さを
処理回路5で検出し、この検出情報をもとにしてウェハ
ステージ7に具備された。ステージ制御機構(例えばピ
エゾ或いはメカニカル微動機構により)を制御して、結
像画とレジスト表面を一致させ、露光する。なお第1図
で800は重ね露光に用いるアライメント系である。
When the shutter 330 is turned on, the reference light passes through the beam splitter 12 and the mirror 13 and directly enters the folding mirror 14 perpendicularly. The reflected beam 27' follows the same optical path as the forward path but in the opposite direction, is reflected by the beam splinter 12, and becomes light 27' heading toward the detection optical path. The two said beams 26' and 271 towards the detection optical path are connected to the lens 21.22.
The light passes through a light shielding plate 23 having a pinhole or a minute rectangular opening for removing noise, and is superimposed on the array sensor 3 in a substantially parallel state. On the array sensor 3 there is a second
Interference fringes as shown by the solid lines in Figures and Figure 3 occur,
This intensity distribution Ix is detected by the array sensor 3. If the parallelism of the wafer 4 is poor, or if the wafer warps as it goes through various processes, if the wafer 4 is exposed chip or multiple chips in step-and-repeat steps, the imaging surface of the reduction lens and the resist may Since the surfaces do not match in terms of inclination and height, the processing circuit 5 detects the inclination and height using the method described below based on the detection information of the array sensor 3 described above, and based on this detection information, The wafer stage 7 was equipped with the following. A stage control mechanism (for example, using a piezo or mechanical fine movement mechanism) is controlled to align the formed image with the resist surface and expose the resist. In FIG. 1, 800 is an alignment system used for overlapping exposure.

第2図、第3図は第1図の実施例でアレイセンサ3で検
出される信号であり、それぞれの図面で実線で示されて
いる信号Ixは傾き及び高さが最適露光状態でのもので
ある。ウェハ4が最適露光状態からずれ傾くと、第2図
の点線のように縞のピッチがPからP′に変化する。又
ウェハが最適露光位置から高さ方向にずれると、第3図
の点線のように位相φ2が変化する。この傾きと高さの
変化に伴なう干渉縞のピッチPと位相φ2は(1)式で
n=2を入れればcosα、zlより、λ P;                      ・
・・(3)2 sin a 1+(4Δθ/m) λ が成り立つ。但しθ□はウェハへの入射角、φSは位相
の初期定数である。
FIGS. 2 and 3 show signals detected by the array sensor 3 in the embodiment shown in FIG. 1, and the signal Ix shown by a solid line in each drawing is the one when the slope and height are in the optimal exposure state. It is. When the wafer 4 deviates from the optimum exposure state and tilts, the pitch of the stripes changes from P to P' as shown by the dotted line in FIG. Further, when the wafer deviates from the optimum exposure position in the height direction, the phase φ2 changes as indicated by the dotted line in FIG. The pitch P and phase φ2 of the interference fringe due to this change in inclination and height can be calculated by entering n=2 in equation (1), and from cos α and zl, λ P;
...(3) 2 sin a 1+(4Δθ/m) λ holds true. However, θ□ is the angle of incidence on the wafer, and φS is the initial constant of the phase.

第4図は本発明の第1図の処理回路5の一部分51であ
り、本発明の一実施例を示したものである。第1図のア
レイセンサ3で検出され、A/D変換回路31でA/D
変換された干渉縞のディジタル情報Ixは第4図に示す
501のメモリーに一旦格納される。この干渉縞の検出
に先立ち、ウェハ4がステージ7に搬入され、露光を始
める前に、第1図のシャッタ(遮光手段)330を閉じ
、参照光17を遮光して、ウェハ4からの反射光26の
みをアレイセンサ3で検出しておく。この信号Oxは干
渉縞の検出と同様にA/D変換回路31でA/D変換さ
れディジタル情報の形で第4図に示す502のメモリ2
に格納されている。前述したごとくウェハ4上のレジス
トの表面の拡大図が第10図のような凹凸形状であると
、入射角θ1(85°以上の例えば88°)で入射した
光のうち正反射光に寄与するのは白部分の上面であり。
FIG. 4 shows a portion 51 of the processing circuit 5 of FIG. 1 according to the present invention, and shows one embodiment of the present invention. It is detected by the array sensor 3 in FIG.
The converted interference fringe digital information Ix is temporarily stored in a memory 501 shown in FIG. Prior to detection of the interference fringes, the wafer 4 is loaded onto the stage 7, and before exposure begins, the shutter (light shielding means) 330 shown in FIG. Only 26 is detected by the array sensor 3. Similar to the detection of interference fringes, this signal Ox is A/D converted by an A/D conversion circuit 31 and stored in the memory 2 of 502 shown in FIG. 4 in the form of digital information.
is stored in. As mentioned above, if the enlarged view of the surface of the resist on the wafer 4 has an uneven shape as shown in FIG. 10, it will contribute to the specularly reflected light among the light incident at the incident angle θ1 (85° or more, for example, 88°). This is the top surface of the white part.

第10図の拡大図の斜線でハツチングしたビームが正反
射光となる。この凸部の上面の面積が小さくなると、こ
のような凹凸構造部分からの反射光によるアレイセンサ
3上の像は暗くなる。他方凹凸が小さい部分或いは凹凸
の凸部上面の面積の大きな部分に相当するアレイセンサ
3上の像は明るくなり、結果として、第5図に示すよう
なウェハ4からの反射光像○χがアレイセンサ3上に形
成される。上述したごとく、第1図に示すシャッタ33
0を閉じることにより、このOxを検出できるので、こ
の情報をメモリ2の502に記憶しておく。ステップア
ンドリピートでウェハ4を移動し露光を繰返す際に、露
光に先がけ、アレイセンサ3で干渉縞を検出すると、参
照光17の分布が第6図の様に一様であれば第7図のよ
うな干渉縞Ixが検出され、第4図のメモリ1の501
に格納される。そこでこの2つの情報IxとOxを各メ
モリ501及び502から取り出し演算手段1の503
で下記の演算を行い、補正干渉波形1(Xを導出する。
The hatched beam in the enlarged view of FIG. 10 is specularly reflected light. When the area of the upper surface of the convex portion becomes smaller, the image on the array sensor 3 due to the reflected light from the uneven structure portion becomes darker. On the other hand, the image on the array sensor 3 corresponding to a portion with small unevenness or a large area on the upper surface of the convex portion of the unevenness becomes brighter, and as a result, the reflected light image ○χ from the wafer 4 as shown in FIG. formed on the sensor 3. As mentioned above, the shutter 33 shown in FIG.
Since this Ox can be detected by closing 0, this information is stored in 502 of the memory 2. When moving the wafer 4 and repeating exposure by step-and-repeat, if the array sensor 3 detects interference fringes prior to exposure, if the distribution of the reference beam 17 is uniform as shown in FIG. 6, then as shown in FIG. An interference pattern Ix such as
is stored in Therefore, these two pieces of information Ix and Ox are taken out from each memory 501 and 502 and 503 of calculation means 1.
The following calculation is performed to derive the corrected interference waveform 1 (X.

