JP3548665B2 - Position measuring device - Google Patents

Position measuring device Download PDF

Info

Publication number
JP3548665B2
JP3548665B2 JP06867197A JP6867197A JP3548665B2 JP 3548665 B2 JP3548665 B2 JP 3548665B2 JP 06867197 A JP06867197 A JP 06867197A JP 6867197 A JP6867197 A JP 6867197A JP 3548665 B2 JP3548665 B2 JP 3548665B2
Authority
JP
Japan
Prior art keywords
measurement
illumination light
light beam
light
measurement illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06867197A
Other languages
Japanese (ja)
Other versions
JPH10267615A (en
Inventor
晋 斎藤
真也 渡邉
等 鈴木
和夫 阿部
徹 東條
亮一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Topcon Corp
Original Assignee
Toshiba Corp
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Topcon Corp filed Critical Toshiba Corp
Priority to JP06867197A priority Critical patent/JP3548665B2/en
Publication of JPH10267615A publication Critical patent/JPH10267615A/en
Application granted granted Critical
Publication of JP3548665B2 publication Critical patent/JP3548665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、加工対象物の表面を加工する加工機や測定対象物の表面状態等を測定する測定機械において、対象物の位置の制御等の目的に利用される位置測定装置に関する。
また、本発明は位置測定装置を適用した電子線描画装置に関する。
【0002】
【従来の技術】
従来、半導体露光装置では、あらかじめ作成された原画パターン(レチクル又はマスク)上の所望の回路パターンを、ウエハ上の露光領域に位置合わせした後、転写を行ってきた。この転写装置は高精度な縮小露光投影装置であり、転写される側のウエハ全面に露光できるように、ウエハ側は高精度なXYステージに固定されている。このウエハ光学系に対し、ステップ&リピートするための掲記転写装置はステッパと呼ばれている。
近年のLSIの高集積化により、半導体装置に要求される回路線幅は益々狭くなってきている。ステッパの縮小率は、従来1/5が主流であったが、これまでの波長限界から1μm以下のパターンは解像できないと言われてきた。しかし、光学系・照明系の改良やレチクル上での光の位相を調整する位相シフトマスク等の出現により、サブμmオーダーのパターンを解像するに至っている。解像度の向上に伴って、縮小レンズの焦点深度は浅くなり、また、あらかじめ作成された原画パターンをウエハ上に転写する精度は、いっそう厳しい値が要求されるようになってきている。このため、ステッパのアライメント光学系に対して、試料の試料面方向及び焦点方向の位置を高精度に検出することが要求されている。
【0003】
位相シフトマスクは前記原画パターン上の露光光透過部を通過する光の位相即ち透過部の光路長を、基板の厚さをエッチングすることにより減少させ、あるいは、屈折率の異なる材料を付加する等の手法で変化させるものである。したがって、位相シフトマスクの作製には、特定の光透過部の基板を厚さ方向に掘り込み、選択的に光路長を変化させる方法や、または、あらかじめパターンが描かれた基板に再度レジストを塗付し、光透過部の位相を部分的に変化させるための材料を付加した後不要部分のエッチングを行う方法が採られる。いずれの場合においても、前記パターン描画装置を用いて、所定の位置のレジストを高精度に感光させる必要がある。
【0004】
【発明が解決しようとする課題】
マスク上の位置合わせマークの検出に先立って、露光ビームの位置はステージ上に設けられたマーク等を用いて測定されかつ校正される。ステージの位置はレーザー干渉計により高精度にモニターされるので、レーザー干渉計の座標系を基準としてビームの位置及び変位を測定することが可能となる。
ところが、電子線露光装置では、鏡筒内部に汚れが付着すると、チャージアップのために電子ビームにドリフトが生じ、測定値が変動する。マスク上のマーク位置の測定はステージ上のマークを介した間接測定であるため、測定値に変動が生じた場合には、その原因はビームドリフトであるのか、或いは、マークそのものが変位しているためであるのかを区別することが出来ないという課題があった。
【0005】
電子ビーム描画装置やステッパにおいて、ドリフトによる影響を受けずにマーク位置を精度良く測定するための手段として、レーザー光を用いた測定光学系を設けた装置を用いる方法が考えられる。
しかし、電子ビーム描画装置やステッパでは、高精度な測定が要求されるため、複数のレーザー光を所定の回折パターンに照射し、ここで回折した回折光から位置情報を得るタイプでは、各レーザ光を照射する位置を厳密に一致させるなどの調整が必要となる。
特に、電子ビーム描画装置において採用する場合には、対象物は真空に減圧されたチャンバー内に配置される一方光源部などは、チャンバー外に配置される。そのため、チャンバーが大気圧の場合に所定の照射条件を満足していても、実際に測定が必要となるチャンバーが真空に減圧された際には所定の照射条件が崩れてしまうことが多い。
【0006】
また、対象物に平行な平面のみならず、これの法線方向の位置測定も行う場合には少なくとも3本のレーザ光束を所定の条件で照射する必要が生じる。
このように複数の測定光束を所定の条件で位置合わせ用パターンを照射できるように調節する装置の提供が望まれていた。
【0007】
【発明の目的】
そこで、本発明の目的は、
(1)位置測定に必要とされる複数の光束を対象物面において所定の条件で照射する際に、それらを所定の条件で照射するように調整する調整光学系を有する位置測定装置を提供することにある。
(2)複数のレーザ光束で、所定の位置測定用パターンを照射するように平面方向で位置調整を行い、かつそのビームウエスト位置が位置測定用パターンと一致する様な条件で照射するように調整することができる位置測定装置を提供することにある。
(3)対象物の位置を正確に測定することができる位置測定装置を備えた小型で高精度な電子線描画装置を提供することにある。
【0008】
【課題を解決する手段】
本発明は、コヒーレント光束を発する光源部からの光束を複数の測定用照明光束に分離する光束分割部とを有し、第1入射角度で照射される第1測定用照明光束及び第2測定用照明光束と、第1入射角度とは異なる第2入射角度で照射される第3測定用照明光束とを形成し、該複数の測定用照明光束を平行となるようにする照明光学系と、
前記照明光学系から受け取った前記複数の測定用照明光束を平行となるようにする部分を有し、この平行となった部分において、前記複数の測定用照明光束を平行移動させるための光束シフト部及び複数の測定用照明光束のビームウエスト位置を変更するビームウエスト位置変更部を配置し、これらの第1測定用照明光束、第2測定用照明光束及び第3測定用照明光束を受け取る前記補正光学系は、その光軸を挟んで前記第1測定用照明光束及び第2測定用照明光束を配置し、前記第3測定用照明光束をこれらよりも周辺位置に配置し、前記補正光学系での第3測定用照明光束の光路中に、その第3測定用照明光束が前記2次元パターンに照射する入射角度を変化するように光軸と直交方向に回転軸を有する平行平面板が配置された補正光学系と、
前記複数の測定用照明光束を、位置の測定をすべき対象物に設けられている位置合わせ用パターンに照射する照射光学系と、
前記照射光学系によって前記複数の測定用照明光束で照射された位置合わせ用パターンからの回折光を受光する受光光学系と、
前記受光光学系で受光した回折光を受光し測定用干渉信号を形成する受光部と、
測定用干渉信号の位相に基づき対象物の位置の測定を行う信号処理部と、を有することを特徴とする位置測定装置である。
【0009】
本発明はまた、前記光束シフト部は、互いに光軸周りに回動可能に設けられた少なくとも一対のプリズムを備え、そのプリズムの交叉角度を変更することにより照射位置の移動距離を調整し、そのプリズムの交叉角度の2等分線方向を変えることにより測定用照明光束の照射位置の移動方向を調整するように構成されていることを特徴とする。
このように構成することにより、小型で高精度な位置測定装置を実現することができる。
【0010】
本発明はまた、前記ビームウエスト位置変更部は、少なくとも凸レンズ及び凹レンズを有し、前記凸レンズと凹レンズとの間の間隔を変えることにより、前記複数の測定用照明光束のビームウエスト位置を変化させるように構成されていることを特徴とする。
このように構成することにより、小型で高精度な位置測定装置を実現することができる。
【0011】
本発明はまた、前記照明光学系は、前記光源部の発するコヒーレント光束から第1周波数の第1測定用照明光束、及び、この第1周波数と周波数が異なる第2周波数の第2測定用照明光束を形成する周波数シフターと、この第1測定用照明光束を分離して第1平面位置測定用光束及び第1法線方向測定用照明光束を形成し、第2測定用照明光束を分離して第2平面位置測定用光束及び第2法線方向測定用照明光束を形成する光束分離部を備え、前記照射光学系は、位置合わせ用パターンとして2次元パターンを照射するものであり、
前記受光光学系は、第1測定用照明光束と第2測定用照明光束の前記2次元パターンによる高次回折光と0次回折光の組み合わせ及び高次回折光同士の組み合わせのいずれか一つの周波数が異なる回折光の組み合わせを受け取るように構成され、前記受光部は、第1測定用照明光束と第2測定用照明光束の前記2次元パターンによる高次回折光と0次回折光の組み合わせ及び高次回折光同士の組み合わせのいずれか一つの周波数が異なる回折光の組み合わせから前記対象物の2次元パターンを設けた平面内での位置測定を行う平面位置測定用干渉信号を形成し、第1測定用照明光束又は第2測定用照明光束の0次回折光と前記第3測定用照明光束の0次回折光との組合せから前記対象物の法線方向の位置測定を行う法線方向位置測定用干渉信号を形成するように構成され、
前記信号処理部は、前記平面位置測定用干渉信号の位相に基づき対象物の平面方向の位置測定を行い、法線方向測定用干渉信号の位相に基づき対象物の法線方向の位置測定を行うように構成されていることを特徴とする。
このように構成することにより、小型で高精度な位置測定装置を実現することができる。
【0012】
本発明はまた、電子線描画装置において、電子線描画装置の構成部品の取付け位置及びそれらの最大作動範囲をさけるように配置されている上記の本発明の位置測定装置を備え、位置測定装置は対象物の位置を測定するための位置測定用光束を照射するための照明側光学部材と、対象物からの反射回折光を受光して対象物の位置を測定するための受光側光学部材とを有し、照明側光学部材から照射して受光側光学部材に入射される光束が、電子線描画装置の構成部品の取付け位置及びそれらの最大作動範囲をさけて透過することができるように、照明側光学部材及び受光側光学部材が電子線描画装置に配置されている構成である。
【0013】
この構成により、加工すべき対象物の位置を精確に測定することができ、電子線描画装置により極めて高い精度で加工対象物を加工することができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面により説明する。
本発明の位置測定装置は、図1に示すように、照明光学系100と、補正光学系200と、照射光学系300と、受光光学系400とを備える。
〔1〕 照明光学系100
図1及び図1の部分拡大図である図16から図18を参照すると、光源1は照明光束となるコヒーレント光を発する光源であり、波長λ=633nmのHe−Neレーザー光源である。光源1から照射される干渉性の強いコヒーレントであるレーザー光は、リレーレンズ102を介してビームスプリッター103で、第1照明光束104と第2照明光束105とに分岐される。
【0015】
第1照明光束104はリレーレンズ106を介して第1周波数シフター108に導かれ、第1周波数シフター108は第1照明光束104を変調して第1測定用照明光束110を形成する。第2照明光束105はリレーレンズ107を介して第2周波数シフター109に導かれ、第2周波数シフター109は第2照明光束105を変調して第2測定用照明光束111を形成する。
音響光学素子(AOM)を周波数シフターとして用いるのが好ましい。第1測定用照明光束110の周波数シフターによる変調周波数は80.05MHzであり、第2測定用照明光束111の周波数シフターによる変調周波数は80.0625MHzである。周波数シフター108、109により、周波数が互いに僅かに異なる第1測定用照明光束110及び第2測定用照明光束111が形成される。この場合に、第1測定用照明光束110と第2測定用照明光束111の周波数の差Δfは12.5KHzとなる。第1測定用照明光束110と第2測定用照明光束111を互いに重ね合わせて、干渉させると、その干渉結果の強度は、周波数Δfのうなり(ビート信号)になる。
【0016】
ビームスプリッター112は、第1測定用照明光束110を第1平面位置測定用照明光束114と第1法線方向測定用照明光束115とに分岐させる。
ビームスプリッター113は、第2測定用照明光束111を第2平面位置測定用照明光束116と第2法線方向測定用照明光束117とに分岐させる。
第1平面位置測定用照明光束114、第1法線方向測定用照明光束115、第2平面位置測定用照明光束116、第2法線方向測定用照明光束117は、それぞれリレーレンズ118、119、120、121を介して調整光学系200に、その光軸に対して互いに平行な光束として導かれる。
但し、第1法線方向測定用照明光束115及び第2法線方向測定用照明光束117は、それぞれ第1平面位置測定用照明光束114及び第2平面位置測定用照明光束116とは別個の測定用照明光束から分岐させることも可能である。
【0017】
ここで、照明光学系100において、リレーレンズ102、106、107により光源1と第1周波数シフター108及び第2周波数シフター109は共役関係となる。
〔2〕 調整光学系200
調整光学系200は、図2から図4に示すように、第1平面位置測定用照明光束114、第1法線方向測定用照明光束115、第2平面位置測定用照明光束116及び第2法線方向測定用照明光束117を、所定の照射条件に適合するように補正を施す光学系である。その補正には、第1法線方向測定用照明光束115及び第2法線方向測定用照明光束117の照射角度を第1平面位置測定用照明光束114及び第2平面位置測定用照明光束116に対して調整を行う照射角度調整、これら4本の照明光束114〜117が照射する対象物上の平面位置を調整する平面位置調整、及び、これら4本の照明光束114〜117のビームウエスト位置が対象物10上に来るように調整するビームウエスト位置調整の3種類がある。
【0018】
第1法線方向測定用照明光束115及び第2法線方向測定用照明光束117の照射角度調整は、それぞれの光路に挿入されている平行平面板201、202を光軸と直交する回転軸を中心に回転させることにより行われる。第1法線方向測定用照明光束115及び第2法線方向測定用照明光束117は、平行平面板201、202の回転により鉛直方向に平行移動し、その結果、後述する投影レンズによる照射角度が変化する。ここで、「鉛直方向」とは、4本の照明光束114〜117を含むような面に対して垂直な方向をいう。
4本の測定用照明光束114〜117は、それぞれの光路で2つのミラー(図示せず)により光束の間隔を狭くされ、頂角の等しい一組のウエッジプリズム203、204に入射する。
【0019】
4本の測定用照明光束114〜117の平面位置の調整は、水平方向を調整のための中心軸として、ウエッジプリズム203、204の交差角度の調整及び交差中心方向の調整により行われる。
調整前の位置からの距離は、ウエッジプリズム203、204の交差角度を調整することによって決定される。又、調整前からの変化の方向はウエッジプリズム203、204が交差する中心方向を調整することにより決定される。このようにして調整を行うことにより、4本の測定用照明光束114〜117の平面位置の調整を上下左右の任意の方向で行うことができる。
4本の測定用照明光束114〜117は、ウエッジプリズム203、204で平面位置調整を行った後、フォーカスレンズ205、206に入射する。
【0020】
フォーカスレンズ205、206は、その間隔が変化することにより、各光束が光軸と平行であるという条件を維持しつつ、各光束と光軸との間隔を変更できるように構成されており、4本の測定用照明光束114〜117のビームウエストが対象物10上に来るように、ビームウエストの位置を光軸方向に調整することができる。