但し、参照光の強度はほぼ一定値Rcになっている。こ
のようにして得られたIcxは第8図のように最早基本
周波数以外の成分は大幅に少なくなる。この結果この信
号を高速フーリエ変換手段5o4で高速フーリエ変換(
FFT)して得られる波数の純粋なスペクトルが得られ
ることになり、このスペクトル情報から後述する方法に
より処理回路5内の演算手段2の505で非常に精度の
高い傾きと高さの情報(Δθ、ΔZ)が求められる。
However, the intensity of the reference light is approximately a constant value Rc. As shown in FIG. 8, Icx obtained in this manner has significantly fewer components other than the fundamental frequency. As a result, this signal is subjected to fast Fourier transform (
A pure spectrum of wavenumbers obtained by FFT) is obtained, and from this spectrum information, highly accurate slope and height information (Δθ , ΔZ) are obtained.

第12図は本発明の一実施例である。第1図と同一部品
番号は同一物を表わす。第12図で透過形グレーティン
グ18にほぼ平行光束で照射されたレーザ光はウェハ4
に照射される光16′と参照光17′に分離される。そ
れぞれの光は光シャッタ330′により遮光される。即
ち第12図に示す状態にシャッタ330′がある時は干
渉縞がアレイセンサ3で検出されているが、シャッタ3
30′が右に移動し、開口A。が第12図のARの位置
と重なるとウェハ照明光16′は遮光され、参照光17
′のみがアレイセンサ3で検出される。
FIG. 12 shows an embodiment of the present invention. The same part numbers as in FIG. 1 represent the same parts. In FIG. 12, the laser beam irradiated on the transmission grating 18 with a nearly parallel beam is applied to the wafer 4.
The beam is separated into light 16' and reference beam 17'. Each light is blocked by a light shutter 330'. That is, when the shutter 330' is in the state shown in FIG. 12, interference fringes are detected by the array sensor 3;
30' moves to the right, opening A. When overlaps with the position of AR in FIG. 12, the wafer illumination light 16' is blocked and the reference light 17
' is detected by the array sensor 3.

この参照光17′を検出すると第14図のように若干分
布にむらのある信号Rxが検出される。またシャッタ3
30′が左に移動し、開口A1が第12図のA。の位置
に重なると参照光17′が遮光され、ウェハ反射光のみ
がアレイセンサ3で検出される。このウェハ反射光は第
1図の実施例同様第13図のような分布○Xとなる。こ
れらの分布Rx 、Oxは、A/D変換回路31の出力
として第12図の処理回路5′の一部である第17図の
傾き及び高さ横比回路51′のメモリ2′の502’と
メモリ2の502にそれぞれ格納される。
When this reference light 17' is detected, a signal Rx whose distribution is slightly uneven as shown in FIG. 14 is detected. Also shutter 3
30' moves to the left, opening A1 becomes A in FIG. When the reference light 17' overlaps with the position , the reference light 17' is blocked and only the wafer reflected light is detected by the array sensor 3. This wafer reflected light has a distribution ○X as shown in FIG. 13, similar to the embodiment shown in FIG. These distributions Rx and Ox are stored as outputs of the A/D conversion circuit 31 in the memory 2' at 502' in the slope and height-to-lateral ratio circuit 51' in FIG. 17, which is a part of the processing circuit 5' in FIG. and are stored in 502 of memory 2, respectively.

露光に先がけてメモリ2′の502′とメモリ2の50
2に記憶しておいた上記Rxと○Xを用いて演算手段1
′の5o3′により、下記の演算をステップアンドリピ
ートで露光する前に行う。
502' of memory 2' and 50 of memory 2 prior to exposure.
Calculating means 1 using the above Rx and ○X stored in 2.
5o3', the following calculation is performed before exposure by step-and-repeat.

Ixは第4図に示す場合と同様にメモリ1の501に記
憶されている。
Ix is stored in 501 of memory 1 as in the case shown in FIG.

Ix−Ox−Rx 1°””  2Ei丁    ””6)このIcxは第
15図に示す干渉検出波形Ix(メモリ1の501に記
憶されている。)と比較し、第16図に示すように、基
本周波数成分が主要であるため、前述したごとくこの信
号Icxから高速フーリエ変換手段504及び演算手段
2′の505により正確に傾きと高さ(Δθ、ΔZ)を
求めることが可能となる。本実施例では第1図の実施例
に比べ、参照光17′の分布に少々のむらが残っていて
も正確な検出が可能であるため。
Ix-Ox-Rx 1°"" 2Ei Ding ""6) This Icx is compared with the interference detection waveform Ix (stored in 501 of memory 1) shown in FIG. 15, and as shown in FIG. , since the fundamental frequency component is the main component, it is possible to accurately determine the slope and height (Δθ, ΔZ) from this signal Icx by the fast Fourier transform means 504 and the calculating means 2' 505, as described above. In this embodiment, as compared to the embodiment shown in FIG. 1, accurate detection is possible even if there is some unevenness in the distribution of the reference light 17'.

参照光17′の分布を一様にするための光学系、例えば
ピンホール等の省略が可能であるばかりでなく、光の利
用効率も大きくなり、出力の小さな光源で検出すること
が可能となる。
Not only is it possible to omit an optical system such as a pinhole for making the distribution of the reference light 17' uniform, but the efficiency of light utilization is also increased, and detection can be performed with a light source with a small output. .

第18図は第4図および第17図に示すスペクトル情報
処理による干渉縞のピッチ(傾き)と位相(高さ)の高
精度算出手段2′の505の具体的構成を示す図である
。検出され補正された信号Ixcは基本周波数成分以外
の信号はほとんど含まれていないため、以下に示す演算
を行うことによりピッチと位相が正確に求められる。I
xcは実数であり、これを複素フーリエ変換手段504
で複素フーリエ変換すると次式のFBI)が求まる。
FIG. 18 is a diagram showing a specific configuration of the highly accurate calculation means 2' 505 for calculating the pitch (inclination) and phase (height) of interference fringes by the spectral information processing shown in FIGS. 4 and 17. Since the detected and corrected signal Ixc contains almost no signal other than the fundamental frequency component, the pitch and phase can be accurately determined by performing the calculations described below. I
xc is a real number, which is converted into a complex Fourier transform means 504
When the complex Fourier transform is performed, the following formula (FBI) is obtained.

波数成分に相当するスペクトル位置j=、joで鋭いピ
ーク値を持つ。算出ステップ5051で算呂された離散
的に得られるスペクトルAjoのjOとj、やI、Js
−1の位置に於る値A 3 + I HA J。−□か
ら以下に示す方法により正確にピッチPと位相φ2が求
まる。A jo HA 3゜+1.Ajo−1の複素数
の値を以下の様に実数部と虚数部に書きなおす。
It has a sharp peak value at the spectral position j=,jo corresponding to the wavenumber component. jO, j, I, Js of the discretely obtained spectrum Ajo calculated in calculation step 5051
The value A 3 + I HA J at the -1 position. - From □, the pitch P and phase φ2 can be accurately determined by the method shown below. A jo HA 3゜+1. Rewrite the complex value of Ajo-1 into a real part and an imaginary part as follows.

A jo= Ro+ i I o          
 ・・・(8)Ajo+、=R++iIや      
   ・・・(9)A、、−1=R−+i I−・・・
(10)これらFFTで得られた値から内積計算ステッ
プ5052により次の値(複素数ベクトルの内積値)を
求める。
A jo= Ro+ i I o
...(8) Ajo+, =R++iI
...(9) A,, -1=R-+i I-...
(10) From these values obtained by FFT, the next value (inner product value of the complex vector) is calculated in the inner product calculation step 5052.

So = Ro2+ I o2(= (Ajo−Ajo
)) −(11)S + = RoR+ + X o 
I +(=(Ajo・A J−1)) −(12)S 
 =RoR−+IoI−(=(AjoAxa−t)l・
・(13)この値を用い次の△を求める。
So = Ro2+ I o2(= (Ajo−Ajo
)) −(11) S + = RoR+ + X o
I +(=(Ajo・A J-1)) −(12)S
=RoR-+IoI-(=(AjoAxa-t)l・
・(13) Use this value to find the next Δ.

S+−S このようにして求めた△を用い、真のピーク位置ステッ
プ5055により真のスペクトルピークj、は次式で求
める。
S+-S Using Δ thus obtained, the true spectral peak j is determined by the following equation at the true peak position step 5055.

jR=JO+△          ・・・(14)次
に位相値φ2は上記△を用い、真のピーク位置での位相
ステップ5056により次式で与えられここでφjo(
6)式から求められ次式を満たす。
jR=JO+△...(14) Next, the phase value φ2 is given by the following equation using the above △ and the phase step 5056 at the true peak position, where φjo(
6) is obtained from the equation and satisfies the following equation.

exp jφjo= (Ro + i I o )/ 
1”・(16)(14)式で与えられた△を用い、(1
5)式から初期位相値φ2が求まる。
exp jφjo= (Ro + i I o )/
1”・(16) Using △ given by equation (14), (1
The initial phase value φ2 is found from equation 5).

(1)′式を求めた時と同様に(1)式より干渉縞のピ
ッチPは被測定物(ウェハ4)での反射の回数nに対し
、 また、ピッチP (FFTの入力となった干渉縞信号の
1ピッチ当りのサンプル点数、但し実数)は P = N / J R・・・(17)で与えられるか
ら(3)′と(14)式よりΔθ=C5X F 、1J
 s) / n     ・・・(18)但しC1=λ
m/ (2N)   (定数)j 、:2 N5inα
□/ l  (定数)ステージの傾き制御量へ〇がステ
ージの傾き制御量算出ステップ5057により求まる。
In the same way as when formula (1) was calculated, from formula (1), the pitch P of the interference fringes is determined by the number n of reflections on the object to be measured (wafer 4). The number of sample points per pitch of the interference fringe signal (real number) is given by P = N / J R... (17), so from equations (3)' and (14), Δθ = C5X F, 1J
s)/n...(18) However, C1=λ
m/ (2N) (constant) j, :2 N5inα
□/l (constant) to the stage tilt control amount is determined by stage tilt control amount calculation step 5057.

この八〇がステージの傾き制御量となる。This 80 is the stage tilt control amount.

他方真の位相値φZからは定数である初期位相φ、(Δ
2=0、即ち初期の合焦点での位相)を用いて(4)式
を求めたのと同様に △2=λ(φ2−φg)/  (4nπcosθ1)と
なるので((4)式ではn=2) ΔZ=Cz(φ2−φ8)/n 但しC2=λ/(4πcosθ□) (定数)ステージ
上下制御量△Zがステージ上下制御量算出ステップ50
58により求まる。このΔ2がステージ高さ制御量とな
る。以上100XのX軸の検出と同様Y軸についても1
00Yにより上記のステージの傾き制御量Δθとステー
ジ高さ制御量ΔZが求まる。このX軸及びY軸のΔθ、
△Zをそれぞれ、△θX、ΔZx、Δθy、Δzyとす
る。
On the other hand, from the true phase value φZ, the constant initial phase φ, (Δ
2=0, that is, the phase at the initial focal point), and in the same way as formula (4) was obtained, Δ2=λ(φ2−φg)/(4nπcosθ1), so (in formula (4), n =2) ΔZ=Cz(φ2-φ8)/n However, C2=λ/(4πcosθ□) (Constant) Stage vertical control amount △Z is stage vertical control amount calculation step 50
58. This Δ2 becomes the stage height control amount. Similar to the above 100X X-axis detection, the Y-axis is also 1
The above stage tilt control amount Δθ and stage height control amount ΔZ are determined from 00Y. Δθ of this X axis and Y axis,
Let ΔZ be ΔθX, ΔZx, Δθy, and Δzy, respectively.