本発明の実施の形態では、光源側にある調整レンズ205は平凸レンズで形成され、対象物側の調整レンズ206は平凹レンズ206で形成されている。
従って、フォーカスレンズ205と206との間の間隔を広げると、ビームウエストの位置が光源側に近づくように変化する。
但し、光源1のある側のフォーカスレンズ205を平凹レンズ206で形成し、対象物10のある側のフォーカスレンズ206を平凸レンズで形成することも可能である。
【0021】
このように、光軸付近に第1平面位置測定用照明光束114及び第2平面位置測定用照明光束116を配置し、これらを基準として照射角度の調整を行う第1法線方向測定用照明光束115及び第2法線方向測定用照明光束117を周辺に(両脇に)配置することにより、照射角度調整を行う光学素子である平行平面板201、202をそれらの光路中に配置しかつ光軸と直交する回転軸を中心に回転可能とする機構を組み込みやすくすることができる。
〔2−1〕 マニュアル調整
上述した調整光学系200のビームの調整方法について説明する。以下では、位置を優先した調整方法について説明する。
初期状態では、ウエッジプリズム203、204は180度回転されたように反対方向を向いて配置され、見掛け上、プリズムのパワーがない状態とされている。また、調整レンズ205と206は両者の間隔が略ゼロとなるように配置され、パワーがない状態であることとする。
【0022】
この位置を優先した調整方法においては、ウエッジプリズム203、204を用いて初期状態でのビームの照射位置を本来照射したいマーク12上に移動させ、次に調整レンズ205及び206を用いて、4本の測定用照明光束114〜117のビームウエストが対象物10上に来るようにビームウエスト位置を調整する。
具体的にいえば、ビームの移動方向は、ウエッジプリズム203、204の交叉角度の2等分線方向と一致するので、初期状態におけるビーム照射位置を基準として、ビームを照射したいマーク12の方向とウエッジプリズム203、204の交叉角度の2等分線方向が一致するように両プリズムを回転させる。
次に、ビームの移動距離は、ウエッジプリズム203、204の交叉角度が180度から0度に近づくにつれてビームの移動距離が大きくなるので、ウエッジプリズム203、204の交叉角度の2等分線方向を維持したまま互いのウエッジプリズム203、204の交叉角度を調整することにより、対象物10上の2次元パターン12上を照射するように調整することができる。
【0023】
このように、4本の測定用照明光束114〜117のビーム位置を対象物10上の2次元パターン12上に来るように調整したあと、干渉信号の強度が最大となるなどの影響要素に基づき、ビームウエスト位置を対象物10上の2次元パターン12上になるように調整レンズ205と206との間の間隔を調整する。
本発明の実施の形態では、光源1のある側の調整レンズ205を平凸レンズで形成し、対象物10のある側の調整レンズ206を平凹レンズ206で形成したので、調整レンズ205と調整レンズ206との間の間隔を広げるにつれて、ビームウエスト位置は光源側に近づく。
〔3〕 照射光学系300
照射光学系300は、図2から図4に示すように、折り返しミラー301、302及び照射レンズ303を備え、第1平面位置測定用照明光束114、第2平面位置測定用照明光束116、第1法線方向測定用照明光束115及び第2法線方向測定用照明光束117の4本の光束を対象物10上の2次元パターン12上に一点に照射する。
【0024】
このとき照射光学系300は、上記補正光学系200によって所定の補正がされた結果、第1平面位置測定用照明光束114、第2平面位置測定用照明光束116をいっしょに、対象物10を含む平面の法線に対して入射角θ1で照射し、第1法線方向測定用照明光束115を入射角θ1とは異なる入射角θ2で照射し、第2法線方向測定用照明光束117をθ1及びθ2とは異なる入射角θ3で照射する。
照射レンズ303を含む照射光学系300は、ビームウエスト位置調整用の調整レンズ205及び調整レンズ206が作用しない状態で、すなわち、調整レンズ205と調整レンズ206とが互いに接触した状態で、ビームウエスト位置がビームウエスト位置調整範囲の最遠点となるように設定されている。
【0025】
ビームウエスト位置調整用の調整レンズ205と調整レンズ206との間の間隔を適当に定めることにより、対象物10上に測定照明光束のビームウエストが来るように調整することができる。種々の調整が終了した時点で、光源1、周波数シフター108、109及び対象物10はすべて共役関係を形成する。
対象物10上の2次元回折パターン12は市松格子より形成される。この市松格子はX方向及びY方向に、それぞれ等しいピッチdを持つ。
対象物10上の市松格子に入射した4本の測定用照明光束は、この市松格子により反射し、回折する。
今、第1平面位置測定用照明光束114のみに注目すると、入射角θと1次光回折光のX方向の回折角θx及びY方向の回折角θyとの関係は次式で与えられる。
【0026】
sinθx=±λ/d (1)
sinθy=sinθ±λ/d (2)
(1)式及び(2)式を満たす第1平面位置測定用照明光束の正反射光(回折0次光)、回折1次光のマッピングを、図5及び図6に示す。(2次以上の高次に関しては省略してある。)
図5は対象物10上の2次元パターン12に第1平面位置測定用照明光束114が、2次元パターン12の法線12Tに対して角度θで入射した状態を示す。
図6は対象物10上の2次元パターン12に4本の測定用照明光束114〜117が入射した状態を示す。
図7及び図8に示すように、第1平面位置測定用照明光束114、第2平面位置測定用照明光束116、第1法線方向測定用照明光束115及び第2法線方向測定用照明光束117は、対象物面法線を軸とし互いに僅かな角度+α回転させた方向から入射されているので、それぞれの0次光、回折1次光は、他の測定用照明光束の0次光、回折1次光と重ならずに、分離して単独に取り出すことが可能である。
【0027】
また入射角に関しては、図8に示すように、第1平面位置測定用照明光束114及び第2平面位置測定用照明光束116は入射角θ1で、第1法線方向測定用照明光束115は入射角θ2で、第2法線方向測定用照明光束117は入射角θ3で、それぞれ対象物10上の2次元回折パターン12に照射される。
図9は、第1平面位置測定用照明光束114及び第2平面位置測定用照明光束116の0次光及び回折1次光と第1法線方向測定用照明光束115及び第2法線方向測定用照明光束117の0次光のマッピングである。
本発明の実施の形態においては、図5、図6及び図9に示すように、回折光マッピングが反射回折となっているため、X軸の正方向は図中で左方向であり、Y軸の正方向は図中で下方向であって、一般の座標系とは異なっている。
【0028】
受光光学系400は、図10、図11及び図19に示すように、前記2次元パターン上の反射点から拡がる回折光を受光するように配置される。しかし、電子ビーム描画装置やステッパなどでは描画光学系や投影光学系などの装置の部材710がスペースの大半を占めており、受光光学系のためのスペースは限られることが多い。
従って、受光光学系全体の大きさを決める回折角が小さくでき、かつ受光部での各回折光の分岐、重ね合わせが容易になるよう互いに適度な間隔が保たれている配置が要求される。また、照射光学系側も受光光学系側と同様に、装置の部材によりそのスペースは限られている。
受光光学系側で0次光のY方向回折角は入射角と同じくθである。1次回折光のY方向回折角θyについて(2)式を参照すると、複合のマイナスの式を満たすθyはθよりも小さい値になる。つまり、−1次回折光は0次光に対し描画光学系や投影光学系など装置の部材側に現れるため、それらの部材により遮られる傾向がある。
【0029】
この場合には、受光光学系側と照射光学系側での光束の通過位置は非対称となり、−1次光が装置本来の部材に遮られないように設定すると、入射側により入射角θを大きくとりデットゾーンを設けることとなる。
また、入射角θを大きくすると反射回折光の各偏光成分(S偏光、P偏光)の回折効率の差も大きくなり、受光部での重ね合わせ干渉性に影響を及ぼす。ところが(2)式の複合のプラスの式を満たすθyはθよりも大きく、+1次回折光は0次光に対し対象物側に現れる。
したがって0次光が部材に遮られていなければ、+1次光も装置の部材710にさえぎられることは無い。よって+1次光を用いれば入射角θは部材に遮られない範囲で最小の値にでき、偏光成分による回折効率の差を小さくできる。
【0030】
(2)式の複合のプラスの式と(1)式を同時に満たす1次回折光は、X方向に+1次、Y方向に+1次の回折光とX方向に−1次、Y方向に+1次の回折光である。これらは互いに隣り合う象限((X、Y)象限及び(−X、Y)象限)に含まれており、これらの光線を用いることで受光側光学系の省スペース化にも貢献できる。
図14は、位置合わせマークで回折された回折光のうち、X、Y、Z方向の測定に用いる回折光マッピングを示す。
ここで、f1(0)は第1平面位置測定用照明光束114が位置合わせマークで回折されたあとの0次の回折光であり、f2(0)は第2平面位置測定用照明光束116が位置合わせマークで回折されたあとの0次の回折光である。
【0031】
f1(X,Y)は第1平面位置測定用照明光束114が位置合わせマークで回折されたあとのX方向が+1次でY方向が+1次の回折光である。
f1(−X,Y)は第1平面位置測定用照明光束114が位置合わせマークで回折されたあとのX方向が−1次でY方向が+1次の回折光である。
f2(X,Y)は第2平面位置測定用照明光束116が位置合わせマークで回折されたあとのX方向が+1次でY方向が+1次の回折光である。
f2(−X,Y)は第2平面位置測定用照明光束116が位置合わせマークで回折されたあとのX方向が−1次でY方向が+1次の回折光である。
f1’(0)は第1法線方向測定用照明光束115が位置合わせマークで回折されたあとの0次の回折光である。
【0032】
f2’(0)は第2法線方向測定用照明光束117が位置合わせマークで回折されたあとの0次の回折光である。
受光光学系を小さくするためのもう一つの方法は、対物レンズ410の径を小さくすることである。レンズ径を小さくするためには、0次光と1次光の回折角の差を小さくすればよい。回折角の差を小さくする方法として、(1)式、(2)式より2次元回折パターンのピッチを大きくする、または光源波長λを小さくすることが挙げられる。
通常回折パターンのピッチは数μm〜数十μm程度である。このときλ=633nmのHe−Neレーザー光源を用いると、回折角を十分小さくすることができる。また対象物面上にはレジストが塗布されていることが多いが、この波長はレジストを感光しない程度に十分長い波長である。
【0033】
さらに対物レンズ401の光軸と対象物の法線との成す角βを、第1照明光束の0次光と対象物の法線との成す角をθ、第1照明光束の+1次回折光のY方向の回折角をθyとして次式で与えられるようにする。
β=(θ+θy)/2
これは0次光と回折1次光の中間の角度で、この光軸を取ることにより対象物から遠い位置に配置しても、レンズ径を小さくできる。また対象物上の反射点から対物レンズまでの距離が長いほど各回折光の間隔が広くなり、受光部での各回折光の分岐、重ね合わせ干渉が容易になるという利点もある。
図10は、投光光学系及び受光光学系の例で、波長λ=633nm、第1平面位置測定用照明光束114及び第2平面位置測定用照明光束116の入射角θ=70°、回折格子ピッチd=20μm、照射レンズ303の焦点距離は133mm、受光側対物レンズの焦点距離は220mmである。
【0034】
照射レンズ303に入射する4本の照明光束は互いに平行で間隔が3mmであるから、この間隔は受光側対物レンズ401を通過した後に約5mmとなる。
また、1次光の回折角に関しては、(1)式及び(2)式を用いて、θx=1.8°、θy=76.25°となる。受光側対物レンズ401の光軸の角度βは73°で、このときレンズ径はφ40mmとなり、4本の照明光束を部材710に衝突することなく透過させることができる。
受光側対物レンズ401は、対象物10上の反射点から1焦点距離分の位置に配置され、対象物10上の反射点から拡がる多数の反射回折光を互いに平行にする役割を担う。受光側対物レンズ401により互いに平行にされた各回折光は、折り返しミラー402、403により受光部に導かれ、さらに折り返しミラー404、405により、0次光及び1次光は同一平面内に納められる。
【0035】
次に、受光部500の構成の詳細を図12に示す。受光部は前記受光光学系400で受光した回折光の内で、隣り合う象限、ここでは(+X、+Y)象限及び(−X、+Y)象限に含まれる第1平面位置測定用照明光束114と第2平面位置測定用照明光束116の前記2次元パターンによる高次回折光と0次光の組み合わせ及び高次回折光同士の組合せのいずれか一つの異なる周波数の回折光の組み合わせから、対象物を含む平面内での位置測定用干渉測定信号を形成する。
対象物を含む平面内のX方向の位置測定用干渉測定信号は、第1平面位置測定用照明光束114の前記2次元パターンによる回折光の内で、X方向に−1次、Y方向に+1次の回折光512と、第2平面位置測定用照明光束116の前記2次元パターンによる回折光の内、X方向に+1次、Y方向に+1次の回折光514をビームスプリッター530で重ね合わせて形成する。X位置測定用干渉信号をフォトセンサ550で受光する。
【0036】
対象物を含む平面内のY方向の位置測定用干渉測定信号は、第1平面位置測定用照明光束114の前記2次元パターンによる回折光の内で、X方向に+1次、Y方向に+1次の回折光511と、ビームスプリッター531で第2平面位置測定用照明光束116の0次光513から分岐された光線を、ビームスプリッター532で重ね合わせ形成する。Y位置測定用干渉測定信号はフォトセンサ551で受光する。
対象物を含む平面の法線方向、即ちZ方向を照射角度θ2で照射した際に得られる第1Z方向位置測定用干渉測定信号は、第2平面位置測定用照明光束116の0次光513からビームスプリッター533で分岐された光線と、第1法線方向測定用照明光束115の0次光517をビームスプリッター534で重ね合わせ形成する。Z位置測定用干渉信号はフォトセンサ552で受光する。
【0037】
対象物を含む平面の法線方向、即ちZ方向を照射角度θ3で照射した際に得られる第2Z方向位置測定用干渉測定信号は、第1平面位置測定用照明光束116の0次光510からビームスプリッター535で分岐された光線と、第2法線方向測定用照明光束115の0次光516をビームスプリッター536で重ね合わせて形成する。Z位置測定用干渉信号はフォトセンサ553で受光する。
受光部ではさらに、第1平面位置測定用照明光束114の0次光510と第2平面位置測定用照明光束の0次光513をミラー537を介してビームスプリッター538で重ね合わせて、X位置測定用干渉基準信号兼Z位置測定用基準信号を形成する。X位置測定用干渉基準信号兼Z位置測定用干渉基準信号は、フォトセンサ554で受光する。
【0038】
また、第1平面位置測定用照明光束114の0次光510からビームスプリッター539で分岐された光線と、第2平面位置測定用照明光束116の2次元パターンによる回折光の内で、X方向に−1次、Y方向に+1次の回折光515をビームスプリッター540で重ね合わせ、Y位置測定用干渉基準信号を形成する。Y位置測定用干渉基準信はフォトセンサ555で受光する。
各干渉測定信号及び干渉基準信号は僅かに異なる周波数のを持つ二つの光線の重ね合わせ干渉、即ちヘテロダイン干渉によるうなり(ビート信号)である。第1平面位置測定用照明光束及び第1法線方向測定用照明光束(両者を以下「第1測定光束」という)の周波数をf1、第2平面位置測定用照明光束及び第2法線方向測定用照明光束の周波数(両者を以下「第2測定光束」という)をf2とする。
【0039】
各光束の2次元回折パターンによる多数の回折光の内、ある回折光の複素振幅を、それぞれ、
a1=A1*exp[−i(2πf1t+φ1)]
a2=A2*exp[−i(2πf2t+φ2)]
で表すとする。ただしφ1は第1照明光束の初期位相、φ2は第2照明光束の初期位相、tは時間である。
これらの光線を重ね合わせた強度信号は、
I =A1*A1+A2*A2+2A1*A2*cos[2πΔft+(φ1−φ2)]
となる。ただしΔf=f1−f2である。
【0040】
これは周波数がΔfのビート信号で、その位相成分は、
φ1−φ2 (3)
である。
第1照明光束または第2照明光束の対象物上の2次元パターンによる多数の高次回折光の内、X方向に+1次、Y方向に+1次の回折光に注目する。2次元回折パターンを含む対象物がX方向にΔX、Y方向にΔY変位したときこの回折光の位相は、第1照明光束及び第2照明光束のいずれの場合においても、
2π(ΔX+ΔY)/d=φx+φy
だけ変化する。ここでdは2次元回折パターンのピッチである。また対象物のZ方向の移動に対しても位相は変化するので、その値をφzとする。
【0041】
したがって、対象物がX方向、Y方向、Z方向に変化したときの、この回折光の位相変化量は、
φx+φy+φz (4)
である。
X方向に−1次、Y方向に+1次の回折光の場合はφxの符号が変わり、対象物のX方向、Y方向、Z方向の変位に対する位相変化量は、
−φx+φy+φz (5)
となる。
0次光は対象物のX方向、Y方向の変位に対しては位相は変化せず、Z方向の変位に対してのみ位相変化する。ただし、第1照明光束及び第2照明光束のうち法線方向測定用照明光束は、入射角の違いから対象物のZ方向の変位ΔZ対しての位相変化量が異なる。