ΔZについては2つの値が得られるので、一方のみを用
いるか、平均ΔZ=(ΔZx+ΔZy)/2を用い、Δ
θX、Δθy、ΔZ(又はΔZx又はΔZy)の3つの
値によりウェハステージ7の光軸と直角な2方向と光軸
方向を制御することにより、露光光学系の焦点面(傾き
と高さが一定)にウェハ4の表面を一致させることがで
き、レチクル9上に形成された回路パターンを露光縮小
レンズ8により高い解像度の回路パターンとしてウェハ
4上に露光することができる。しかもこの検出演算は高
速(敷部)で行うことが可能であるため、ウェハ4上の
チップをステップ移動して露光する毎に行えば、ウェハ
全面を高解像度で、且つ高スループツトで露光すること
が可能となる。
Two values are obtained for ΔZ, so either use only one, or use the average ΔZ = (ΔZx + ΔZy)/2 and calculate Δ
By controlling the two directions perpendicular to the optical axis of the wafer stage 7 and the optical axis direction using the three values θX, Δθy, and ΔZ (or ΔZx or ΔZy), the focal plane (tilt and height of the exposure optical system is constant) ), and the circuit pattern formed on the reticle 9 can be exposed onto the wafer 4 using the exposure reduction lens 8 as a high-resolution circuit pattern. Moreover, this detection calculation can be performed at high speed (at the bottom), so if it is performed every time a chip on the wafer 4 is moved step by step and exposed, the entire wafer can be exposed with high resolution and high throughput. becomes possible.

上記実施例では補正された干渉縞からピッチと傾きを求
める方法としてフーリエ変換を用いているが、例えば正
弦波の振幅の中心で切り切られた位置からピッチと位相
を求める等の方法によりピッチと傾きを求めることも可
能であり、フーリエ変換に限定されるものではない。ま
た本発明の傾きと高さの検出方法は上記の実施例の半導
体露光装置に限定されるものではなく、検出対象からの
反射光の分布にむらを生じる対象に対して特に有効に適
用できるものである。
In the above embodiment, Fourier transform is used as a method for determining the pitch and inclination from the corrected interference fringes. It is also possible to obtain the slope, and the method is not limited to Fourier transform. Furthermore, the inclination and height detection method of the present invention is not limited to the semiconductor exposure apparatus of the above embodiment, but can be particularly effectively applied to objects where the distribution of reflected light from the detection object is uneven. It is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば光学的多層物体でしかも表面形状が凹凸
から成る半導体ウェハのような対象に対し表面の傾きや
高さを正確に検出することが可能となる。この結果特に
今後のLSIの微細化に対しても焦点深度の比較的浅い
縮小露光装置を用いても、ウェハの表面状態の呑なる総
ての工程で高い歩留りでLSIパターンを露光すること
が可能となる。
According to the present invention, it is possible to accurately detect the inclination and height of the surface of an optical multilayer object such as a semiconductor wafer, which has an uneven surface shape. As a result, especially for the future miniaturization of LSIs, it is possible to expose LSI patterns with a high yield in all processes, regardless of the surface condition of the wafer, even if a reduction exposure device with a relatively shallow depth of focus is used. becomes.

また本発明によれば上記対象に限定されず、表面の層構
造、或いはパターンの状態に依存せず、広い対象物にわ
たり、その表面の傾きと高さを高精度で求めることがで
きる。
Further, according to the present invention, the inclination and height of the surface of a wide range of objects can be determined with high accuracy, without being limited to the above-mentioned objects, and regardless of the layer structure or pattern state of the surface.

また本発明によれば一般に周期的波形が得られている信
号の周期成いはピッチと初期位相を非常に正確に検出で
き広い応用範囲にわたる高精度の上記計測が可能となる
Further, according to the present invention, the period, pitch, and initial phase of a signal that generally has a periodic waveform can be detected very accurately, and the above-mentioned measurement with high precision can be performed over a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図及び第
3図は本発明の詳細な説明するための図、第4図は第1
図に示す処理回路の一部を示す概略構成図、第5図乃至
第9図は各々本発明の効果を示す図、第10図は凹凸パ
ターンへの高入射角の照射光の反射光を示す図、第11
図は第10図の部分拡大図、第12図は第1図とは異な
る本発明の他の一実施例を示す構成図、第13図乃至第
16図は各々本発明の効果を示す図、第17図は第12
図に示す処理回路の一部を示す概略構成図、第18図は
第4図及び第17図に示す演算手段2.2′の演算フロ
ーを示した図である。 1・・・レーザ光源、10.12・・ビームスプリンタ
、3・・・アレイセンサ、4・・ウェハ、5山処理回路
、7・・・ステージ、8・・・縮小レンズ、9・・レチ
クル、81・・・照明系、800・・アライメント系第 3jρ ・ シャ、yり あ2 鴎 屍乙 晃 亮 凶 図 晃 区 晃/θ凶 沁 /2 凶 拓74区 晃150 第1乙口 Jjl)/7 圀
FIG. 1 is a configuration diagram showing one embodiment of the present invention, FIGS. 2 and 3 are diagrams for explaining the invention in detail, and FIG.
A schematic configuration diagram showing a part of the processing circuit shown in the figure, FIGS. 5 to 9 are diagrams each showing the effects of the present invention, and FIG. 10 shows reflected light of irradiation light at a high angle of incidence on a concavo-convex pattern. Figure, 11th
The figure is a partially enlarged view of FIG. 10, FIG. 12 is a configuration diagram showing another embodiment of the present invention different from FIG. 1, and FIGS. 13 to 16 are diagrams each showing the effects of the present invention. Figure 17 is the 12th
FIG. 18 is a schematic diagram showing a part of the processing circuit shown in the figure, and FIG. 18 is a diagram showing the calculation flow of the calculation means 2.2' shown in FIGS. 4 and 17. DESCRIPTION OF SYMBOLS 1...Laser light source, 10.12...Beam splinter, 3...Array sensor, 4...Wafer, 5-mountain processing circuit, 7...Stage, 8...Reducing lens, 9...Reticle, 81...Lighting system, 800...Alignment system 3rd jρ, Sha, Yria 2 Kamoshi Otsuko Ryo Kyouzu Akira Ku/θ Koku/2 Akira 74 Ku Akira 150 1st Otsuguchi Jjl)/7 country