【0042】
対象物のZ方向の変位に対する第1照明光束の位相変化量φz及び対象物のZ方向の変位に対する第2照明光束の位相変化量φz’は、
φz =4πΔZ/λ*cosθ1 (6)
φz’=4πΔZ/λ*cosθ2 (7)
で与えられる。
X位置測定用干渉測定信号の位相成分は、(3)式のφ1に(4)式を代入し、φ2に(5)式を代入して、
(φx+φy+φz)−(−φx+φy+φz)=2φx (8)
となる。
X位置測定用干渉基準信号の位相成分は、(3)式のφ1、φ2に(6)式を代入して、
φz−φz=0 (9)
となる。
【0043】
したがって、X位置測定用干渉測定信号の(8)式とX位置測定用干渉基準信号の(9)式はY方向の位置情報を等しく含み(この場合0)、(8)式と(9)式の差をとれば2φxとして、対象物を含む平面内のX方向の位置情報が得られる。
Y位置測定用干渉測定信号の位相成分は、(4)式及び(6)式より、
(φx+φy+φz)−φz=φx+φy (10)
である。
Y位置測定用干渉基準信号の位相成分は、(5)式及び(6)式より、
φz−(−φx+φy+φz) =φx−φy (11)
である。
【0044】
したがって、Y位置測定用干渉測定信号の(9)式とY位置測定用干渉基準信号の(10)式は、X方向の位置情報を等しく含み、(9)式と(10)式の差をとれば2φyとして、対象物を含む平面内のY方向の位置情報が得られる。
また、第1Z位置測定用干渉測定信号の位相成分は、(6)式及び(7)式より、
φz’−φz=4π(cosθ2−cosθ1)/λ*ΔZ (12)
となり、また、第2Z位置測定用干渉測定信号の位相成分は、(6)式及び(7)式より、
φz’−φz=4π(cosθ3−cosθ1)/λ*ΔZ (13)
となり、これはΔZに比例した値である。
【0045】
Z位置測定用干渉基準信号(兼X位置測定用干渉基準信号)の位相成分は、式(9)より0である。
したがって、 (12)式と (9)式の差をとれば、Z方向 (対象物を含む平面の法線方向)の位置情報がそのまま (12)式として得られる。
第1Z位置測定用干渉信号とZ位置測定用干渉基準信号との位相差Φz1(ΔZ)及び第2Z位置測定用干渉信号とZ位置測定用干渉基準信号との位相差Φz2(ΔZ)は、(12)式及び(13)式より、それぞれ、
Φz1(ΔZ)=4π(cosθ1−cosθ2)/λ*ΔZ
Φz2(ΔZ)=4π(cosθ1−cosθ3)/λ*ΔZ
で与えられる。ここでは、Z位置測定用干渉基準信号からZ位置測定用干渉信号を引くこととする(つまり括弧の中の符号が反転する)。
【0046】
いま、第1Z位置測定用干渉信号の検出ストロークをZ1、第2Z位置測定用干渉信号の検出ストロークをZ2とする(Z1>Z2)。
ΔZ=Z1で、Φz1(ΔZ)=2π、
ΔZ=Z2で、Φz2(ΔZ)=2π
となるから、
Φz1(ΔZ)=2π/Z1*ΔZ (a)
Φz2(ΔZ)=2π/Z2*ΔZ (b)
と表せられる。図13の左側の波形中、実線は(a)式の信号を示し、点線は(b)式の信号を示している。
Φz2(ΔZ)とΦz1(ΔZ)の差、つまり(b)式と(a)式の差をとると、

Figure 0003548665
となる。
【0047】
(a)式、(b)式と(c)式の形を見比べると、(c)式は検出ストロークがZ1*Z2/(Z1−Z2)のZ位置測定用干渉信号を表していると考えることができる。この(c)式の信号は、図13右側の波形として示してある。
式よりθ2=70.39°、θ3=70.48°とすれば、Z1= 50μm、Z2=40μmとなる。これらを(c)式に代入すると、
ΔΦ(ΔZ)=2π/200μm*ΔZ
となる。したがってストロークが200μmのZ位置測定用干渉信号が得られる。このときサンプル数は、ストロークが50μmで分解能が25nmのときの2000に等しい。つまり、分解能が25nm、サンプル数2000のまま検出ストローク、すなわち検出可能な範囲を200μmに拡大することができる。
【0048】
いま、各方向の位置測定用干渉基準信号を便宜上、X方向が式(9)式、Y方向が(11)式、Z方向が(9)式としたが、これをX方向が(8)式、Y方向が(10)式、Z方向が(12)式としても符号が反転するだけで、各方向の位置情報を得ることができる。
(13)式より、所望のZ検出ストロークを得るための第1法線方向測定照明光束の入射角θ2が求まる。
例えば、(12)式において50μmの検出ストロークが得たい場合、左辺に2π、右辺のΔZに50μmを代入する。
ただし、θ2の値はθ1よりも大きく、つまり、第1照明光束よりも対象物側にとりたいので、第2Z位置測定用干渉基準信号から第1Z位置測定用干渉基準信号を引くと、
2π=4π(cos70°−cosθ2)/633nm×50μm
これより、θ2=70.39°を得る。
【0049】
信号処理部600は、位置測定用干渉測定信号の位相に基づき対象物を含む平面内及び対象物を含む平面の法線方向の位置を求める。X方向の位置測定用干渉測定信号はフォトセンサ550で受光し、X位置測定用干渉基準信号はフォトセンサ554で受光する。フォトセンサ550とフォトセンサ554で受光した信号の位相差を位相計610で測定する。
Y位置測定用干渉測定信号はフォトセンサ551で受光し、Y位置測定用干渉基準信号はフォトセンサ555で受光する。フォトセンサ551とフォトセンサ555で受光した信号との位相差を位相計611で測定する。
第1Z方向位置測定用干渉測定信号は、フォトセンサ552で受光し、Z位置測定用基準信号はフォトセンサ554で受光する。
【0050】
フォトセンサ552で受光した信号とフォトセンサ554で受光した信号との位相差を位相計612で測定する。
第2Z方向位置測定用信号は、フォトセンサ553で受光し、Z方向位置測定用基準信号はフォトセンサ554で受光する。
フォトセンサ553で受光した信号とフォトセンサ554で受光した信号との位相差を位相計613で測定する。
演算処理部620は、位相計610の位相差に基づき対象物を含む平面内のX方向の位置を求め、位相計611の位相差に基づき対象物を含む平面内のY方向の位置を求め、そして、位相計612及び613の位相差に基づき対象物を含む平面内のZ方向の位置を求める。演算処理部620で、対象物のXYZ変位に対し、各方向の変位成分を独立に測定することが可能となり、これにより、対象物の位置合わせを初めとする種々の制御を行うことができる。
〔4〕 本発明の位置測定装置の適用
本発明の位置測定装置は、例えば、電子線描画装置のような荷電粒子線装置、及び、半導体露光装置などの対象物の位置合わせを正確に行うことを必要とする装置に適用することができる。
【0051】
ここで、電子線描画装置を一例にとって説明する。図15を参照すると、電子線描画装置は、電子線を発生する電子銃、電子ビームの向きを変更するX方向走査電極及びY方向走査電極などを内蔵した電子光学系730と、使用の際において真空状態とされるチャンバー内に配置される描画対象物732を載置可能とし、その水平面内のX、Y方向及び法線方向であるZ方向に移動可能とするステージ734とを備える。
そして、本発明の位置測定装置の照明光学系100、補正光学系200及び照射光学系300を含む照明側光学筐体740と、受光光学系400を含む受光側光学筐体742をステージ734の両側に配置する。照明側光学筐体740及び受光側光学筐体742は、電子光学系730等の電子線描画装置の各構成部品の取付け位置及びそれらの最大作動範囲をさけるように配置されている。そして、照明側光学筐体740から照射して受光側光学筐体742に入射される光束が、電子光学系730等の電子線描画装置の各構成部品の取付け位置及びそれらの最大作動範囲をさけて透過することができるように、照明側光学筐体740及び受光側光学筐体742は配置されている。
【0052】
電子線描画装置は、制御回路からの種々の信号に応じて、電子光学系及びステージが所定の動作を行い描画対象物となるマスクやウエハなどに所定のパターンを電子線によって形成するものである。
具体的には、本発明の位置測定装置を適用した電子線描画装置により、エンコーダのパターン、位相シフトマスク等の半導体製造用マスクを加工することができる。
また、本発明の位置測定装置を適用した半導体露光装置により、半導体ウェハ、半導体製造用マスクを加工することができる。
【0053】
【発明の効果】
(1)本発明によれば、照明光学系から受け取った複数の測定用照明光束を、平行移動させるための光束シフト部及び複数の測定用照明光束のビームウエスト位置を変更するビームウエスト位置変更部を配置した補正光学系を設けることにより、複数の測定用照明光束を位置合わせ用パターンに適切に照射し、かつそのビームウエスト位置が測定用パターン位置と一致する様な条件で照射するように測定照明光束を調整することができる。
(2)本発明により、小型で高性能な位置測定装置を適用した半導体露光装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の位置測定装置の実施の形態の光学系を示す概略図である。
【図2】本発明の位置測定装置の実施の形態の調整光学系及び照射光学系を示す斜視図である。
【図3】本発明の位置測定装置の実施の形態の調整光学系及び照射光学系を示す平面図である。
【図4】本発明の位置測定装置の実施の形態の調整光学系及び照射光学系を示す側面図である。
【図5】本発明の位置測定装置の実施の形態における対象物上の2次元回折パターンによる第1平面位置測定用照明光束の回折光マッピングである。
【図6】本発明の位置測定装置の実施の形態における対象物上の2次元回折パターンに測定用照明光束が入射した状態を示す斜視図である。
【図7】本発明の位置測定装置の実施の形態における対象物上の2次元回折パターンに測定用照明光束が入射した状態を示す平面図である。
【図8】本発明の位置測定装置の実施の形態における対象物上の2次元回折パターンに測定用照明光束が入射した状態を示す側面図である。
【図9】本発明の位置測定装置の実施の形態における対象物上の2次元回折パターンによる平面位置測定用照明光束と法線方向測定用照明光束の回折光マッピングである。
【図10】本発明の位置測定装置の実施の形態における平面位置測定用照明光束と法線方向測定用照明光束及びその回折光との装置部材との位置関係を示す側面図である。
【図11】本発明の位置測定装置の実施の形態における平面位置測定用照明光束と法線方向測定用照明光束及びその回折光との装置部材との位置関係を示す平面図である。
【図12】本発明の位置測定装置の実施の形態の受光光学系の構成を示す概略ブロック線図である。
【図13】本発明の位置測定装置の実施の形態の信号波形図である。
【図14】本発明の位置測定装置の実施の形態における位置合わせマークで回折された回折光のうち、X、Y、Z方向の測定に用いる回折光マッピングである。
【図15】本発明の位置測定装置を適用した電子線描画装置の実施の形態の概略部分断面図である。
【図16】本発明の位置測定装置の実施の形態の図1の照明光学系の部分の部分拡大図である。
【図17】本発明の位置測定装置の実施の形態の図1の対象物の部分の部分拡大図である。
【図18】本発明の位置測定装置の実施の形態の図1の受光光学系の部分の部分拡大図である。
【図19】本発明の位置測定装置の実施の形態の図11の対象物の部分の部分拡大図である。
【符号の説明】
1 光源
10 対象物
12 2次元回折パターン
100 照明光学系
102 リレーレンズ
103 ビームスプリッター
104 第1照明光束
105 第2照明光束
106、107 リレーレンズ
108 第1周波数シフター
109 第2周波数シフター
110 第1測定用照明光束
111 第2測定用照明光束
112、113 ビームスプリッター
114 第1平面位置測定用照明光束
115 第1法線方向測定用照明光束
116 第2平面位置測定用照明光束
117 第2法線方向測定用照明光束
200 補正光学系
201、202 平行平面板
203、204 ウエッジプリズム
205、206 フォーカスレンズ
300 照射光学系
301、302 折り返しミラー
303 照射レンズ
400 受光光学系
401 受光側対物レンズ
402〜405 折り返しミラー
500 受光部
512 第1平面位置測定用照明光束の(−1、+1)次回折光
514 第2平面位置測定用照明光束の(+1、+1)次回折光
515 第2平面位置測定用照明光束の(−1、+1)次回折光
511 第1平面位置測定用照明光束の(+1、+1)次回折光
510 第1平面位置測定用照明光束の0次光
513 第2平面位置測定用照明光束の0次光
517 第1法線方向測定用照明光束の0次光
516 第2法線方向測定用照明光束の0次光
550〜555 フォトセンサ
600 信号処理部
610 位相計(X)
611 位相計(Y)
612 位相計(Z1)
613 位相計(Z2)
620 演算処理部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a position measuring device used for the purpose of controlling the position of an object in a processing machine for processing the surface of an object to be processed or a measuring machine for measuring the surface state of the object to be measured.
Further, the present invention relates to an electron beam lithography apparatus to which the position measurement device is applied.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a semiconductor exposure apparatus, a desired circuit pattern on an original pattern (reticle or mask) created in advance has been transferred to an exposure area on a wafer after being positioned. This transfer device is a high-precision reduction exposure projection device, and the wafer side is fixed to a high-precision XY stage so that the entire surface of the wafer to be transferred can be exposed. A posting and transferring apparatus for performing step & repeat on the wafer optical system is called a stepper.
With the recent increase in the degree of integration of LSIs, the circuit line width required for semiconductor devices has become increasingly smaller. Conventionally, the reduction ratio of a stepper is 1/5, but it has been said that a pattern of 1 μm or less cannot be resolved due to the wavelength limit so far. However, improvements in optical systems and illumination systems, and the emergence of phase shift masks and the like for adjusting the phase of light on a reticle have resulted in the resolution of sub-μm-order patterns. With the improvement in resolution, the depth of focus of the reduction lens has become shallower, and the accuracy of transferring an original image pattern created in advance onto a wafer has been required to have a stricter value. Therefore, it is required that the alignment optical system of the stepper detect the position of the sample in the sample surface direction and the focus direction with high accuracy.
[0003]