Claims (1)

【特許請求の範囲】 1、可干渉性の光を被測定物に照射し、該被測定物から
の反射光と、上記可干渉性の光と干渉する参照光とで発
生する干渉縞情報を検出し、上記被測定物からの反射光
のみによる情報を採取し、この採取された情報を用いて
上記検出された干渉縞情報について補正し、この補正さ
れた干渉縞情報から干渉縞のピッチ若しくは該ピッチと
位相の情報を算出し、この算出された干渉縞のピッチ若
しくは該ピッチと位相の情報に基いて被測定物の傾き若
しくは高さを検出することを特徴とする傾き若しくは高
さ検出方法。 2、上記参照光のみによる情報を採取し、この採取され
た情報を用いて上記補正を行うことを特徴とする請求項
1記載の傾き若しくは高さ検出方法。 3、上記補正は次式にて行うことを特徴とする請求項1
記載の傾き若しくは高さ検出方法。 I_x_c=(I_x−O_x−R_c)/(2√{O
_x×R_c})但しI_x_cは補正された干渉縞情
報、 I_xは検出された干渉縞情報、 O_xは被測定物からの反射光のみによる情報、 R_cは予め定められる値。 4、上記補正は次式にて行うことを特徴とする請求項2
記載の傾き若しくは高さ検出方法。 I_x_c=(I_x−O_x−R_x)/(2√{O
_x×R_x})但しI_x_cは補正された干渉縞情
報、 I_xは検出された干渉縞情報、 O_xは被測定物からの反射光のみによる情報、 R_xは参照光のみによる情報。 5、上記干渉縞のピッチと位相との情報の算出を、補正
された干渉縞情報をフーリエ変換して得られるスペクト
ル情報に基いて行うことを特徴とする請求項1又は2又
は3又は4記載の傾き若しくは高さ検出方法。 6、可干渉性の光を被測定物に照射する第1の照射手段
と、上記可干渉性の光と干渉する参照光を照射する第2
の照射手段と、上記第1の照射手段から照射された光に
よって被測定物から得られる反射光と上記第2の照射手
段から照射された参照光とで発生する干渉縞情報を検出
する干渉縞情報検出手段と、上記被測定物からの反射光
のみによる情報を採取する採取手段と、該採取手段から
採取された情報を用いて上記干渉縞情報検出手段により
検出された干渉縞情報について補正する補正手段と、該
補正手段によって補正された干渉縞情報から干渉縞のピ
ッチ若しくは該ピッチと位相の情報を算出し、この算出
された干渉縞のピッチ若しくは該ピッチと位相の情報に
基いて被測定物の傾き若しくは高さを検出する傾き若し
くは高さ検出手段とを備えたことを特徴とする傾き若し
くは高さ検出装置。 7、上記採取手段は更に参照光のみによる情報を採取す
る手段を有し、上記補正手段は更に該手段で採取される
参照光のみによる情報を用いて上記補正を行う手段を有
することを特徴とする請求項6記載の傾き若しくは高さ
検出装置。 8、上記第1の照射手段は、被測定物への可干渉性の光
の入射角を85゜以上になるように構成したことを特徴
とする請求項6記載の傾き若しくは高さ検出装置。 9、上記補正手段による補正は次式にて行うように構成
したことを特徴とする請求項6記載の傾き若しくは高さ
検出装置。 I_x_c=(I_x−O_x−R_c)/(2√{O
_x×R_c})但しI_x_cは補正された干渉縞情
報、 I_xは検出された干渉縞情報、 O_xは被測定物からの反射光のみによる情報、 R_cは予め定められる値。 10、上記補正手段による補正は次式にて行うように構
成したことを特徴とする請求項7記載の傾き若しくは高
さ検出装置。 I_x_c=(I_x−O_x−R_x)/(2√{O
_x×R_x})但しI_x_cは補正された干渉縞情
報、 I_xは検出された干渉縞情報、 O_xは被測定物からの反射光のみによる情報、 R_xは参照光のみによる情報。 11、上記傾き若しくは高さ検出手段における干渉縞の
ピッチ若しくは該ピッチと位相の情報の算出を、補正さ
れた干渉縞情報をフーリエ変換して得られるスペクトル
情報に基いて行うように構成したことを特徴とする請求
項6又は7又は8又は9又は10記載の傾き若しくは高
さ検出装置。 12、マスクに形成された回路パターンを基板上に投影
光学系により投影露光する投影露光方法において、可干
渉性の光を基板に照射し、該基板からの反射光と、上記
可干渉性の光と干渉する参照光とで発生する干渉縞情報
を検出し、上記基板からの反射光のみによる情報を採取
し、この採取された情報を用いて上記検出された干渉縞
情報について補正し、この補正された干渉縞情報から干
渉縞のピッチ若しくは該ピッチと位相の情報を算出し、
この算出された干渉縞のピッチ若しくは該ピッチと位相
の情報に基いて基板の傾き若しくは高さを検出し、検出
された基板の傾き若しくは高さの情報に基づいてマスク
又は基板の少なくとも一方を上記投影光学系の光軸に直
交する2軸の回り及び上記光軸に沿って微動させてマス
クの回路パターンの結像面と基板面とが一致する如くレ
ベリング制御することを特徴とする投影露光方法。 13、上記参照光のみによる情報を採取し、この採取さ
れた情報を用いて上記補正を行うことを特徴とする請求
項12記載の投影露光方法。 14、上記補正は次式にて行うことを特徴とする請求項
12記載の投影露光方法。 I_x_c=(I_x−O_x−R_c)/(2√{O
_x×R_c})但しI_x_cは補正された干渉縞情
報、 I_xは検出された干渉縞情報、 O_xは被測定物からの反射光のみによる情報、 R_cは予め定められる値。 15、上記補正は次式にて行うことを特徴とする請求項
13記載の投影露光方法。 I_x_c=(I_x−O_x−R_x)/(2√{O
_x×R_x})但しI_x_cは補正された干渉縞情
報、 I_xは検出された干渉縞情報、 O_xは被測定物からの反射光のみによる情報、 R_xは参照光のみによる情報。 16、上記干渉縞のピッチと位相との情報の算出を、補
正された干渉縞情報をフーリエ変換して得られるスペク
トル情報に基いて行うことを特徴とする請求項12又は
13又は14又は15記載の投影露光方法。 17、マスクに形成された回路パターンを基板上に投影
光学系により投影露光する投影露光装置において、マス
ク又は基板の少なくとも一方を上記投影光学系の光軸に
直交する2軸の回りに傾動すると共に上記光軸に沿って
移動する移動手段と、可干渉性の光を上記基板に照射す
る第1の照射手段と、上記可干渉性の光と干渉する参照
光を照射する第2の照射手段と、上記第1の照射手段か
ら照射された光によって基板から得られる反射光と上記
第2の照射手段から照射された参照光とで発生する干渉
縞情報を検出する干渉縞情報検出手段と、上記基板から
の反射光のみによる情報を採取する採取手段と、該採取
手段から採取された情報を用いて上記干渉縞情報検出手
段により検出された干渉縞情報について補正する補正手
段と、該補正手段によって補正された干渉縞情報から干
渉縞のピッチ若しくは該ピッチと位相の情報を算出し、
この算出された干渉縞のピッチ若しくは該ピッチと位相
の情報に基いて基板の傾き若しくは高さを検出する傾き
若しくは高さ検出手段と、該傾き若しくは高さ検出手段
から検出された傾き若しくは高さ情報に基いてマスクの
回路パターンの結像面と基板面とが一致するごとく上記
移動手段を制御するレベリング制御手段とを備えたこと
を特徴とする投影露光装置。 18、上記採取手段として遮光手段を有することを特徴
とする請求項17記載の投影露光装置。 19、上記採取手段は更に参照光のみによる情報を採取
する手段を有し、上記補正手段は更に該手段で採取され
る参照光のみによる情報を用いて上記補正を行う手段を
有することを特徴とする請求項17記載の投影露光装置
。 20、上記第1の照射手段は、被測定物への可干渉性の
光の入射角を85°以上になるように構成したことを特
徴とする請求項17記載の投影露光装置。 21、上記補正手段による補正は次式にて行うように構
成したことを特徴とする請求項17記載の投影露光装置
。 I_x_c=(I_x−O_x−R_c)/(2√{O
_x×R_c})但しI_x_cは補正された干渉縞情
報、 I_xは検出された干渉縞情報、 O_xは被測定物からの反射光のみによる情報、 R_cは予め定められる値。 22、上記補正手段による補正は次式にて行うように構
成したことを特徴とする請求項19記載の傾き若しくは
高さ検出装置。 I_x_c=(I_x−O_x−R_x)/(2√{O
_x×R_x})但しI_x_cは補正された干渉縞情
報、 I_xは検出された干渉縞情報、 O_xは被測定物からの反射光のみによる情報、 R_xは参照光のみによる情報。 23、上記傾き若しくは高さ検出手段における干渉縞の
ピッチ若しくは該ピッチと位相の情報の算出を、補正さ
れた干渉縞情報をフーリエ変換して得られるスペクトル
情報に基いて行うように構成したことを特徴とする請求
項17又は18又は19又は20又は21又は22記載
の投影露光装置。 24、干渉縞から得られるほぼ一定の周期で変化する信
号強度情報について高速複素フーリエ変換し、この複素
フーリエ変換された離散的スペクトル情報の周期に該当
するスペクトル位置近傍で絶対値最大のデータA_j_
o(_j_oは整数、A_j_o=R_o+iI_o)
とその両隣りのデータA_j_o_−_1(=R_−+
iI_−)、A_j_o_+_1(=R_++iI_+
)を用いて真のスペクトルピークJ_Rを J_R=J_o+Δ Δ=(S_+−S_−)/(S_+−2S_o+S_−
)S_o=R_o^2+I_o^2 S_+=R_o・R_++I_o・I_+ S_−=R_o・R_−+I_o・I 但し、Rは実数部、Iは虚数部を表す。 なる式より算出し、上記複素フーリエ変換のサンプルデ
ータ点数N(2:nは整数)に対して上記信号強度情報
の周期のピッチPをP=N/j_Rの関係から算出する
ことを特徴と干渉縞検出方法。 25、干渉縞から得られるほぼ一定の周期で変化する信
号強度情報について高速複素フーリエ変換し、この複素
フーリエ変換された離散的スペクトル情報の周期に該当
するスペクトル位置近傍で絶対値最大のデータA_j_
o(_j_oは整数、A_j_o=R_o+iI_o)
とその両隣りのデータA_j_o_−_1(=R_−+
iI_−)、A_j_o_+_1(=R_++iI_+
)を用いてΔを Δ=(S_+−S_−)/(S_+−2S_o+S_−
)S_o=R_o^2+I_o^2 S_+=R_o・R_++I_o・I_+ S_−=R_o・R_−+I_o・I 但し、Rは実数部、Iは虚数部を表す。 なる式より算出し、この算出されたΔとA_j_oの位
相値φ_oを用いて φ_z=φ_o+π(N−1)/NΔ により正確な位相値φ_2を算出することを特徴と干渉
縞検出方法。
[Claims] 1. Irradiates a measured object with coherent light, and obtains interference fringe information generated by the reflected light from the measured object and a reference light that interferes with the coherent light. Collect information based only on the reflected light from the object to be measured, use this collected information to correct the detected interference fringe information, and calculate the pitch or interference fringe information from this corrected interference fringe information. An inclination or height detection method characterized by calculating information on the pitch and phase, and detecting the inclination or height of the object to be measured based on the calculated pitch of interference fringes or the information on the pitch and phase. . 2. The method for detecting inclination or height according to claim 1, characterized in that information from only the reference light is collected, and the collected information is used to perform the correction. 3. Claim 1, characterized in that the above correction is performed using the following formula:
The described inclination or height detection method. I_x_c=(I_x-O_x-R_c)/(2√{O
_x×R_c}) where I_x_c is corrected interference fringe information, I_x is detected interference fringe information, O_x is information based only on reflected light from the object to be measured, and R_c is a predetermined value. 4. Claim 2, characterized in that the above correction is performed using the following formula:
The described inclination or height detection method. I_x_c=(I_x-O_x-R_x)/(2√{O
_x×R_x}) where I_x_c is corrected interference fringe information, I_x is detected interference fringe information, O_x is information based only on the reflected light from the object to be measured, and R_x is information based only on the reference light. 5. The information on the pitch and phase of the interference fringes is calculated based on spectral information obtained by Fourier transforming the corrected interference fringe information. method for detecting the inclination or height of 6. A first irradiation means that irradiates the object to be measured with coherent light, and a second irradiation means that irradiates a reference light that interferes with the coherent light.
irradiation means, and interference fringes for detecting interference fringe information generated by the reflected light obtained from the measured object by the light irradiated from the first irradiation means and the reference light irradiated from the second irradiation means. an information detection means, a collection means for collecting information based only on the reflected light from the object to be measured, and correcting the interference fringe information detected by the interference fringe information detection means using the information collected from the collection means. a correction means, and calculates the pitch of the interference fringe or information on the pitch and phase from the interference fringe information corrected by the correction means, and calculates the pitch of the interference fringe or the information on the pitch and phase to be measured based on the calculated pitch of the interference fringe or the information on the pitch and phase. 1. A tilt or height detection device comprising a tilt or height detection means for detecting the tilt or height of an object. 7. The collecting means further includes means for collecting information based on only the reference light, and the correcting means further includes means for performing the correction using the information collected by the means only on the reference light. The inclination or height detection device according to claim 6. 8. The inclination or height detecting device according to claim 6, wherein the first irradiation means is configured such that the angle of incidence of the coherent light onto the object to be measured is 85 degrees or more. 9. The inclination or height detecting device according to claim 6, wherein the correction by the correction means is performed using the following equation. I_x_c=(I_x-O_x-R_c)/(2√{O
_x×R_c}) where I_x_c is corrected interference fringe information, I_x is detected interference fringe information, O_x is information based only on reflected light from the object to be measured, and R_c is a predetermined value. 10. The inclination or height detecting device according to claim 7, wherein the correction by the correction means is performed using the following equation. I_x_c=(I_x-O_x-R_x)/(2√{O
_x×R_x}) where I_x_c is corrected interference fringe information, I_x is detected interference fringe information, O_x is information based only on the reflected light from the object to be measured, and R_x is information based only on the reference light. 11. Calculation of information on the pitch of the interference fringe or the pitch and phase in the inclination or height detection means is performed based on spectral information obtained by Fourier transforming the corrected interference fringe information. The inclination or height detection device according to claim 6, 7, 8, 9 or 10. 12. In a projection exposure method in which a circuit pattern formed on a mask is projected onto a substrate using a projection optical system, coherent light is irradiated onto the substrate, and the reflected light from the substrate and the coherent light are Detect the interference fringe information generated by the reference light that interferes with the board, collect information based only on the reflected light from the substrate, use this collected information to correct the detected interference fringe information, and perform this correction. Calculating the pitch of the interference fringe or information on the pitch and phase from the interference fringe information obtained,
The tilt or height of the substrate is detected based on the calculated pitch of the interference fringes, or information on the pitch and phase, and at least one of the mask or the substrate is moved as described above based on the information on the detected tilt or height of the substrate. A projection exposure method characterized in that leveling control is performed by finely moving the projection optical system around two axes perpendicular to the optical axis and along the optical axis so that the imaging plane of the circuit pattern of the mask and the substrate surface coincide. . 13. The projection exposure method according to claim 12, wherein information based only on the reference light is collected and the correction is performed using the collected information. 14. The projection exposure method according to claim 12, wherein the correction is performed using the following equation. I_x_c=(I_x-O_x-R_c)/(2√{O
_x×R_c}) where I_x_c is corrected interference fringe information, I_x is detected interference fringe information, O_x is information based only on reflected light from the object to be measured, and R_c is a predetermined value. 15. The projection exposure method according to claim 13, wherein the correction is performed using the following equation. I_x_c=(I_x-O_x-R_x)/(2√{O