The phase shift mask reduces the phase of light passing through the exposure light transmitting portion on the original pattern, that is, the optical path length of the transmitting portion, by etching the thickness of the substrate, or adding a material having a different refractive index. It is changed by the method described above. Therefore, when manufacturing a phase shift mask, a method in which a substrate of a specific light transmitting portion is dug in the thickness direction and the optical path length is selectively changed, or a resist is applied again to a substrate on which a pattern has been drawn in advance. Then, a method of adding a material for partially changing the phase of the light transmitting portion and then etching the unnecessary portion is adopted. In any case, it is necessary to expose the resist at a predetermined position with high precision using the pattern drawing apparatus.
[0004]
[Problems to be solved by the invention]
Prior to the detection of the alignment mark on the mask, the position of the exposure beam is measured and calibrated using a mark or the like provided on the stage. Since the position of the stage is monitored with high precision by the laser interferometer, the position and displacement of the beam can be measured with reference to the coordinate system of the laser interferometer.
However, in the electron beam exposure apparatus, if dirt adheres to the inside of the lens barrel, the electron beam drifts due to charge-up, and the measured value fluctuates. Since the measurement of the mark position on the mask is an indirect measurement through the mark on the stage, if the measurement value fluctuates, the cause may be beam drift or the mark itself is displaced. There was a problem that it was not possible to distinguish whether it was due to a reason.
[0005]
As a means for accurately measuring the mark position without being affected by drift in an electron beam writing apparatus or a stepper, a method using a device provided with a measurement optical system using laser light can be considered.
However, electron beam lithography systems and steppers require high-precision measurement. Therefore, in the type that irradiates a plurality of laser beams onto a predetermined diffraction pattern and obtains positional information from the diffracted beams, each laser beam is used. It is necessary to make adjustments such as strictly matching the positions where the light is irradiated.
In particular, when employed in an electron beam lithography apparatus, the object is placed in a chamber that is evacuated to a reduced pressure, while the light source unit and the like are placed outside the chamber. For this reason, even if the chamber satisfies the predetermined irradiation conditions when the chamber is at atmospheric pressure, the predetermined irradiation conditions often collapse when the chamber that actually needs to be measured is reduced to a vacuum.
[0006]
Further, when performing not only a plane parallel to the object but also a position measurement in a normal direction thereof, it is necessary to irradiate at least three laser beams under predetermined conditions.
Thus, it has been desired to provide an apparatus that adjusts a plurality of measurement light beams so that the alignment pattern can be irradiated under predetermined conditions.
[0007]
[Object of the invention]
Therefore, an object of the present invention is to
(1) Provided is a position measuring device having an adjustment optical system that adjusts a plurality of light beams required for position measurement to irradiate them under predetermined conditions when irradiating the object surface under predetermined conditions. It is in.
(2) Position adjustment is performed in the plane direction so as to irradiate a predetermined position measurement pattern with a plurality of laser beams, and adjustment is performed so that the beam waist position coincides with the position measurement pattern. It is an object of the present invention to provide a position measuring device which can perform the position measurement.
(3) An object of the present invention is to provide a small and high-accuracy electron beam lithography system including a position measurement device capable of accurately measuring the position of an object.
[0008]
[Means to solve the problem]
The present invention has a light beam splitting unit that separates a light beam from a light source unit that emits a coherent light beam into a plurality of measurement illumination light beams, and a first measurement illumination light beam and a second measurement light beam that are irradiated at a first incident angle. An illumination optical system that forms an illumination light beam and a third measurement illumination light beam emitted at a second incident angle different from the first incident angle, and makes the plurality of measurement illumination light beams parallel;
A light beam shifting unit for parallelly moving the plurality of measurement illumination light beams in a portion having a portion for making the plurality of measurement illumination light beams received from the illumination optical system parallel; And a beam waist position changing unit for changing a beam waist position of the plurality of measurement illumination light beams, and the correction optics receiving the first measurement illumination light beam, the second measurement illumination light beam, and the third measurement illumination light beam. The system arranges the first measurement illumination light beam and the second measurement illumination light beam with the optical axis interposed therebetween, arranges the third measurement illumination light beam at a peripheral position more than these, and uses the correction optical system. A parallel plane plate having a rotation axis in a direction orthogonal to the optical axis is arranged in the optical path of the third measurement illumination light beam so as to change an incident angle at which the third measurement illumination light beam irradiates the two-dimensional pattern. Correction optics And,
An irradiation optical system that irradiates the plurality of measurement illumination light beams to a positioning pattern provided on an object whose position is to be measured,
A light receiving optical system that receives diffracted light from the alignment pattern irradiated with the plurality of measurement illumination light beams by the irradiation optical system,
A light receiving unit that receives the diffracted light received by the light receiving optical system and forms a measurement interference signal;
A signal processing unit for measuring the position of the object based on the phase of the measurement interference signal.
[0009]
According to the present invention, the light beam shift unit includes at least a pair of prisms provided so as to be rotatable about the optical axis with each other, and adjusts a moving distance of an irradiation position by changing a crossing angle of the prisms. It is characterized in that the moving direction of the irradiation position of the measurement illumination light beam is adjusted by changing the direction of the bisector of the crossing angle of the prism.
With such a configuration, a small and highly accurate position measuring device can be realized.
[0010]
In the present invention, the beam waist position changing section may include at least a convex lens and a concave lens, and change a beam waist position of the plurality of measurement illumination light beams by changing an interval between the convex lens and the concave lens. It is characterized by comprising.
With such a configuration, a small and highly accurate position measuring device can be realized.