_x×R_x}) where I_x_c is corrected interference fringe information, I_x is detected interference fringe information, O_x is information based only on the reflected light from the object to be measured, and R_x is information based only on the reference light. 16. The information on the pitch and phase of the interference fringe is calculated based on spectrum information obtained by Fourier transforming the corrected interference fringe information. projection exposure method. 17. In a projection exposure apparatus that projects and exposes a circuit pattern formed on a mask onto a substrate using a projection optical system, at least one of the mask or the substrate is tilted around two axes orthogonal to the optical axis of the projection optical system, and a moving means that moves along the optical axis; a first irradiation means that irradiates the substrate with coherent light; and a second irradiation means that irradiates the substrate with reference light that interferes with the coherent light. , an interference fringe information detection means for detecting interference fringe information generated by the reflected light obtained from the substrate by the light irradiated from the first irradiation means and the reference light irradiated from the second irradiation means; a collection means for collecting information based only on reflected light from the substrate; a correction means for correcting the interference fringe information detected by the interference fringe information detection means using the information collected from the collection means; Calculating the pitch of the interference fringe or information on the pitch and phase from the corrected interference fringe information,
An inclination or height detection means for detecting the inclination or height of the substrate based on the calculated interference fringe pitch or information on the pitch and phase; and an inclination or height detection means detected by the inclination or height detection means. 1. A projection exposure apparatus comprising: a leveling control means for controlling the moving means so that the imaging plane of the circuit pattern of the mask and the substrate surface coincide with each other based on information. 18. The projection exposure apparatus according to claim 17, characterized in that the sampling means includes light shielding means. 19. The collecting means further includes means for collecting information based on only the reference light, and the correcting means further includes means for performing the correction using the information collected by the means only on the reference light. The projection exposure apparatus according to claim 17. 20. The projection exposure apparatus according to claim 17, wherein the first irradiation means is configured such that the angle of incidence of the coherent light onto the object to be measured is 85 degrees or more. 21. The projection exposure apparatus according to claim 17, wherein the correction by the correction means is performed using the following equation. I_x_c=(I_x-O_x-R_c)/(2√{O
_x×R_c}) where I_x_c is corrected interference fringe information, I_x is detected interference fringe information, O_x is information based only on reflected light from the object to be measured, and R_c is a predetermined value. 22. The inclination or height detection device according to claim 19, wherein the correction by the correction means is performed using the following equation. I_x_c=(I_x-O_x-R_x)/(2√{O
_x×R_x}) where I_x_c is corrected interference fringe information, I_x is detected interference fringe information, O_x is information based only on the reflected light from the object to be measured, and R_x is information based only on the reference light. 23. Calculation of information on the pitch of the interference fringe or the pitch and phase in the inclination or height detection means is performed based on spectral information obtained by Fourier transforming the corrected interference fringe information. 23. The projection exposure apparatus according to claim 17, 18, 19, 20, 21, or 22. 24. Fast complex Fourier transform is performed on the signal strength information that changes at an approximately constant period obtained from the interference fringes, and data A_j_ with the maximum absolute value near the spectral position corresponding to the period of the complex Fourier-transformed discrete spectrum information is obtained.
o (_j_o is an integer, A_j_o=R_o+iI_o)
and data A_j_o_-_1 (=R_-+
iI_-), A_j_o_+_1(=R_++iI_+
) to calculate the true spectral peak J_R using
)S_o=R_o^2+I_o^2 S_+=R_o・R_++I_o・I_+ S_−=R_o・R_−+I_o・I However, R represents the real part and I represents the imaginary part. The pitch P of the period of the signal strength information is calculated from the relationship P=N/j_R for the number of sample data points N (2:n is an integer) of the complex Fourier transform. Stripe detection method. 25. Fast complex Fourier transform is performed on the signal strength information that changes at an almost constant period obtained from the interference fringes, and data A_j_ with the maximum absolute value near the spectral position corresponding to the period of the complex Fourier-transformed discrete spectrum information is obtained.
o (_j_o is an integer, A_j_o=R_o+iI_o)
and data A_j_o_-_1 (=R_-+
iI_-), A_j_o_+_1(=R_++iI_+
) using Δ=(S_+-S_-)/(S_+-2S_o+S_-
)S_o=R_o^2+I_o^2 S_+=R_o・R_++I_o・I_+ S_−=R_o・R_−+I_o・I However, R represents the real part and I represents the imaginary part. The interference fringe detection method is characterized in that an accurate phase value φ_2 is calculated using the calculated Δ and the phase value φ_o of A_j_o as follows: φ_z=φ_o+π(N-1)/NΔ.
JP2045387A 1989-04-21 1990-02-28 Tilt or height detection method and device, and projection exposure method and device Expired - Lifetime JP2892747B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2045387A JP2892747B2 (en) 1990-02-28 1990-02-28 Tilt or height detection method and device, and projection exposure method and device
US07/623,438 US5227862A (en) 1989-04-21 1990-04-20 Projection exposure apparatus and projection exposure method
PCT/JP1990/000520 WO1990013000A1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
KR1019900702643A KR930011884B1 (en) 1989-04-21 1990-04-20 Projection exposure device and projection exposure method
DE69027738T DE69027738T2 (en) 1989-04-21 1990-04-20 PROJECTION AND PLAYBACK CONTROL AND PROJECTION AND PLAYBACK METHOD
EP90906337A EP0426866B1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
US07/936,661 US5392115A (en) 1989-04-21 1992-08-28 Method of detecting inclination of a specimen and a projection exposure device as well as method of detecting period of periodically varying signal
US08/315,841 US6094268A (en) 1989-04-21 1994-09-30 Projection exposure apparatus and projection exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045387A JP2892747B2 (en) 1990-02-28 1990-02-28 Tilt or height detection method and device, and projection exposure method and device