[0011]
In the present invention, the illumination optical system may further include a first measurement illumination light beam having a first frequency from the coherent light beam emitted by the light source unit, and a second measurement illumination light beam having a second frequency different from the first frequency. And a frequency shifter that forms the first measurement illumination light flux to form a first plane position measurement light flux and a first normal direction measurement illumination light flux, and a second measurement illumination light flux to separate the first measurement illumination light flux. A light beam separating unit that forms a two-plane position measurement light beam and a second normal direction measurement illumination light beam, wherein the irradiation optical system irradiates a two-dimensional pattern as a positioning pattern;
The light-receiving optical system may be configured to diffract one of a combination of a higher-order diffracted light and a zero-order diffracted light and a combination of the higher-order diffracted lights based on the two-dimensional pattern of the first measurement illumination light flux and the second measurement illumination light flux. The light receiving unit is configured to receive a combination of light, a combination of a high-order diffracted light and a zero-order diffracted light by the two-dimensional pattern of the first measurement illumination light flux and the second measurement illumination light flux, and a combination of the high-order diffracted lights. A plane position measurement interference signal for performing position measurement in a plane provided with a two-dimensional pattern of the object is formed from a combination of diffracted lights having different frequencies of any one of the above, and the first measurement illumination light beam or the second measurement light beam is used. A normal-direction position measuring interference signal for measuring the position of the object in the normal direction from a combination of the 0th-order diffracted light of the measuring illumination light beam and the 0th-order diffracted light of the third measuring illumination light beam. It is configured to form a
The signal processing unit performs position measurement in the plane direction of the object based on the phase of the plane position measurement interference signal, and performs position measurement in the normal direction of the object based on the phase of the normal direction measurement interference signal. It is characterized by having such a configuration.
With such a configuration, a small and highly accurate position measuring device can be realized.
[0012]
The present invention also provides, in an electron beam lithography apparatus, the position measurement apparatus of the present invention described above, which is arranged so as to avoid mounting positions of components of the electron beam lithography apparatus and their maximum operating ranges. An illumination-side optical member for irradiating a position measurement light beam for measuring the position of the object, and a light-receiving side optical member for receiving the reflected diffraction light from the object and measuring the position of the object. The illumination so that the light beam emitted from the illumination-side optical member and incident on the light-receiving side optical member can pass through the mounting positions of the components of the electron beam lithography apparatus and their maximum operating ranges. This is a configuration in which a side optical member and a light receiving side optical member are arranged in an electron beam drawing apparatus.
[0013]
With this configuration, the position of the object to be processed can be accurately measured, and the object to be processed can be processed with extremely high accuracy by the electron beam drawing apparatus.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the position measuring device of the present invention includes an illumination optical system 100, a correction optical system 200, an irradiation optical system 300, and a light receiving optical system 400.
[1] Illumination optical system 100
Referring to FIG. 1 and FIGS. 16 to 18, which are partially enlarged views of FIG. 1, the light source 1 is a light source that emits coherent light to be an illumination light beam, and is a He—Ne laser light source having a wavelength λ = 633 nm. The coherent laser light emitted from the light source 1 is split into a first illumination light flux 104 and a second illumination light flux 105 by a beam splitter 103 via a relay lens 102.
[0015]
The first illumination light beam 104 is guided to a first frequency shifter 108 via a relay lens 106, and the first frequency shifter 108 modulates the first illumination light beam 104 to form a first measurement illumination light beam 110. The second illumination light beam 105 is guided to a second frequency shifter 109 via a relay lens 107, and the second frequency shifter 109 modulates the second illumination light beam 105 to form a second measurement illumination light beam 111.
It is preferable to use an acousto-optic element (AOM) as the frequency shifter. The modulation frequency of the first measurement illumination light beam 110 by the frequency shifter is 80.05 MHz, and the modulation frequency of the second measurement illumination light beam 111 by the frequency shifter is 80.0625 MHz. The frequency shifters 108 and 109 form a first measurement illumination light beam 110 and a second measurement illumination light beam 111 whose frequencies are slightly different from each other. In this case, the frequency difference Δf between the first measurement illumination light beam 110 and the second measurement illumination light beam 111 is 12.5 KHz. When the first measurement illumination light beam 110 and the second measurement illumination light beam 111 overlap each other and interfere with each other, the intensity of the interference result becomes a beat (beat signal) of the frequency Δf.
[0016]
The beam splitter 112 splits the first measurement illumination beam 110 into a first plane position measurement illumination beam 114 and a first normal direction measurement illumination beam 115.
The beam splitter 113 splits the second measurement illumination light beam 111 into a second plane position measurement illumination light beam 116 and a second normal direction measurement illumination light beam 117.
The first plane position measurement illumination light beam 114, the first normal direction measurement illumination light beam 115, the second plane position measurement illumination light beam 116, and the second normal direction measurement illumination light beam 117 are relay lenses 118 and 119, respectively. The light is guided to the adjustment optical system 200 via 120 and 121 as light beams parallel to each other with respect to the optical axis.
However, the first normal direction measurement illumination light beam 115 and the second normal direction measurement illumination light beam 117 are measured separately from the first plane position measurement illumination light beam 114 and the second plane position measurement illumination light beam 116, respectively. It is also possible to diverge from the illumination light beam for use.
[0017]
Here, in the illumination optical system 100, the light source 1 and the first frequency shifter 108 and the second frequency shifter 109 have a conjugate relationship by the relay lenses 102, 106, and 107.
[2] Adjustment optical system 200
As shown in FIGS. 2 to 4, the adjustment optical system 200 includes a first plane position measurement illumination beam 114, a first normal direction measurement illumination beam 115, a second plane position measurement illumination beam 116, and a second method. This is an optical system that corrects the linear direction measurement illumination light beam 117 so as to conform to predetermined irradiation conditions. For the correction, the irradiation angles of the first normal direction measurement illumination light beam 115 and the second normal direction measurement illumination light beam 117 are changed to the first plane position measurement illumination light beam 114 and the second plane position measurement illumination light beam 116. The adjustment of the irradiation angle, the adjustment of the plane position to adjust the plane position on the object irradiated by the four illumination light beams 114 to 117, and the beam waist position of the four illumination light beams 114 to 117 There are three types of beam waist position adjustment for adjusting the beam waist position so as to be on the object 10.
[0018]
The irradiation angles of the first normal direction measurement illumination light beam 115 and the second normal direction measurement illumination light beam 117 are adjusted by rotating the parallel plane plates 201 and 202 inserted in the respective optical paths by the rotation axis orthogonal to the optical axis. This is done by rotating it to the center. The first normal direction measurement illumination light beam 115 and the second normal direction measurement illumination light beam 117 are translated in the vertical direction by the rotation of the parallel flat plates 201 and 202. As a result, the irradiation angle by the projection lens described later is reduced. Change. Here, the “vertical direction” refers to a direction perpendicular to a plane including the four illumination light beams 114 to 117.
The four measurement illumination light beams 114 to 117 are narrowed in their optical paths by two mirrors (not shown), and are incident on a pair of wedge prisms 203 and 204 having the same apex angle.
[0019]
Adjustment of the plane positions of the four measurement illumination light beams 114 to 117 is performed by adjusting the intersection angle of the wedge prisms 203 and 204 and adjusting the intersection center direction with the horizontal direction as the central axis for adjustment.
The distance from the position before the adjustment is determined by adjusting the intersection angle between the wedge prisms 203 and 204. The direction of change from before the adjustment is determined by adjusting the center direction where the wedge prisms 203 and 204 intersect. By performing the adjustment in this manner, the adjustment of the plane position of the four measurement illumination light beams 114 to 117 can be performed in any of the upper, lower, left, and right directions.
The four measurement illumination light beams 114 to 117 are incident on the focus lenses 205 and 206 after the plane positions are adjusted by the wedge prisms 203 and 204.
[0020]
The focus lenses 205 and 206 are configured to be able to change the distance between each light beam and the optical axis while maintaining the condition that each light beam is parallel to the optical axis by changing the distance between them. The position of the beam waist of the measurement illumination light beams 114 to 117 can be adjusted in the optical axis direction so that the beam waist is on the object 10.
In the embodiment of the present invention, the adjustment lens 205 on the light source side is formed by a plano-convex lens, and the adjustment lens 206 on the object side is formed by a plano-concave lens 206.
Therefore, when the distance between the focus lenses 205 and 206 is increased, the position of the beam waist changes so as to approach the light source side.
However, it is also possible to form the focus lens 205 on the side with the light source 1 by a plano-concave lens 206 and form the focus lens 206 on the side with the object 10 by a plano-convex lens.
[0021]
As described above, the first plane position measurement illumination light beam 114 and the second plane position measurement illumination light beam 116 are arranged near the optical axis, and the first normal direction measurement illumination light beam for adjusting the irradiation angle with reference to these. By arranging the illumination light beam 115 and the second normal direction measurement illumination light beam 117 around (on both sides), the parallel plane plates 201 and 202, which are optical elements for adjusting the irradiation angle, are arranged in their optical paths and It is possible to easily incorporate a mechanism that enables rotation about a rotation axis orthogonal to the axis.
[2-1] Manual adjustment
A method for adjusting the beam of the adjustment optical system 200 will be described. Hereinafter, an adjustment method giving priority to the position will be described.
In the initial state, the wedge prisms 203 and 204 are arranged in the opposite directions as if rotated by 180 degrees, and apparently have no prism power. The adjustment lenses 205 and 206 are arranged so that the interval between them is substantially zero, and it is assumed that there is no power.
[0022]
In the adjustment method giving priority to this position, the irradiation position of the beam in the initial state is moved to the mark 12 to be originally irradiated by using the wedge prisms 203 and 204, and then the four beams are adjusted by using the adjustment lenses 205 and 206. The beam waist positions of the measurement illumination light beams 114 to 117 are adjusted so as to be on the object 10.
More specifically, since the moving direction of the beam coincides with the direction of the bisector of the intersection angle of the wedge prisms 203 and 204, the direction of the mark 12 to be irradiated with the beam is determined with reference to the beam irradiation position in the initial state. The two wedge prisms 203 and 204 are rotated so that the direction of the bisector of the intersection angle coincides.
Next, the moving distance of the beam increases as the crossing angle of the wedge prisms 203 and 204 approaches 180 degrees from 180 degrees, so that the direction of the bisector of the crossing angle of the wedge prisms 203 and 204 is By adjusting the crossing angle of the wedge prisms 203 and 204 while maintaining the same, it is possible to adjust so as to irradiate the two-dimensional pattern 12 on the object 10.
[0023]
After the beam positions of the four measurement illumination light beams 114 to 117 are adjusted to be on the two-dimensional pattern 12 on the object 10 in this manner, based on the influence factors such as the maximum intensity of the interference signal, etc. The distance between the adjustment lenses 205 and 206 is adjusted so that the beam waist position is on the two-dimensional pattern 12 on the object 10.
In the embodiment of the present invention, the adjustment lens 205 on the side of the light source 1 is formed by a plano-convex lens and the adjustment lens 206 on the side of the object 10 is formed by a plano-concave lens 206. The beam waist position becomes closer to the light source side as the distance between is increased.
[3] Irradiation optical system 300
The irradiation optical system 300 includes, as shown in FIGS. 2 to 4, folding mirrors 301 and 302 and an irradiation lens 303, a first plane position measurement illumination light beam 114, a second plane position measurement illumination light beam 116, and a first plane position measurement illumination light beam 116. Four light beams, i.e., the illumination light beam 115 for normal direction measurement and the illumination light beam 117 for second normal direction measurement, are irradiated onto the two-dimensional pattern 12 on the object 10 at one point.
[0024]
At this time, the irradiation optical system 300 includes the target object 10 together with the first plane position measurement illumination light beam 114 and the second plane position measurement illumination light beam 116 as a result of the predetermined correction performed by the correction optical system 200. Irradiation is performed at an incident angle θ1 with respect to the normal of the plane, the first normal direction measuring illumination light beam 115 is irradiated at an incident angle θ2 different from the incident angle θ1, and the second normal direction measuring illumination light beam 117 is irradiated at θ1. Irradiation at an incident angle θ3 different from θ2 and θ2.
The irradiation optical system 300 including the irradiation lens 303 has a beam waist position in a state where the adjustment lenses 205 and 206 for adjusting the beam waist position do not act, that is, in a state where the adjustment lens 205 and the adjustment lens 206 are in contact with each other. Is set to be the farthest point of the beam waist position adjustment range.
[0025]
By appropriately setting the distance between the adjustment lens 205 for adjusting the beam waist position and the adjustment lens 206, it is possible to adjust the beam waist of the measurement illumination light beam onto the object 10. When the various adjustments are completed, the light source 1, the frequency shifters 108 and 109, and the object 10 all form a conjugate relationship.
The two-dimensional diffraction pattern 12 on the object 10 is formed by a checkerboard lattice. The checkerboard has the same pitch d in the X and Y directions.
The four measurement illumination light beams incident on the checkered grating on the object 10 are reflected and diffracted by the checkered grating.
Now, focusing only on the first plane position measurement illumination light beam 114, the relationship between the incident angle θ and the X-direction diffraction angle θx and the Y-direction diffraction angle θy of the primary light diffracted light is given by the following equation.
[0026]
sin θx = ± λ / d (1)
sin θy = sin θ ± λ / d (2)
FIGS. 5 and 6 show mapping of specularly reflected light (zero-order diffracted light) and first-order diffracted light of the illumination light flux for the first plane position measurement satisfying the expressions (1) and (2). (Higher orders of second and higher are omitted.)
FIG. 5 shows a state in which the first plane position measurement illumination light beam 114 is incident on the two-dimensional pattern 12 on the object 10 at an angle θ with respect to the normal 12T of the two-dimensional pattern 12.
FIG. 6 shows a state in which four measurement illumination light beams 114 to 117 are incident on the two-dimensional pattern 12 on the object 10.
As shown in FIGS. 7 and 8, a first plane position measurement illumination light beam 114, a second plane position measurement illumination light beam 116, a first normal direction measurement illumination light beam 115, and a second normal direction measurement illumination light beam Since the light 117 is incident from a direction rotated by a slight angle + α with respect to the normal to the object surface, each of the zero-order light and the first-order diffraction light is the zero-order light of the other measurement illumination light flux, It is possible to separate and take out separately without overlapping with the primary diffraction light.
[0027]
As for the incident angle, as shown in FIG. 8, the first plane position measurement illumination light beam 114 and the second plane position measurement illumination light beam 116 have an incident angle θ1, and the first normal direction measurement light beam 115 is incident. At the angle θ2, the illumination light beam 117 for measuring the second normal direction is applied to the two-dimensional diffraction pattern 12 on the object 10 at the incident angle θ3.
FIG. 9 shows the 0th-order light and the 1st-order diffracted light of the first plane position measurement illumination light beam 114 and the second plane position measurement illumination light beam 116, the first normal direction measurement illumination light beam 115, and the second normal direction measurement. 7 is a mapping of zero-order light of the illumination light beam 117 for use.
In the embodiment of the present invention, as shown in FIGS. 5, 6, and 9, since the diffracted light mapping is the reflection diffraction, the positive direction of the X axis is the left direction in the figure, and the Y axis is the Y axis. Is a downward direction in the figure, which is different from a general coordinate system.
[0028]
As shown in FIGS. 10, 11, and 19, the light receiving optical system 400 is arranged so as to receive the diffracted light spreading from the reflection point on the two-dimensional pattern. However, in an electron beam drawing apparatus, a stepper, or the like, the members 710 of the drawing optical system and the projection optical system occupy most of the space, and the space for the light receiving optical system is often limited.
Therefore, an arrangement is required in which the diffraction angle that determines the size of the entire light receiving optical system can be reduced, and an appropriate interval is maintained between the light receiving sections so that the diffracted light beams can be easily branched and superimposed on each other. Also, the space on the irradiation optical system side is limited due to the members of the device, similarly to the light receiving optical system side.
On the light receiving optical system side, the diffraction angle of the zero-order light in the Y direction is θ as in the incident angle. Referring to the expression (2) for the diffraction angle θy in the Y direction of the first-order diffracted light, θy that satisfies the compound negative expression is a value smaller than θ. That is, since the -1st-order diffracted light appears on the member side of the apparatus such as the drawing optical system and the projection optical system with respect to the 0th-order light, it tends to be blocked by these members.
[0029]
In this case, the passing position of the light beam on the light receiving optical system side and the irradiation optical system side is asymmetric, and if the −1st-order light is set so as not to be blocked by the original members of the device, the incident angle θ is increased by the incident side. A dead zone will be provided.
When the incident angle θ is increased, the difference between the diffraction efficiencies of the polarization components (S-polarized light and P-polarized light) of the reflected diffracted light also increases, which affects the superposition interference at the light receiving unit. However, θy that satisfies the complex plus expression of Expression (2) is larger than θ, and the + 1st-order diffracted light appears on the object side with respect to the 0th-order light.
Therefore, if the 0th-order light is not blocked by the member, the + 1st-order light will not be blocked by the member 710 of the apparatus. Therefore, if the + 1st-order light is used, the incident angle θ can be set to the minimum value in a range not blocked by the member, and the difference in diffraction efficiency due to the polarization component can be reduced.
[0030]
The first-order diffracted light that simultaneously satisfies the combined positive expression of Expression (2) and Expression (1) is a + 1st-order diffracted light in the X direction, a + 1st-order diffraction light in the Y direction, a −1st-order in the X direction, and a + 1st-order in the Y direction. Is the diffracted light. These are included in quadrants adjacent to each other ((X, Y) quadrant and (-X, Y) quadrant), and use of these light rays can contribute to space saving of the light receiving side optical system.
FIG. 14 shows a diffracted light mapping used for measurement in the X, Y, and Z directions of the diffracted light diffracted by the alignment mark.
Here, f1 (0) is the 0th-order diffracted light after the first plane position measurement illumination light beam 114 is diffracted by the alignment mark, and f2 (0) is the second plane position measurement illumination light flux 116. This is the zero-order diffracted light after being diffracted by the alignment mark.
[0031]
f1 (X, Y) is a + 1st-order diffracted light in the X direction and a + 1st-order in the Y direction after the first plane position measurement illumination light beam 114 is diffracted by the alignment mark.
f1 (−X, Y) is a first-order diffracted light in the X direction and a + 1st order in the Y direction after the first plane position measurement illumination light beam 114 is diffracted by the alignment mark.
f2 (X, Y) is a + 1st order diffracted light in the X direction and a + 1st order in the Y direction after the second plane position measuring illumination light beam 116 is diffracted by the alignment mark.
f2 (−X, Y) is a first-order diffracted light in the X direction and a + 1st order in the Y direction after the second plane position measuring illumination light beam 116 is diffracted by the alignment mark.
f1 ′ (0) is the 0th-order diffracted light after the first normal direction measurement illumination light flux 115 is diffracted by the alignment mark.
[0032]
f2 ′ (0) is the zero-order diffracted light after the second normal direction measurement illumination light beam 117 is diffracted by the alignment mark.
Another method for reducing the size of the light receiving optical system is to reduce the diameter of the objective lens 410. In order to reduce the lens diameter, the difference between the diffraction angles of the zero-order light and the first-order light may be reduced. As a method of reducing the difference between the diffraction angles, there is a method of increasing the pitch of the two-dimensional diffraction pattern or reducing the light source wavelength λ according to the expressions (1) and (2).
Usually, the pitch of the diffraction pattern is about several μm to several tens μm. At this time, if a He-Ne laser light source with λ = 633 nm is used, the diffraction angle can be made sufficiently small. In addition, a resist is often applied on the surface of the object, but this wavelength is long enough not to expose the resist.
[0033]
Further, the angle β between the optical axis of the objective lens 401 and the normal to the object is θ, the angle between the 0th-order light of the first illumination light flux and the normal to the object is θ, and the + 1st-order diffracted light of the first illumination light flux The diffraction angle in the Y direction is given by the following equation as θy.
β = (θ + θy) / 2
This is an intermediate angle between the 0th-order light and the 1st-order diffracted light. By taking this optical axis, the lens diameter can be reduced even if it is located far from the object. Further, as the distance from the reflection point on the object to the objective lens becomes longer, the interval between the respective diffracted lights becomes wider, and there is also an advantage that branching of the diffracted lights at the light receiving section and superposition interference become easier.
FIG. 10 shows an example of a light projecting optical system and a light receiving optical system. The wavelength λ is 633 nm, the incident angle θ of the first plane position measurement illumination light beam 114 and the second plane position measurement illumination light beam 116 is 70 °, and the diffraction grating is shown. The pitch d = 20 μm, the focal length of the irradiation lens 303 is 133 mm, and the focal length of the light receiving side objective lens is 220 mm.
[0034]
Since the four illumination light beams incident on the irradiation lens 303 are parallel to each other and have an interval of 3 mm, this interval is approximately 5 mm after passing through the light receiving side objective lens 401.
The diffraction angles of the first-order light are expressed as θx = 1.8 ° and θy = 76.25 ° using Expressions (1) and (2). The angle β of the optical axis of the light receiving side objective lens 401 is 73 °, and the lens diameter at this time is φ40 mm, so that four illumination light beams can be transmitted without colliding with the member 710.
The light receiving side objective lens 401 is arranged at a position of one focal length from the reflection point on the object 10 and plays a role of parallelizing a large number of reflected diffraction lights spread from the reflection point on the object 10. The diffracted lights made parallel to each other by the light receiving side objective lens 401 are guided to the light receiving section by the folding mirrors 402 and 403, and the 0th order light and the 1st order light are contained in the same plane by the folding mirrors 404 and 405. .
[0035]
Next, details of the configuration of the light receiving section 500 are shown in FIG. The light receiving unit includes the first plane position measurement illumination light beam 114 included in the adjacent quadrants, here, the (+ X, + Y) quadrant and the (-X, + Y) quadrant, of the diffracted light received by the light receiving optical system 400. The plane including the object is obtained from the combination of the diffracted light of any one of the different combinations of the combination of the higher-order diffracted light and the 0th-order light and the combination of the higher-order diffracted lights according to the two-dimensional pattern of the second plane position measurement illumination light flux 116. Forming an interference measurement signal for position measurement within the device.
The interference measurement signal for position measurement in the X direction in the plane including the target object is −1 order in the X direction and +1 in the Y direction among the diffracted light of the first plane position measurement illumination light beam 114 due to the two-dimensional pattern. The next diffracted light 512 and the + 1st-order diffracted light 514 in the X direction and the + 1st-order diffracted light in the Y direction are superimposed by the beam splitter 530 among the diffracted light of the two-dimensional pattern of the second plane position measurement illumination light beam 116. Form. The X-position measurement interference signal is received by the photo sensor 550.
[0036]
The interference measurement signal for position measurement in the Y direction in the plane including the object is + 1st order in the X direction and + 1st order in the Y direction among the diffracted light of the first plane position measurement illumination light beam 114 due to the two-dimensional pattern. The beam splitter 532 superimposes the diffracted light 511 and the light beam branched from the zero-order light 513 of the second plane position measurement illumination light beam 116 by the beam splitter 531. The Y position measurement interference measurement signal is received by the photo sensor 551.
The first Z-direction position measurement interference measurement signal obtained when the normal direction of the plane including the target object, that is, the Z direction is irradiated at the irradiation angle θ2, is obtained from the zero-order light 513 of the second plane position measurement illumination light beam 116. The beam split by the beam splitter 533 and the zero-order light 517 of the first normal direction measurement illumination light beam 115 are superposed and formed by the beam splitter 534. The Z position measurement interference signal is received by the photo sensor 552.
[0037]
The second Z-direction position measurement interference measurement signal obtained when the normal direction of the plane including the target object, that is, the Z direction is irradiated at the irradiation angle θ3, is obtained from the zero-order light 510 of the first plane position measurement illumination light beam 116. The beam split by the beam splitter 535 and the zero-order light 516 of the illumination light beam 115 for the second normal direction measurement are superimposed and formed by the beam splitter 536. The Z position measurement interference signal is received by the photo sensor 553.
The light receiving unit further superimposes the zero-order light 510 of the illumination light beam 114 for the first plane position measurement and the zero-order light 513 of the illumination light beam for the second plane position measurement by the beam splitter 538 via the mirror 537 to obtain the X position measurement. And a reference signal for Z position measurement. The X-position measuring interference reference signal and the Z-position measuring interference reference signal are received by the photosensor 554.
[0038]
Further, in the X direction, of the light beam branched by the beam splitter 539 from the zero-order light 510 of the first plane position measurement illumination beam 114 and the two-dimensional pattern of the second plane position measurement illumination beam 116, The + 1st order and + 1st order diffracted light 515 in the Y direction are superimposed by the beam splitter 540 to form an interference reference signal for Y position measurement. The Y-position measurement interference reference signal is received by the photosensor 555.
Each interference measurement signal and interference reference signal is a beat (beat signal) due to superposition interference of two beams having slightly different frequencies, ie, heterodyne interference. The frequency of the first plane position measurement illumination light beam and the first normal direction measurement illumination light beam (both are hereinafter referred to as "first measurement light beam") is f1, the second plane position measurement illumination light beam and the second normal direction measurement. The frequency of the illumination light beam for use (both are hereinafter referred to as “second measurement light beam”) is f2.
[0039]
The complex amplitude of a certain diffracted light out of a large number of diffracted lights by the two-dimensional diffraction pattern of each light flux is
a1 = A1 * exp [-i (2πf1t + φ1)]
a2 = A2 * exp [-i (2πf2t + φ2)]
Let it be represented by Where φ1 is the initial phase of the first illumination light flux, φ2 is the initial phase of the second illumination light flux, and t is time.
The intensity signal of these rays superimposed is
I = A1 * A1 + A2 * A2 + 2A1 * A2 * cos [2πΔft + (φ1−φ2)]
It becomes. However, Δf = f1−f2.
[0040]
This is a beat signal whose frequency is Δf, and its phase component is
φ1-φ2 (3)
It is.
Attention is paid to the + 1st-order diffracted light in the X direction and the + 1st-order diffracted light in the Y direction among the many higher-order diffracted lights of the first illumination light flux or the second illumination light flux by the two-dimensional pattern on the object. When the object including the two-dimensional diffraction pattern is displaced by ΔX in the X direction and ΔY in the Y direction, the phase of the diffracted light is equal to either the first illumination light flux or the second illumination light flux.