Publications (2)

Publication Number Publication Date
JPH03249513A true JPH03249513A (en) 1991-11-07
JP2892747B2 JP2892747B2 (en) 1999-05-17

Family

ID=12717861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045387A Expired - Lifetime JP2892747B2 (en) 1989-04-21 1990-02-28 Tilt or height detection method and device, and projection exposure method and device

Country Status (1)

Country Link
JP (1) JP2892747B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162205A (en) * 2000-09-13 2002-06-07 Fuji Photo Optical Co Ltd Method for detecting and correcting analytical error of striped image
JP2002162214A (en) * 2000-11-22 2002-06-07 Fuji Photo Optical Co Ltd Method for measuring wave front shape of large-sized body to be observed by aperture synthesis and measuring wave front shape correction method
JP2010192470A (en) * 2009-02-13 2010-09-02 Canon Inc Measurement apparatus, exposure apparatus, and device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162205A (en) * 2000-09-13 2002-06-07 Fuji Photo Optical Co Ltd Method for detecting and correcting analytical error of striped image
JP4583619B2 (en) * 2000-09-13 2010-11-17 富士フイルム株式会社 Method for detecting fringe image analysis error and method for correcting fringe image analysis error
JP2002162214A (en) * 2000-11-22 2002-06-07 Fuji Photo Optical Co Ltd Method for measuring wave front shape of large-sized body to be observed by aperture synthesis and measuring wave front shape correction method
JP2010192470A (en) * 2009-02-13 2010-09-02 Canon Inc Measurement apparatus, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JP2892747B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
US7551262B2 (en) Exposure apparatus having a position detecting system and a wavelength detector
JP3187093B2 (en) Position shift measuring device
US9846373B2 (en) High accuracy measurement system for focusing and leveling
KR100303109B1 (en) Manufacturing method of semiconductor device
JPH08167559A (en) Method and device for alignment
US5426503A (en) Method of testing a phase shift mask and a testing apparatus used therein in the ultraviolet wavelength range
US5331369A (en) Method of forming patterns and apparatus for carrying out the same
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
US6198527B1 (en) Projection exposure apparatus and exposure method
US4626103A (en) Focus tracking system
JPH10267613A (en) Position measuring instrument
JPH03249513A (en) Method and device for detecting inclination or height, projection exposure device, and method and device for interference fringe detection
JPH08219718A (en) Plane position detector
JP3600882B2 (en) Alignment method, exposure method, element manufacturing method, and alignment apparatus and exposure apparatus
JP2814538B2 (en) Alignment device and alignment method
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JP3548665B2 (en) Position measuring device
JP2554626B2 (en) Positioning method and positioner using diffraction grating
JPH055604A (en) Position detection method and pattern forming method and apparatus using the same
JPH03111713A (en) Interference type apparatus for detecting tilt or height, reduction stepper and method therefor
JPH0786131A (en) Aligner
JP3111556B2 (en) Fine pattern forming equipment
JP2634791B2 (en) Projection type alignment method and device
KR930011884B1 (en) Projection exposure device and projection exposure method