2π (ΔX + ΔY) / d = φx + φy
Only change. Here, d is the pitch of the two-dimensional diffraction pattern. Also, since the phase changes with respect to the movement of the object in the Z direction, the value is set to φz.
[0041]
Therefore, when the object changes in the X, Y, and Z directions, the amount of phase change of the diffracted light is
φx + φy + φz (4)
It is.
The sign of φx changes in the case of the −1st order diffracted light in the X direction and the + 1st order diffracted light in the Y direction.
-Φx + φy + φz (5)
It becomes.
The phase of the zero-order light does not change with respect to the displacement of the object in the X and Y directions, but changes only with respect to the displacement in the Z direction. However, the illumination light flux for normal direction measurement among the first illumination light flux and the second illumination light flux has a different phase change amount with respect to the displacement ΔZ in the Z direction of the object due to a difference in the incident angle.
[0042]
The phase change amount φz of the first illumination light beam with respect to the displacement of the object in the Z direction and the phase change amount φz ′ of the second illumination light beam with respect to the displacement of the object in the Z direction are:
φz = 4πΔZ / λ * cosθ1 (6)
φz ′ = 4πΔZ / λ * cos θ2 (7)
Given by
The phase component of the X position measurement interference measurement signal is obtained by substituting equation (4) into φ1 of equation (3) and substituting equation (5) into φ2,
(Φx + φy + φz) − (− φx + φy + φz) = 2φx (8)
It becomes.
The phase component of the X position measurement interference reference signal is obtained by substituting equation (6) into φ1 and φ2 in equation (3),
φz−φz = 0 (9)
It becomes.
[0043]
Therefore, equation (8) of the X-position measurement interference measurement signal and equation (9) of the X-position measurement interference reference signal equally include the position information in the Y direction (0 in this case), and equations (8) and (9). By taking the difference between the expressions, the position information in the X direction in the plane including the object can be obtained as 2φx.
From the equations (4) and (6), the phase component of the Y position measurement interference measurement signal is
(Φx + φy + φz) −φz = φx + φy (10)
It is.
From the equations (5) and (6), the phase component of the Y position measurement interference reference signal is
φz − (− φx + φy + φz) = φx−φy (11)
It is.
[0044]
Therefore, the expression (9) of the interference measurement signal for Y position measurement and the expression (10) of the interference reference signal for Y position measurement include position information in the X direction equally, and the difference between the expressions (9) and (10) is obtained. Then, as 2φy, position information in the Y direction on the plane including the target object can be obtained.
Further, the phase component of the first Z position measurement interference measurement signal is given by the following equations (6) and (7).
φz′−φz = 4π (cos θ2−cos θ1) / λ * ΔZ (12)
And the phase component of the second Z position measurement interference measurement signal is obtained from the equations (6) and (7).
φz′−φz = 4π (cos θ3−cos θ1) / λ * ΔZ (13)
Which is a value proportional to ΔZ.
[0045]
The phase component of the Z position measurement interference reference signal (also X position measurement interference reference signal) is 0 according to equation (9).
Therefore, if the difference between Expressions (12) and (9) is calculated, the position information in the Z direction (the normal direction of the plane including the object) can be obtained as Expression (12).
The phase difference Φz1 (ΔZ) between the first Z position measurement interference signal and the Z position measurement interference reference signal and the phase difference Φz2 (ΔZ) between the second Z position measurement interference signal and the Z position measurement interference reference signal are ( From equations 12) and (13),
Φz1 (ΔZ) = 4π (cos θ1−cos θ2) / λ * ΔZ
Φz2 (ΔZ) = 4π (cos θ1-cos θ3) / λ * ΔZ
Given by Here, the Z position measurement interference signal is subtracted from the Z position measurement interference reference signal (that is, the sign in parentheses is inverted).
[0046]
Now, let us say that the detection stroke of the first Z position measurement interference signal is Z1, and the detection stroke of the second Z position measurement interference signal is Z2 (Z1> Z2).
ΔZ = Z1, Φz1 (ΔZ) = 2π,
ΔZ = Z2, Φz2 (ΔZ) = 2π
Because
Φz1 (ΔZ) = 2π / Z1 * ΔZ (a)
Φz2 (ΔZ) = 2π / Z2 * ΔZ (b)
It can be expressed as In the waveform on the left side of FIG. 13, the solid line indicates the signal of equation (a), and the dotted line indicates the signal of equation (b).
Taking the difference between Φz2 (ΔZ) and Φz1 (ΔZ), that is, the difference between equations (b) and (a),
Figure 0003548665
It becomes.
[0047]
Comparing the expressions (a), (b) and (c), it is considered that the expression (c) represents the Z position measurement interference signal having a detection stroke of Z1 * Z2 / (Z1-Z2). be able to. The signal of equation (c) is shown as a waveform on the right side of FIG.
Assuming that θ2 = 70.39 ° and θ3 = 70.48 ° from the equation, Z1 = 50 μm and Z2 = 40 μm. Substituting these into equation (c) gives
ΔΦ (ΔZ) = 2π / 200 μm * ΔZ
It becomes. Therefore, an interference signal for Z position measurement having a stroke of 200 μm is obtained. At this time, the number of samples is equal to 2000 when the stroke is 50 μm and the resolution is 25 nm. That is, the detection stroke, that is, the detectable range can be expanded to 200 μm while the resolution is 25 nm and the number of samples is 2000.
[0048]
Here, for convenience, the interference reference signal for position measurement in each direction is represented by Expression (9) in the X direction, Expression (11) in the Y direction, and Expression (9) in the Z direction. Even when the expression, the Y direction is expression (10), and the Z direction is expression (12), position information in each direction can be obtained only by reversing the sign.
From the equation (13), the incident angle θ2 of the first normal direction measurement illumination light beam for obtaining the desired Z detection stroke is obtained.
For example, when it is desired to obtain a detection stroke of 50 μm in Expression (12), 2π is substituted for the left side and 50 μm is substituted for ΔZ on the right side.
However, the value of θ2 is larger than θ1, that is, since the value of θ2 is desired to be closer to the object than the first illumination light flux, when the first Z position measurement interference reference signal is subtracted from the second Z position measurement interference reference signal,
2π = 4π (cos 70 ° −cos θ2) / 633 nm × 50 μm
Thus, θ2 = 70.39 ° is obtained.
[0049]
The signal processing unit 600 obtains positions in the plane including the target and the normal direction of the plane including the target based on the phase of the position measurement interference measurement signal. The position measurement interference measurement signal in the X direction is received by the photo sensor 550, and the X position measurement interference reference signal is received by the photo sensor 554. The phase difference between the signals received by the photosensors 550 and 554 is measured by the phase meter 610.
The Y position measurement interference measurement signal is received by the photo sensor 551, and the Y position measurement interference reference signal is received by the photo sensor 555. The phase difference between the photosensor 551 and the signal received by the photosensor 555 is measured by the phase meter 611.
The first Z-direction position measurement interference measurement signal is received by the photo sensor 552, and the Z position measurement reference signal is received by the photo sensor 554.
[0050]
A phase difference between a signal received by the photosensor 552 and a signal received by the photosensor 554 is measured by the phase meter 612.
The second Z-direction position measurement signal is received by the photo sensor 553, and the Z-direction position measurement reference signal is received by the photo sensor 554.
The phase difference between the signal received by the photo sensor 553 and the signal received by the photo sensor 554 is measured by the phase meter 613.
The arithmetic processing unit 620 obtains a position in the X direction in the plane including the object based on the phase difference of the phase meter 610, obtains a position in the Y direction in the plane including the object based on the phase difference of the phase meter 611, Then, based on the phase difference between the phase meters 612 and 613, the position in the Z direction in the plane including the object is obtained. The arithmetic processing unit 620 makes it possible to independently measure the displacement components in each direction with respect to the XYZ displacement of the object, thereby performing various controls including positioning of the object.
[4] Application of the position measuring device of the present invention
The position measuring apparatus of the present invention can be applied to, for example, a charged particle beam apparatus such as an electron beam lithography apparatus, and an apparatus such as a semiconductor exposure apparatus that requires accurate positioning of an object. .
[0051]
Here, an electron beam drawing apparatus will be described as an example. Referring to FIG. 15, an electron beam lithography apparatus includes an electron optical system 730 including an electron gun for generating an electron beam, an X-direction scanning electrode and a Y-direction scanning electrode for changing the direction of an electron beam, and A stage 734 is provided, on which a drawing object 732 placed in a chamber in a vacuum state can be placed, and which can be moved in the X, Y directions and the Z direction which is a normal direction in the horizontal plane.
Then, the illumination optical system 100, the correction optical system 200, and the irradiation optical system 300 of the position measuring device of the present invention are mounted on both sides of the stage 734 by illuminating the optical housing 740 including the optical system 400 and the light receiving optical housing 742 including the light receiving optical system 400. To place. The illumination-side optical housing 740 and the light-receiving-side optical housing 742 are arranged so as to avoid the mounting position of each component of the electron beam drawing apparatus such as the electron optical system 730 and the maximum operating range thereof. The luminous flux emitted from the illumination-side optical housing 740 and incident on the light-receiving-side optical housing 742 avoids the mounting position of each component of the electron beam drawing apparatus such as the electron optical system 730 and the maximum operating range thereof. The illumination-side optical housing 740 and the light-receiving-side optical housing 742 are arranged so as to be able to transmit light.
[0052]
In an electron beam lithography apparatus, an electron optical system and a stage perform a predetermined operation in accordance with various signals from a control circuit to form a predetermined pattern on a mask or a wafer to be a drawing target by an electron beam. .
Specifically, an electron beam drawing apparatus to which the position measuring device of the present invention is applied can process a semiconductor manufacturing mask such as an encoder pattern and a phase shift mask.
Further, a semiconductor wafer and a mask for manufacturing a semiconductor can be processed by a semiconductor exposure apparatus to which the position measuring apparatus of the present invention is applied.
[0053]
【The invention's effect】
(1) According to the present invention, a light beam shift unit that translates a plurality of measurement illumination light beams received from an illumination optical system and a beam waist position change unit that changes the beam waist position of the plurality of measurement illumination light beams. By arranging a correction optical system with a laser beam, it is possible to irradiate a plurality of measurement illuminating light beams onto the alignment pattern appropriately, and irradiate the beam under the condition that the beam waist position coincides with the measurement pattern position. The illumination light flux can be adjusted.
(2) According to the present invention, a semiconductor exposure apparatus to which a small and high-performance position measuring apparatus is applied can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an optical system according to an embodiment of a position measuring device of the present invention.
FIG. 2 is a perspective view showing an adjustment optical system and an irradiation optical system according to the embodiment of the position measuring device of the present invention.
FIG. 3 is a plan view showing an adjustment optical system and an irradiation optical system according to the embodiment of the position measuring device of the present invention.
FIG. 4 is a side view showing an adjustment optical system and an irradiation optical system according to the embodiment of the position measuring device of the present invention.
FIG. 5 is a diffraction light mapping of a first plane position measurement illumination light beam based on a two-dimensional diffraction pattern on an object in the embodiment of the position measurement device of the present invention.
FIG. 6 is a perspective view showing a state in which a measurement illumination light beam is incident on a two-dimensional diffraction pattern on an object in the embodiment of the position measuring device of the present invention.
FIG. 7 is a plan view showing a state in which a measurement illumination light beam is incident on a two-dimensional diffraction pattern on an object in the embodiment of the position measuring device of the present invention.
FIG. 8 is a side view showing a state in which a measurement illumination light beam is incident on a two-dimensional diffraction pattern on an object in the embodiment of the position measuring device of the present invention.
FIG. 9 is a diffracted light mapping of an illumination light beam for measuring a planar position and an illumination light beam for measuring a normal direction by a two-dimensional diffraction pattern on an object in the embodiment of the position measuring device of the present invention.
FIG. 10 is a side view showing a positional relationship between an illumination light beam for measuring a planar position, an illumination light beam for measuring a normal direction, and its diffracted light in the embodiment of the position measurement device of the present invention and a device member.
FIG. 11 is a plan view showing a positional relationship between an illumination light beam for planar position measurement, an illumination light beam for normal direction measurement, and its diffracted light in the embodiment of the position measurement device of the present invention and a device member.
FIG. 12 is a schematic block diagram illustrating a configuration of a light receiving optical system according to an embodiment of the position measuring device of the present invention.
FIG. 13 is a signal waveform diagram of the position measuring device according to the embodiment of the present invention.
FIG. 14 is a diagram illustrating a diffracted light mapping used for measurement in the X, Y, and Z directions of the diffracted light diffracted by the alignment mark in the embodiment of the position measuring device of the present invention.
FIG. 15 is a schematic partial sectional view of an embodiment of an electron beam lithography apparatus to which the position measuring device of the present invention is applied.
FIG. 16 is a partially enlarged view of the illumination optical system shown in FIG. 1 according to the embodiment of the position measuring device of the present invention.
FIG. 17 is a partially enlarged view of a portion of the object in FIG. 1 according to the embodiment of the position measuring device of the present invention.
18 is a partially enlarged view of a portion of the light receiving optical system of FIG. 1 according to the embodiment of the position measuring device of the present invention.
19 is a partially enlarged view of a portion of the object shown in FIG. 11 according to the embodiment of the position measuring device of the present invention.
[Explanation of symbols]
1 light source
10 Objects
12 Two-dimensional diffraction pattern
100 Illumination optical system
102 relay lens
103 beam splitter
104 First illumination light flux
105 Second illumination light flux
106, 107 relay lens
108 1st frequency shifter
109 Second frequency shifter
110 Illumination luminous flux for first measurement
111 Illumination light flux for second measurement
112, 113 Beam splitter
114 Illumination light flux for first plane position measurement
115 Illumination luminous flux for first normal direction measurement
116 Illumination light flux for second plane position measurement
117 Illumination beam for second normal direction measurement
200 correction optical system
201, 202 Parallel plane plate
203, 204 Wedge prism
205, 206 Focus lens
300 Irradiation optical system
301, 302 Folding mirror
303 irradiation lens
400 light receiving optical system
401 Objective lens on the receiving side
402-405 folding mirror
500 light receiving section
512 (−1, +1) th order diffracted light of illumination light flux for first plane position measurement
514 (+1, +1) -order diffracted light of illumination light beam for second plane position measurement
515 (−1, +1) th order diffracted light of illumination light beam for second plane position measurement
511 (+1, +1) th order diffracted light of illumination light flux for first plane position measurement
510 0th-order light of illumination light flux for first plane position measurement
513 0th-order light of illumination light beam for second plane position measurement
517 Zero-order light of illumination light flux for first normal direction measurement
516 Zero-order light of illumination light beam for second normal direction measurement
550-555 Photo sensor
600 signal processing unit
610 Phase meter (X)
611 Phase meter (Y)
612 Phase meter (Z1)
613 Phase meter (Z2)
620 arithmetic processing unit

Claims (5)

コヒーレント光束を発する光源部からの光束を複数の測定用照明光束に分離する光束分割部とを有し、第1入射角度で照射される第1測定用照明光束及び第2測定用照明光束と、第1入射角度とは異なる第2入射角度で照射される第3測定用照明光束とを形成し、該複数の測定用照明光束を平行となるようにする照明光学系と、
前記照明光学系から受け取った前記複数の測定用照明光束を平行となるようにする部分を有し、この平行となった部分において、前記複数の測定用照明光束を平行移動させるための光束シフト部及び複数の測定用照明光束のビームウエスト位置を変更するビームウエスト位置変更部を配置し、これらの第1測定用照明光束、第2測定用照明光束及び第3測定用照明光束を受け取る前記補正光学系は、その光軸を挟んで前記第1測定用照明光束及び第2測定用照明光束を配置し、前記第3測定用照明光束をこれらよりも周辺位置に配置し、前記補正光学系での第3測定用照明光束の光路中に、その第3測定用照明光束が前記2次元パターンに照射する入射角度を変化するように光軸と直交方向に回転軸を有する平行平面板が配置された補正光学系と、
前記複数の測定用照明光束を、位置の測定をすべき対象物に設けられている位置合わせ用パターンに照射する照射光学系と、
前記照射光学系によって前記複数の測定用照明光束で照射された位置合わせ用パターンからの回折光を受光する受光光学系と、
前記受光光学系で受光した回折光を受光し測定用干渉信号を形成する受光部と、
測定用干渉信号の位相に基づき対象物の位置の測定を行う信号処理部と、を有することを特徴とする位置測定装置。
A light beam splitting unit that separates a light beam from a light source unit that emits a coherent light beam into a plurality of measurement illumination light beams, and a first measurement illumination light beam and a second measurement illumination light beam that are irradiated at a first incident angle; An illumination optical system that forms a third measurement illumination light beam emitted at a second incident angle different from the first incident angle, and makes the plurality of measurement illumination light beams parallel;
A light beam shifting unit for parallelly moving the plurality of measurement illumination light beams in a portion having a portion for making the plurality of measurement illumination light beams received from the illumination optical system parallel; And a beam waist position changing unit for changing a beam waist position of the plurality of measurement illumination light beams, and the correction optics receiving the first measurement illumination light beam, the second measurement illumination light beam, and the third measurement illumination light beam. The system arranges the first measurement illumination light beam and the second measurement illumination light beam with the optical axis interposed therebetween, arranges the third measurement illumination light beam at a peripheral position more than these, and uses the correction optical system. A parallel plane plate having a rotation axis in a direction orthogonal to the optical axis is arranged in the optical path of the third measurement illumination light beam so as to change an incident angle at which the third measurement illumination light beam irradiates the two-dimensional pattern. Correction optics And,
An irradiation optical system that irradiates the plurality of measurement illumination light beams to a positioning pattern provided on an object whose position is to be measured,
A light receiving optical system that receives diffracted light from the alignment pattern irradiated with the plurality of measurement illumination light beams by the irradiation optical system,
A light receiving unit that receives the diffracted light received by the light receiving optical system and forms a measurement interference signal;
A position measurement device comprising: a signal processing unit that measures a position of an object based on a phase of a measurement interference signal.
前記光束シフト部は、互いに光軸周りに回動可能に設けられた少なくとも一対のプリズムを備え、そのプリズムの交叉角度を変更することにより照射位置の移動距離を調整し、そのプリズムの交叉角度の2等分線方向を変えることにより測定用照明光束の照射位置の移動方向を調整するように構成されていることを特徴とする、請求項1に記載の位置測定装置。The light beam shift unit includes at least a pair of prisms that are rotatably provided around the optical axis, and adjusts a moving distance of an irradiation position by changing a crossing angle of the prisms. 2. The position measuring device according to claim 1, wherein the moving direction of the irradiation position of the measuring illumination light beam is adjusted by changing a bisector direction. 前記ビームウエスト位置変更部は、少なくとも凸レンズ及び凹レンズを有し、前記凸レンズと凹レンズとの間の間隔を変えることにより、前記複数の測定用照明光束のビームウエスト位置を変化させるように構成されていることを特徴とする、請求項2に記載の位置測定装置。The beam waist position changing unit has at least a convex lens and a concave lens, and is configured to change a beam waist position of the plurality of measurement illumination light beams by changing an interval between the convex lens and the concave lens. The position measuring device according to claim 2, wherein: 前記照明光学系は、前記光源部の発するコヒーレント光束から第1周波数の第1測定用照明光束、及び、この第1周波数と周波数が異なる第2周波数の第2測定用照明光束を形成する周波数シフターと、この第1測定用照明光束を分離して第1平面位置測定用光束及び第1法線方向測定用照明光束を形成し、第2測定用照明光束を分離して第2平面位置測定用光束及び第2法線方向測定用照明光束を形成する光束分離部を備え、前記照射光学系は、位置合わせ用パターンとして2次元パターンを照射するものであり、
前記受光光学系は、第1測定用照明光束と第2測定用照明光束の前記2次元パターンによる高次回折光と0次回折光の組み合わせ及び高次回折光同士の組み合わせのいずれか一つの周波数が異なる回折光の組み合わせを受け取るように構成され、前記受光部は、第1測定用照明光束と第2測定用照明光束の前記2次元パターンによる高次回折光と0次回折光の組み合わせ及び高次回折光同士の組み合わせのいずれか一つの周波数が異なる回折光の組み合わせから前記対象物の2次元パターンを設けた平面内での位置測定を行う平面位置測定用干渉信号を形成し、第1測定用照明光束又は第2測定用照明光束の0次回折光と前記第3測定用照明光束の0次回折光との組合せから前記対象物の法線方向の位置測定を行う法線方向位置測定用干渉信号を形成するように構成され、
前記信号処理部は、前記平面位置測定用干渉信号の位相に基づき対象物の平面方向の位置測定を行い、法線方向測定用干渉信号の位相に基づき対象物の法線方向の位置測定を行うように構成されていることを特徴とする、請求項1に記載の位置測定装置。
A frequency shifter configured to form a first measurement illumination light beam having a first frequency from a coherent light beam emitted by the light source unit and a second measurement illumination light beam having a second frequency different from the first frequency. And separating the first measurement illumination light beam to form a first plane position measurement light beam and a first normal direction measurement illumination light beam, and separating the second measurement illumination light beam to form a second plane position measurement light beam. A light beam separation unit that forms a light beam and a second normal direction measurement illumination light beam, wherein the irradiation optical system irradiates a two-dimensional pattern as a positioning pattern;
The light-receiving optical system may be configured to diffract one of a combination of a higher-order diffracted light and a zero-order diffracted light and a combination of the higher-order diffracted lights based on the two-dimensional pattern of the first measurement illumination light flux and the second measurement illumination light flux. The light receiving unit is configured to receive a combination of light, a combination of a high-order diffracted light and a zero-order diffracted light by the two-dimensional pattern of the first measurement illumination light flux and the second measurement illumination light flux, and a combination of the high-order diffracted lights. A plane position measurement interference signal for performing position measurement in a plane provided with a two-dimensional pattern of the object is formed from a combination of diffracted lights having different frequencies of any one of the above, and the first measurement illumination light beam or the second measurement light beam is used. A normal-direction position measuring interference signal for measuring the position of the object in the normal direction from a combination of the 0th-order diffracted light of the measuring illumination light beam and the 0th-order diffracted light of the third measuring illumination light beam. It is configured to form a
The signal processing unit performs position measurement in the plane direction of the object based on the phase of the plane position measurement interference signal, and performs position measurement in the normal direction of the object based on the phase of the normal direction measurement interference signal. The position measuring device according to claim 1, wherein the position measuring device is configured as follows.
電子線描画装置において、
該電子線描画装置の構成部品の取付け位置及びそれらの最大作動範囲をさけるように配置されている、請求項1から請求項4のいずれか1項に記載の位置測定装置を備え、
前記位置測定装置は対象物の位置を測定するための位置測定用光束を照射するための照明側光学部材と、前記対象物からの反射回折光を受光して前記対象物の位置を測定するための受光側光学部材とを有し、
前記照明側光学部材から照射して前記受光側光学部材に入射される光束が、前記電子線描画装置の構成部品の取付け位置及びそれらの最大作動範囲をさけて透過することができるように、前記照明側光学部材及び前記受光側光学部材が前記電子線描画装置に配置されていることを特徴とする電子線描画装置。
In an electron beam drawing apparatus,
The position measuring device according to any one of claims 1 to 4, wherein the position measuring device is arranged so as to avoid a mounting position of components of the electron beam lithography device and a maximum operation range thereof.
The position measurement device is an illumination-side optical member for irradiating a position measurement light beam for measuring the position of the object, and receives the reflected diffraction light from the object to measure the position of the object. Having a light receiving side optical member,
The luminous flux emitted from the illumination-side optical member and incident on the light-receiving side optical member can transmit through the mounting positions of the components of the electron beam writing apparatus and their maximum operating ranges, An electron beam drawing apparatus, wherein an illumination side optical member and the light receiving side optical member are arranged in the electron beam drawing apparatus.
JP06867197A 1997-03-21 1997-03-21 Position measuring device Expired - Fee Related JP3548665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06867197A JP3548665B2 (en) 1997-03-21 1997-03-21 Position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06867197A JP3548665B2 (en) 1997-03-21 1997-03-21 Position measuring device

Publications (2)

Publication Number Publication Date
JPH10267615A JPH10267615A (en) 1998-10-09
JP3548665B2 true JP3548665B2 (en) 2004-07-28

Family

ID=13380419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06867197A Expired - Fee Related JP3548665B2 (en) 1997-03-21 1997-03-21 Position measuring device

Country Status (1)

Country Link
JP (1) JP3548665B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596490B1 (en) * 1999-06-16 2006-07-03 삼성전자주식회사 Light illumination system
US20220268574A1 (en) * 2019-07-24 2022-08-25 Asml Holding N.V. On chip wafer alignment sensor

Also Published As

Publication number Publication date
JPH10267615A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
JP4065468B2 (en) Exposure apparatus and device manufacturing method using the same
US5184196A (en) Projection exposure apparatus
US5734478A (en) Projection exposure apparatus
JPH08167559A (en) Method and device for alignment
JPH1026513A (en) Instrument and method for measuring surface position of sample
JP3713354B2 (en) Position measuring device
JP3548665B2 (en) Position measuring device
JP3221057B2 (en) Alignment device
JPH08191043A (en) Alignment method and exposure system used for this method
JP2808619B2 (en) Positioning apparatus, exposure apparatus, and element manufacturing method
JP2000010013A (en) Phase contrast microscope and superposition measuring device
JP2814538B2 (en) Alignment device and alignment method
JP3713355B2 (en) Position measuring device
JP4052691B2 (en) Charged particle beam equipment
JP3367187B2 (en) Alignment device
JPH10125598A (en) Exposing method
JPH10122815A (en) Device and method for position detection
JPH09119811A (en) Alignment device, apparatus and method for exposure
JP2683409B2 (en) Positioning device
TW202209013A (en) Exposure apparatus, measurement apparatus, measurement method, and device manufacturing method
JP6061912B2 (en) Measuring method, exposure method and apparatus
JPH0786131A (en) Aligner
JPH10122816A (en) Position detection device, and exposure device and method
JP3106490B2 (en) Positioning apparatus and exposure apparatus having the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees