JPH08277403A - Production of permanent magnet alloy powder for bond magnet and apparatus therefor - Google Patents

Production of permanent magnet alloy powder for bond magnet and apparatus therefor

Info

Publication number
JPH08277403A
JPH08277403A JP7107998A JP10799895A JPH08277403A JP H08277403 A JPH08277403 A JP H08277403A JP 7107998 A JP7107998 A JP 7107998A JP 10799895 A JP10799895 A JP 10799895A JP H08277403 A JPH08277403 A JP H08277403A
Authority
JP
Japan
Prior art keywords
molten metal
hot water
tank
melting
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7107998A
Other languages
Japanese (ja)
Other versions
JP3845461B2 (en
Inventor
Hirokazu Kanekiyo
裕和 金清
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP10799895A priority Critical patent/JP3845461B2/en
Publication of JPH08277403A publication Critical patent/JPH08277403A/en
Application granted granted Critical
Publication of JP3845461B2 publication Critical patent/JP3845461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PURPOSE: To continuously obtain a permanent magnet alloy powder for bond magnet having stable magnetic characteristic by adjusting the pressure in a rapid cooling vessel according to the molten metal surface level in a molten metal storing vessel. CONSTITUTION: A raw material 20 blended into the composition of R-Fe-B base magnet is melted in a melting furnace 3 and stored into a molten metal storing vessel 4. The molten metal 21 in the molten metal storing vessel 4 is dropped on a water-cooling roll 7 rotated at high speed to obtain a rapid cooling strip 22 having amorphous structure or ultra-fine crystal structure of <=1nm average crystal grain diameter by rapid cooling solidification. At the time of tapping this molten metal, the molten metal tapping rate is kept constant by adjusting the pressures in a rapid cooling vessel 2 and a melting vessel 1 according to the molten metal surface level in the molten metal storing vessel 4. After cutting off the obtd. rapid cooling strip 22 into the rapid cooling flakes 23 with a cut-off machine 10, the flakes are pressed into 2-3g/cm<3> apparent sp.gr. with a compressor 11. Further, the pressed flakes are crushed into 3-50μm average powder grain diameter, separately with a crusher, and successively, heat treatment is executed at 600-800 deg.C in inert gas to obtain the magnet alloy powder of fine crystal having 1-30nm average crystal grain diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーター、スピ
ーカー用ならびにメーターやセンサーなどに最適なボン
ド磁石用永久磁石合金粉末の製造方法及びその製造装置
に係り、非晶質合金粉末もしくは平均結晶粒径が10n
m以下の超微細結晶組織をもつ合金粉末を連続的に製造
できる超急冷合金薄帯の製造方法と前記粉末を特定の熱
処理にてボンド磁石用永久磁石合金粉末とする熱処理と
を組み合わせることにより、配合原料から平均結晶粒径
300nm以下である微細結晶型ボンド磁石用磁石合金
粉末を連続的に生産するボンド磁石用永久磁石合金粉末
の製造方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a permanent magnet alloy powder for various magnets, loudspeakers, and bond magnets, which is optimal for meters and sensors. Diameter is 10n
By combining a method for producing an ultra-quenched alloy ribbon capable of continuously producing an alloy powder having an ultra-fine crystal structure of m or less with a heat treatment for producing a permanent magnet alloy powder for a bonded magnet by a specific heat treatment, The present invention relates to a method and an apparatus for producing a permanent magnet alloy powder for a bond magnet, which continuously produces a fine crystal type magnet alloy powder for a bond magnet having an average crystal grain size of 300 nm or less from a blended raw material.

【0002】[0002]

【従来の技術】R−Fe−B系ボンド磁石用磁石合金粉
末は、主に銅および鉄からなる回転ロール上に溶融金属
を出湯し、急冷・凝固して非晶質合金薄帯を製造する方
法が、これまで数多く検討されてきた。例えば、特開昭
57−210934号公報や特開昭60−9852号公
報等で、Nd−Fe−B系永久磁石を回転ロールによる
急冷・凝固法によって製造する方法が紹介されている。
また、同様な方法が磁性材料を研究する大学、研究機関
において多数研究され、報告されているが、いずれも数
10g〜数100gの合金を底部にオリフィスを有する
ノズル内で融解し出湯する実験室規模のものである。
2. Description of the Related Art Magnet alloy powder for R-Fe-B bond magnets is prepared by casting molten metal on a rotating roll mainly made of copper and iron, quenching and solidifying it to produce an amorphous alloy ribbon. Many methods have been studied so far. For example, JP-A-57-210934 and JP-A-60-9852 introduce methods for producing Nd-Fe-B based permanent magnets by a rapid cooling / solidification method using a rotating roll.
A number of similar methods have been studied and reported in universities and research institutes that study magnetic materials, but in each case, several tens to several hundreds of alloys are melted in a nozzle having an orifice at the bottom to release hot water. It is of scale.

【0003】処理量を増した例としては、特願昭63−
333829号公報で溶解炉を傾転させ底部に出湯ノズ
ルを有する容器内へ溶湯を注ぎ、ノズル下方にある回転
ロール上に出湯する方法が紹介されている。しかしなが
ら、工業的量産に対応できるよう処理量を50kg以上
まで増すためには、当該溶解炉および溶解槽を大きくす
る必要があるだけでなく、嵩比重が0.01g/cm3
程度の合金薄帯を収容するために巨大な急冷槽が必要と
なり、装置が非常に大型となるため、装置の製造コスト
が巨額になる他、真空排気およびガス置換に多大の時間
と膨大な不活性ガスが必要となる。
As an example of increasing the processing amount, Japanese Patent Application No. 63-
Japanese Patent No. 333829 discloses a method of tilting a melting furnace to pour the molten metal into a container having a tapping nozzle at the bottom and discharge the molten metal onto a rotating roll below the nozzle. However, in order to increase the treatment amount to 50 kg or more so as to be compatible with industrial mass production, not only the melting furnace and the melting tank need to be large, but the bulk specific gravity is 0.01 g / cm 3
A huge quenching tank is required to accommodate a small amount of alloy ribbon, and the equipment becomes very large, resulting in a huge manufacturing cost of the equipment, and a lot of time and a huge amount of time for evacuation and gas replacement. Active gas is required.

【0004】[0004]

【発明が解決しようとする課題】ボンド磁石用磁石合金
粉末としてα−鉄および鉄を主成分とする強磁性合金か
らなる軟磁性相とNd2Fe14B型結晶構造を有する硬
磁性相とが共存し、各構成相の平均結晶粒径が1nm〜
50nmである永久磁石合金粉末、また、Nd2Fe14
B型結晶構造を有する硬磁性相を主相とする平均結晶粒
径が300nm以下である永久磁石合金粉末は酸化しや
すい希土類金属を含むことから、配合原料の溶解、急冷
・凝固は、真空中もしくは不活性ガス中で行う必要があ
るため、装置の大型化に伴い、真空排気時間が長くなる
と共に、不活性ガス量が膨大になるなど、生産効率およ
び生産コストの上昇の点から、工業生産上実用的でな
い。
A soft magnetic phase composed of α-iron and a ferromagnetic alloy containing iron as a main component and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure as magnet alloy powders for bonded magnets. Coexistence and the average crystal grain size of each constituent phase is 1 nm to
Permanent magnet alloy powder having a thickness of 50 nm, and Nd 2 Fe 14
Permanent magnet alloy powder having a hard magnetic phase having a B-type crystal structure as a main phase and an average crystal grain size of 300 nm or less contains a rare earth metal which is easily oxidized. Or, since it needs to be performed in an inert gas, the vacuum pumping time becomes longer as the size of the equipment increases, and the amount of inert gas becomes enormous, resulting in an increase in production efficiency and production cost. Not practical.

【0005】また、前記磁石合金粉末の製造において、
回転ロールを用いた急冷・凝固法の処理量向上のために
は溶解量を増す必要があるが、溶解量を増すには溶解坩
堝、高周波電源の大型化等が必要となり、結果として装
置の製造コストの高騰を招き、同時に前述したように設
備の大型化は真空排気時間が長くなる、不活性ガス量が
膨大になるなどの問題を引き起こす。
In the production of the magnet alloy powder,
It is necessary to increase the melting amount to improve the throughput of the rapid cooling / solidification method using a rotating roll, but to increase the melting amount, it is necessary to increase the size of the melting crucible and the high frequency power source, etc. At the same time, the cost rises, and at the same time, the enlargement of the equipment causes problems such as a long vacuum exhaust time and an enormous amount of inert gas.

【0006】一方、回転ロールを用いた急冷・凝固法に
より得られる合金薄帯の嵩比重は0.01g/cm3
度であるため、合金薄帯を回収する容器は同様の組成を
もつ比重7.5g/cm3の鋳造合金の700倍以上の
容積を必要する。従って、工業生産上溶解量を増し、急
冷・凝固の処理量を増した場合、非常に大きな回収容器
が必要となる。
On the other hand, since the bulk specific gravity of the alloy ribbon obtained by the rapid cooling / solidification method using a rotating roll is about 0.01 g / cm 3 , the container for recovering the alloy ribbon has a specific gravity of 7 with the same composition. It requires more than 700 times the volume of a cast alloy of 0.5 g / cm 3 . Therefore, if the amount of dissolution is increased and the amount of quenching / solidification is increased in industrial production, a very large collection container is required.

【0007】ボンド磁石用磁石合金粉末において均一な
磁気特性を得るためには、回転ロール上へ出湯される溶
湯のヘッド圧の変化に対応して溶解槽と急冷槽の槽間差
圧を調整することで、出湯量を一定に保ち、均質な急冷
組織をもつ合金薄帯を作製する必要があるが、合金薄帯
の生産量を増すために溶解量を増やすと溶湯ヘッド圧の
変化が大きくなり、槽間差圧の調整が溶湯ヘッド圧の変
化に対応しきれなくなるため、出湯量が変動し均質な急
冷組織をもつ合金薄帯が得られない問題がある。
In order to obtain uniform magnetic properties in the magnet alloy powder for bonded magnets, the pressure difference between the melting tank and the quench tank is adjusted according to the change in the head pressure of the molten metal discharged onto the rotating roll. Therefore, it is necessary to keep the molten metal output constant and to produce an alloy ribbon with a homogeneous quenching structure.However, if the melting amount is increased to increase the alloy ribbon production, the change in the melt head pressure will increase. Since the adjustment of the pressure difference between the tanks cannot cope with the change of the molten metal head pressure, there is a problem that the amount of the molten metal is changed and an alloy ribbon having a uniform quenched structure cannot be obtained.

【0008】また、貯湯容器内の湯高を測定し、槽間差
圧を調整する方法が提案(特開平5−75801号公
報)されているが、50kg以上の溶解量の大型炉では
槽内容積が大きくなり、圧力制御が十分早く達成でき
ず、無理にこれを達成しようとすると、差圧制御のため
の排気装置およびガス注入機構が著しく大型化、巨大な
建設費が必要となる問題がある。
A method of measuring the height of the hot water in the hot water storage container and adjusting the pressure difference between the tanks has been proposed (JP-A-5-75801). However, in a large furnace with a melting amount of 50 kg or more, The volume becomes large, pressure control cannot be achieved quickly enough, and if you try to achieve this forcefully, the exhaust device and the gas injection mechanism for differential pressure control will become significantly large, and a huge construction cost will be required. is there.

【0009】いずれにしてもボンド磁石用磁石合金粉末
の製造において、従来からある回転ロールを用いた急冷
・凝固装置では処理量を量産規模まで増すためには、装
置の大型化が必要となるが、作業効率の低下、装置の製
造コストおよび運転コストの上昇、ならびに磁気特性の
バラツキを引き起こすため、ボンド磁石用磁石合金粉末
のコストアップにつながる。
In any case, in the production of the magnet alloy powder for bonded magnets, in the conventional quenching / solidifying apparatus using the rotating roll, it is necessary to upsize the apparatus in order to increase the processing amount to the mass production scale. In addition, the work efficiency is lowered, the manufacturing cost and the operating cost of the apparatus are increased, and the magnetic properties are varied, which leads to an increase in the cost of the magnet alloy powder for the bonded magnet.

【0010】この発明は、等方性ボンド磁石原料となる
3μm〜500μmの粉末粒径をもつα−鉄および鉄を
主成分とする強磁性合金からなる軟磁性相とNd2Fe
14B型結晶構造を有する硬磁性相とが共存し、各構成相
の平均結晶粒径が1nm〜50nmであるボンド磁石用
永久磁石合金粉末、また、Nd2Fe14B型結晶構造を
有する硬磁性相を主相とする平均結晶粒径が300nm
以下である安定した磁気特性を有するボンド磁石用永久
磁石合金粉末を連続的に製造して安価に提供できるボン
ド磁石用永久磁石合金粉末の製造方法及びその装置の提
供を目的としている。
The present invention is a soft magnetic phase composed of α-iron having a powder particle size of 3 μm to 500 μm, which is a raw material for isotropic bonded magnets, and a ferromagnetic alloy containing iron as a main component, and Nd 2 Fe.
A hard magnetic phase having a 14 B-type crystal structure coexistent, and an average crystal grain size of each constituent phase is 1 nm to 50 nm, and a permanent magnet alloy powder for a bonded magnet, and a hard magnet having an Nd 2 Fe 14 B-type crystal structure. Average crystal grain size of 300 nm with magnetic phase as main phase
It is an object of the present invention to provide a method for producing a permanent magnet alloy powder for a bond magnet and an apparatus therefor capable of continuously producing a permanent magnet alloy powder for a bond magnet having the following stable magnetic properties and providing the powder at a low cost.

【0011】[0011]

【課題を解決するための手段】発明者は、ボンド磁石用
磁石粉末を量産化する上において、溶解槽及び溶解炉等
設備の大型化の防止、製造コストの低減と共に真空排気
及びガス供給に長時間を要することなく、安価に品質良
好なるボンド磁石用永久磁石合金粉末を製造する方法に
ついて、種々検討した結果、溶解炉の能力と溶湯を急冷
薄帯化する急冷ロール等急冷装置の能力をほぼ等しく
し、溶解炉にて溶解した溶湯を急冷装置にて急冷薄帯化
する前に、溶湯温度に保温された貯湯容器に溶湯を貯湯
し、貯湯容器内の溶湯を急冷装置にて急冷薄帯にする
時、溶解炉にて磁石組成の配合原料を連続的に溶解し、
貯湯容器内の減少した溶湯に追加補充し、追加補充した
溶湯を連続して急冷薄帯化すると共に貯湯容器内の溶湯
レベルの低下に伴う出湯ノズルでの溶湯圧の変動によ
り、急冷薄帯の品質、寸法の変動を防止するために、貯
湯容器内の溶湯レベルを検出器にて検出し、前記検出信
号により貯湯容器内の溶湯のヘッド圧の変化に対応し
て、急冷槽の圧力を変動させることにより、溶解槽と急
冷槽の槽間圧力差と貯湯容器内の溶湯のヘッド圧からな
る出湯圧力に依存する出湯量を一定に保持して、急冷薄
帯の品質を均一に保持し、急冷薄帯を急冷槽内にて切断
圧縮することにより、後続工程での設備の大型化の防止
及びガス供給及び排気時間の増大化を防止できることを
知見し、この発明を完成した。
In order to mass produce the magnet powder for bonded magnets, the inventor of the present invention has long experience in preventing the size of equipment such as a melting tank and a melting furnace from increasing in size, reducing manufacturing costs, and evacuation and gas supply. As a result of various studies on a method of producing good quality permanent magnet alloy powder for bonded magnets at low cost without requiring time, the ability of the melting furnace and the ability of a quenching device such as a quenching roll to quench the molten metal into a thin ribbon are almost found. Equalize, melt the molten metal in the melting furnace into a thin ribbon by the quenching device, store the molten metal in a hot water storage container kept at the temperature of the molten metal, and quench the molten metal in the hot water container by the rapid cooling device. When, the melting raw material of the magnet composition is continuously melted in a melting furnace,
The melt that has decreased in the hot water storage container is additionally replenished, and the melt that has been additionally replenished is continuously made into a quench ribbon, and the melt pressure at the tap nozzle changes as the melt level in the hot water storage container decreases. In order to prevent quality and size fluctuations, the melt level in the hot water storage container is detected by the detector, and the pressure in the quench tank is changed according to the change in the head pressure of the melt in the hot water storage container by the detection signal. By doing so, the amount of molten metal depending on the molten metal discharge pressure consisting of the pressure difference between the melting tank and the quenching tank and the head pressure of the molten metal in the hot water storage container is kept constant, and the quality of the quenched ribbon is held uniformly, The present invention has been completed by discovering that cutting and compression of a rapidly cooled ribbon in a rapid cooling tank can prevent an increase in the size of equipment and an increase in gas supply and exhaust time in subsequent steps.

【0012】すなわち、この発明は、R−Fe−B系磁
石合金(但しRはPr、Nd、Dyの一種または二種以
上)組成になる如く配合した原料を真空もしくは不活性
ガス雰囲気の溶解槽内で、配合原料を追加供給できる機
構を有する溶解炉にて溶解後、この溶湯を底部に出湯ノ
ズルを有し出湯温度を保持できる貯湯容器へ傾注後、貯
湯容器内の溶湯を出湯ノズル直下に配置した水冷ロール
上へ出湯して急冷・凝固により非晶質もしくは平均結晶
粒径が1nm以下の超微細結晶組織をもつ合金薄帯を作
製するに際し、出湯ノズルからの出湯時、貯湯容器内の
溶湯レベルに応じて水冷ロールを配置する急冷槽内の圧
力を制御して一定の出湯量を保持し、又水冷ロールによ
り溶湯の急冷凝固中に溶解炉へ配合原料を追加供給し、
溶解後、再び溶湯容器へ溶湯を供給する作業を繰り返し
て、連続的に合金薄帯を作製し、作製した前記薄帯を急
冷槽内に設けた破断機により薄片となし、さらに、圧縮
機により薄片を2g/cm3〜3g/cm3に圧縮した
後、急冷槽外へと排出し、圧縮薄片を粉砕機により平均
粉末粒径が3μm〜500μmになるよう粉砕した後、
不活性ガス中にて600℃〜800℃の熱処理を行い、
平均結晶粒径300nm以下である微細結晶型永久磁石
合金粉末を連続的に製造することを特徴とするボンド磁
石用永久磁石合金粉末の製造方法である。
That is, the present invention relates to an R—Fe—B based magnet alloy (where R is one or more of Pr, Nd, and Dy) in a vacuum or an inert gas atmosphere in which a raw material is mixed. After melting in a melting furnace that has a mechanism that can additionally supply the blended raw materials, after pouring this molten metal into a hot water storage container that has a tapping nozzle at the bottom and can maintain the tapping temperature, the molten metal in the hot water storage container is placed directly under the tapping nozzle. When producing an alloy ribbon having an amorphous or ultrafine crystal structure with an average crystal grain size of 1 nm or less by tapping on the placed water-cooling roll and quenching and solidifying, when tapping from the tap nozzle, Depending on the level of the molten metal, control the pressure in the quench tank where the water-cooled roll is placed to maintain a constant amount of tapping, and by the water-cooled roll, the compounding raw materials are additionally supplied to the melting furnace during rapid solidification of the molten metal,
After melting, the operation of supplying the molten metal to the molten metal container again is repeated to continuously produce alloy ribbons, and the produced ribbons are made into flakes by a breaking machine provided in a quench tank, and further by a compressor. after compressing the flakes 2g / cm 3 ~3g / cm 3 , and discharged to the quench tank outside having an average powder particle size by a pulverizer compressed flakes and crushed into 3Myuemu~500myuemu,
Heat treatment at 600 ℃ ~ 800 ℃ in an inert gas,
A method for producing a permanent magnet alloy powder for a bonded magnet, comprising continuously producing a fine crystalline permanent magnet alloy powder having an average crystal grain size of 300 nm or less.

【0013】また、この発明は、上記の構成において、
組成式をFe100-x-yxy(但しRはPr、Nd、D
yの一種または二種以上)と表し、組成範囲を限定する
記号x、yが下記値を満足する実質的に90%以上非晶
質である合金薄片を粉砕機により平均粉末粒径が3μm
〜500μmになるよう粉砕した後、実質的に90%以
上非晶質である粉砕粉を不活性ガス中にて結晶化が開始
する温度付近から600℃〜750℃の処理温度までの
昇温速度が10℃/分〜50℃/秒になる結晶化熱処理
を施し、α−鉄および鉄を主成分とする強磁性合金から
なる軟磁性相とNd2Fe14B型結晶構造を有する硬磁
性相とが共存し、各構成相の平均結晶粒径が1nm〜5
0nmであるボンド磁石用永久磁石合金粉末の製造方法
を提案する。 3≦x≦6at% 10≦y≦30at%
Further, according to the present invention, in the above structure,
The composition formula Fe 100-xy R x B y ( where R is Pr, Nd, D
y is one or two or more) and the symbols x and y for limiting the composition range satisfy the following values, and substantially 90% or more of amorphous alloy flakes have an average powder particle size of 3 μm by a pulverizer.
After pulverizing to a particle size of ˜500 μm, substantially 90% or more of the pulverized powder that is amorphous is heated in an inert gas from near the temperature at which crystallization starts to a processing temperature of 600 ° C. to 750 ° C. Is subjected to crystallization heat treatment at 10 ° C./min to 50 ° C./sec to obtain a soft magnetic phase composed of α-iron and a ferromagnetic alloy containing iron as a main component and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure. Coexist, and the average crystal grain size of each constituent phase is 1 nm to 5
A method for producing a permanent magnet alloy powder for a bonded magnet having a size of 0 nm is proposed. 3 ≦ x ≦ 6 at% 10 ≦ y ≦ 30 at%

【0014】また、この発明は、上記の構成において、
組成式をFe100-x-yxy(但しRはPr、Nd、D
yの一種または二種以上)と表し、組成範囲を限定する
記号x、yが下記値を満足する結晶粒径が10nm以下
の超微細結晶組織を有する合金薄片を粉砕機により平均
粉末粒径が3μm〜500μmになるよう粉砕した後、
結晶粒径が10nm以下である粉砕粉を不活性ガス中に
て550℃〜800℃の温度で平均結晶粒径が300n
m〜50nmに粒成長する金属組織制御のための熱処理
を施し、Nd2Fe14B型結晶構造を有する硬磁性相を
主相とする平均結晶粒径300nm以下であるボンド磁
石用永久磁石合金粉末の製造方法を提案する。 8≦x≦20at% 4≦y≦10at%
Further, according to the present invention, in the above structure,
The composition formula Fe 100-xy R x B y ( where R is Pr, Nd, D
The alloy flakes having an ultrafine crystal structure with a crystal grain size of 10 nm or less satisfying the following values where the symbols x and y that limit the composition range are After pulverizing to 3 μm to 500 μm,
The pulverized powder having a crystal grain size of 10 nm or less has an average crystal grain size of 300 n at a temperature of 550 ° C. to 800 ° C. in an inert gas.
A permanent magnet alloy powder for a bonded magnet, which has been subjected to a heat treatment for controlling a metallographic structure for grain growth to m to 50 nm and has a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure as a main phase and an average crystal grain size of 300 nm or less. The manufacturing method of is proposed. 8 ≦ x ≦ 20 at% 4 ≦ y ≦ 10 at%

【0015】また、この発明は、真空又は不活性ガス雰
囲気を保持かつ槽内圧力を調整可能な溶解槽と急冷槽と
から構成され、溶解槽はR−Fe−B(但しRはPr、
Nd、Dyの一種または二種以上)磁石合金組成になる
如く配合原料を溶解する溶解炉と、底部に出湯ノズルを
有しかつ出湯温度に保持する加熱装置を有する貯湯容器
と、大気の浸入を防止しつつ配合原料を溶解炉に供給す
る配合原料供給機構とを配設し、急冷槽は出湯ノズルか
ら出湯された溶湯を急冷凝固して急冷薄帯とするための
水冷可能な回転ロールと、得られた嵩比重0.01g/
cm3〜0.05g/cm3の急冷薄帯を破断するための
破断機と、破断片を更に嵩比重2g/cm3〜3g/c
3に圧縮する水冷可能な圧縮機と、大気の浸入を防止
して合金薄片を槽外に排出可能な合金薄帯回収機構とを
有し、雰囲気を破ることなく溶解、出湯、急冷凝固、破
断、圧縮、排出を並行連続して行うことを特徴とするボ
ンド磁石用永久磁石合金粉末の製造装置である。
Further, the present invention comprises a melting tank capable of holding a vacuum or an inert gas atmosphere and adjusting the pressure inside the tank and a quenching tank, the melting tank being R-Fe-B (where R is Pr,
(One or more of Nd and Dy) A melting furnace that melts the compounded raw materials so as to obtain a magnet alloy composition, a hot water storage container that has a tapping nozzle at the bottom and a heating device that holds the tapping temperature, and infiltration of the atmosphere. A mixing raw material supply mechanism that supplies the mixing raw material to the melting furnace while being prevented is provided, and the quenching tank is a water-coolable rotating roll for rapidly solidifying the molten metal discharged from the tapping nozzle to form a rapid cooling ribbon, Obtained bulk specific gravity 0.01 g /
cm 3 ~0.05g / and breaking machine for breaking the quenched ribbons of cm 3, further bulk specific gravity of the fracture fragments 2g / cm 3 ~3g / c
It has a water-coolable compressor that compresses to m 3 , and an alloy ribbon recovery mechanism that can prevent the intrusion of the atmosphere and discharge the alloy flakes outside the tank. Melting, tapping, rapid solidification without breaking the atmosphere, This is an apparatus for producing a permanent magnet alloy powder for a bonded magnet, which is characterized in that rupture, compression and discharge are performed continuously in parallel.

【0016】また、この発明は、上記の構成において、
溶解槽内の圧力を一定に保持しながら、溶解炉から貯湯
容器へ傾注した溶湯レベルを検出し、前記検出信号によ
り貯湯容器内の出湯ノズルのオリフィス部に働く溶湯の
ヘッド圧の変化に対応して急冷槽内の圧力を調整するこ
とにより、溶解槽と急冷槽の槽間差圧と貯湯容器内の溶
湯のヘッド圧の和からなる出湯圧力に依存する出湯量を
一定に保持し、均質な急冷・凝固組織をもつ合金薄帯を
連続的に製造するボンド磁石用永久磁石合金粉末の製造
装置を併せて提案する。
Further, according to the present invention, in the above structure,
While maintaining the pressure in the melting tank constant, the molten metal level that is poured from the melting furnace to the hot water container is detected, and the detection signal responds to changes in the head pressure of the molten metal that acts on the orifice part of the tapping nozzle in the hot water container. By adjusting the pressure in the quenching tank by adjusting the pressure in the quenching tank, the amount of tapping water that depends on the tapping pressure, which is the sum of the pressure difference between the melting tank and the quenching tank and the head pressure of the molten metal in the hot water storage container, is kept constant and a uniform We also propose an apparatus for producing permanent magnet alloy powder for bonded magnets that continuously produces alloy ribbons with a rapidly cooled and solidified structure.

【0017】[0017]

【作用】この発明によるボンド磁石用永久磁石合金粉末
の製造方法を図1に示す製造装置に基づいて詳述する。
装置は溶解炉3を有する溶解槽1とその下部に接続され
た急冷槽2を基本とし、いずれも槽内は真空又は不活性
ガス雰囲気を保持かつ槽内圧力を調整可能なように排気
口1a,2aとガス供給口1b,2bを有する。側壁に
排気口1a、ガス供給口1bを有する溶解槽1上部に
は、同様に排気口8a、ガス供給口8bを有する配合原
料供給装置8を載置してあり、前記溶解槽1内には傾動
可能の溶解炉3と、外周部に図示しない加熱装置を有し
かつ下部に出湯ノズル5を有する貯湯容器4を配置して
ある。貯湯容器4の出湯ノズル5は溶解槽1と急冷槽2
との隔壁に配置され、急冷槽2内にはこの出湯ノズル5
下方位置に急冷薄帯を生成する水冷ロール7を設けてあ
る。
The method of manufacturing the permanent magnet alloy powder for bonded magnets according to the present invention will be described in detail with reference to the manufacturing apparatus shown in FIG.
The apparatus is basically composed of a melting tank 1 having a melting furnace 3 and a quenching tank 2 connected to the lower part of the melting tank 3. In each case, an exhaust port 1a is provided so that a vacuum or an inert gas atmosphere can be maintained in the tank and the pressure in the tank can be adjusted. , 2a and gas supply ports 1b, 2b. On the upper part of the dissolution tank 1 having the exhaust port 1a and the gas supply port 1b on the side wall, the compounded material supply device 8 similarly having the exhaust port 8a and the gas supply port 8b is placed. A tiltable melting furnace 3 and a hot water storage container 4 having a heating device (not shown) on the outer peripheral portion and a hot water discharge nozzle 5 at the lower portion are arranged. The tapping nozzle 5 of the hot water storage container 4 has a melting tank 1 and a quench tank 2.
This hot water discharge nozzle 5 is placed in the partition wall of
A water-cooled roll 7 for forming a quenched ribbon is provided at the lower position.

【0018】急冷槽2には前記水冷ロール7により得ら
れた急冷薄帯22を回収するための上下方向に配置され
た合金回収機構部9が接続され、同機構部9には水冷ロ
ール7より送り出される急冷薄帯22を破断する破断機
10、ホッパー部、ボールバルブ12を経て、破断され
た急冷薄片23を圧縮する圧縮機11を内蔵し、ボール
バルブ12下方の側壁に排気口9a、ガス供給口9bを
有する。圧縮機11は、シリンダー内に落下した急冷薄
片23をピストンで圧縮し、圧縮時に外気を同機構部9
内に浸入させることなく、ヘッド側から圧縮した急冷薄
片23を排出できる構成からなる。
The quenching tank 2 is connected to an alloy recovery mechanism section 9 arranged vertically for recovering the quenched ribbon 22 obtained by the water cooling roll 7. The mechanism section 9 is connected to the alloy cooling mechanism section 9 by the water cooling roll 7. A breaker 10 for breaking the quenched ribbon 22 sent out, a hopper, and a compressor 11 for compressing the broken quenching thin piece 23 through the ball valve 12 are built in, and an exhaust port 9a and a gas are provided on a side wall below the ball valve 12. It has a supply port 9b. The compressor 11 compresses the rapidly cooled thin piece 23 that has fallen into the cylinder with a piston, and the outside air is compressed during the compression.
The quenching thin piece 23 compressed from the head side can be discharged without entering into the inside.

【0019】貯湯容器4には、溶湯レベルを検出するた
め耐火物製浮き15と前記浮き15の上下動を検出する
CCDカメラ14を溶解槽1上部に設けた覗き窓13上
部を配置し、CCDカメラ14にて検知された浮き15
の上下動は、演算器にて溶解槽1内の圧力を検出した信
号P1と急冷槽2内の圧力を検出した信号P2より、出湯
ノズル5の出湯圧力を算出し、予め設定された出湯圧力
との偏差信号が急冷槽2のガス供給口2bに送られて出
湯圧力が一定になるように制御されると共に前記偏差信
号は溶解槽1のガス供給口1bに送られ、溶解槽1内の
圧力が一定なる如く、排気量に応じて各々ガス供給口1
b,2bよりガスが供給される。この発明において、溶
湯レベルの検出装置としてここでは耐火物製浮きとCC
Dカメラを挙げたが、レーザービームの反射光をCCD
カメラにて測定する方法や熱電対法、接触子を入れる方
法、γ線法等公知の方法を用いることができる。
In the hot-water storage container 4, a refractory float 15 for detecting the level of the melt and a CCD camera 14 for detecting the vertical movement of the float 15 are provided in the upper part of the peep window 13 provided in the upper part of the melting tank 1, and the CCD is arranged. Float 15 detected by camera 14
The up-and-down movement of is calculated by calculating the tapping pressure of the tapping nozzle 5 from a signal P 1 that detects the pressure in the melting tank 1 and a signal P 2 that detects the pressure in the quenching tank 2 by a calculator, and is set in advance. A deviation signal from the tapping pressure is sent to the gas supply port 2b of the quench tank 2 so that the tapping pressure is controlled to be constant, and the deviation signal is sent to the gas feed port 1b of the melting tank 1 to melt the tank 1. The gas supply port 1 is adjusted according to the exhaust volume so that the internal pressure becomes constant.
Gas is supplied from b and 2b. In the present invention, a refractory float and CC are used as a molten metal level detection device.
I mentioned the D camera, but the reflected light of the laser beam was CCD.
Known methods such as a method of measuring with a camera, a thermocouple method, a method of inserting a contactor, and a γ-ray method can be used.

【0020】真空又は不活性ガスにて保持された溶解槽
1内に大気の浸入を防止しながら、R−Fe−B系磁石
の所要組成になる如く配合された配合原料20は、原料
供給装置8より溶解炉3に供給されて所要温度にて溶解
され、得られた溶湯21は溶解炉3を傾注して、所要温
度に保温された貯湯容器4に貯湯される。図中、6は傾
注時に溶湯を貯湯容器4へ集めるロートである。貯湯容
器4の溶湯21は、容器4底部の出湯ノズル5の直下に
配置されて高速回転する水冷ロール7上に落下し、急冷
凝固により非晶質又は平均結晶粒径が10nm以下の微
細結晶組織を有する急冷薄帯22が得られる。
The raw material supply device is a raw material supply device 20 in which the raw material 20 is blended so as to have the required composition of the R—Fe—B magnet while preventing the invasion of the atmosphere into the melting tank 1 held in vacuum or an inert gas. 8 is supplied to the melting furnace 3 and melted at a required temperature, and the obtained molten metal 21 is poured into the melting furnace 3 and stored in a hot water storage container 4 which is kept at the required temperature. In the figure, 6 is a funnel that collects the molten metal in the hot-water storage container 4 at the time of tilting. The molten metal 21 of the hot water storage container 4 is placed immediately below the tapping nozzle 5 at the bottom of the container 4 and drops onto a water-cooling roll 7 that rotates at high speed, and is rapidly solidified to have an amorphous or fine crystal structure with an average crystal grain size of 10 nm or less. A quenched ribbon 22 having

【0021】出湯ノズル5から水冷ロール7へ溶湯21
が出湯する際、上述のごとく、貯蔵容器4内の溶湯レベ
ルに応じて、急冷槽2及び溶解槽1の槽内圧力を調整す
ることにより、出湯量は一定に保持され、また、水冷ロ
ール7による溶湯21の急冷凝固中、溶解炉3へ配合原
料20を配合原料供給装置8より供給し、前記溶解炉3
にて溶解後、再度溶湯21を貯湯容器4内に傾注する作
業を繰返し、連続的に水冷ロール7により急冷薄帯22
を製造することができる。
Molten metal 21 from the tapping nozzle 5 to the water cooling roll 7
When the hot water is discharged, as described above, the pressure of the hot water is kept constant by adjusting the tank pressures of the quenching tank 2 and the melting tank 1 according to the melt level in the storage container 4, and the water cooling roll 7 During the rapid solidification of the molten metal 21 due to, the compounding raw material 20 is supplied to the melting furnace 3 from the compounding raw material supply device 8,
After being melted in, the operation of tilting the molten metal 21 into the hot water storage container 4 is repeated, and the rapid cooling thin strip 22 is continuously made by the water cooling roll 7.
Can be manufactured.

【0022】得られたみかけ密度(嵩比重)0.01g
/cm3〜0.05g/cm3の急冷薄帯22は、直ちに
破断機10により、50cm以下のみかけ密度0.1g
/cm3〜1g/cm3の急冷薄片23に破断後、前記薄
片23を圧縮機11により、みかけ密度2g/cm3
3g/cm3に圧縮する。圧縮機11より排出され圧縮
された圧縮合金薄片は、別途粉砕機により平均粉末粒径
が3μm〜500μmになるように粉砕した後、熱処理
炉で不活性ガス中にて600℃〜800℃に熱処理し
て、平均結晶粒径が1nm〜300nmの微細結晶のボ
ンド磁石用永久磁石合金粉末を連続的に製造することが
できる。
The apparent density (bulk specific gravity) obtained was 0.01 g.
/ Cm 3 to 0.05 g / cm 3 of the quenched ribbon 22 is immediately ruptured by the breaking machine 10 to give an apparent density of 50 g or less of 0.1 g.
/ Cm 3 to 1 g / cm 3 of the quenched thin piece 23, the thin piece 23 is compressed by the compressor 11 to have an apparent density of 2 g / cm 3 to
Compress to 3 g / cm 3 . The compressed alloy flakes discharged from the compressor 11 and compressed are separately crushed by a crusher so that the average powder particle size becomes 3 μm to 500 μm, and then heat-treated at 600 ° C. to 800 ° C. in an inert gas in a heat treatment furnace. As a result, fine crystal permanent magnet alloy powders for bond magnets having an average crystal grain size of 1 nm to 300 nm can be continuously produced.

【0023】この発明において、出湯ノズル5から溶湯
21を出湯する際、出湯ノズル5のオリフィスの直径が
0.5mm〜2mmと小さいため、溶湯21の粘性が
1.7Pa・S以上と高い場合、溶解炉3から貯湯容器
4へ傾注するだけでは、溶湯16と出湯ノズル5の内部
壁面の摩擦力により出湯できないため、溶解槽1内の圧
力より急冷槽2内の圧力を下げることで、溶解槽1と急
冷層2に圧力差を付け、この圧力差により出湯ノズル5
から溶湯21を出湯することができる。また、溶解温度
が高いために溶湯21の粘性が1.7Pa・S未満の場
合、溶解炉3から貯湯容器4へ傾注後、直ちに出湯が開
始するため、下部に開閉自在の機構を有した出湯ノズル
5を設けることにより、出湯動作を行うことができる。
In the present invention, when the molten metal 21 is discharged from the molten metal discharge nozzle 5, since the diameter of the orifice of the molten metal discharge nozzle 5 is as small as 0.5 mm to 2 mm, when the molten metal 21 has a high viscosity of 1.7 Pa · S or more, Since the molten metal 16 cannot be tapped due to the frictional force between the molten metal 16 and the inner wall surface of the tapping nozzle 5, the pressure in the quenching tank 2 is lower than the pressure in the quenching tank 2 by simply tilting it from the melting furnace 3 into the melting tank 4. 1 and the quenching layer 2 have a pressure difference, and the hot water discharge nozzle 5 is caused by this pressure difference.
The molten metal 21 can be discharged from the molten metal. Further, when the viscosity of the molten metal 21 is less than 1.7 Pa · S due to the high melting temperature, tapping from the melting furnace 3 to the hot water storage container 4 immediately starts tapping, so tapping with a mechanism that can be opened and closed at the bottom By providing the nozzle 5, the hot water discharge operation can be performed.

【0024】この発明において、急冷ロールにCu製ロ
ールを用いる場合は、付設する水冷装置の冷却能力にも
左右されるが、そのロール表面周速度は10〜50mm
/秒の範囲が好適の急冷組織が得られるので好ましい。
すなわち周速度が10mm/秒未満ではアモルファス組
織とならず、また、ロール表面周速度が50mm/秒を
超えると結晶化の際、良好な硬磁気特性の得られる微細
結晶集合体とならず好ましくない。尚、付設する水冷装
置は、定常的に凝固熱を抜熱する必要を満たすものでな
ければならず、単位時間当たりの凝固潜熱と出湯量に応
じて算出し、これとバランスしてこれを越えるものでな
くてはならず、20kcal/hr程度が少なくとも必
要となる。
In the present invention, when a Cu roll is used as the quench roll, the peripheral surface speed of the roll is 10 to 50 mm, although it depends on the cooling capacity of the attached water cooling device.
The range of / sec is preferable because a suitable quenched structure can be obtained.
That is, if the peripheral speed is less than 10 mm / sec, an amorphous structure is not formed, and if the peripheral surface speed exceeds 50 mm / sec, it is not preferable because a fine crystal aggregate that can obtain good hard magnetic properties is obtained during crystallization. . In addition, the attached water cooling device must satisfy the requirement to steadily remove the heat of solidification, and it is calculated according to the latent heat of solidification and the amount of tapping water per unit time, and the balance is exceeded. It must be a material and at least about 20 kcal / hr is required.

【0025】この発明の製造方法により、実質的に90
%以上の非晶質の急冷薄片が得られるが、その磁石組成
は組成式Fe100-x-yxyと表し、組成範囲を限定す
る記号x、yは下記値を満足し、 3≦x≦6at% 10≦y≦30at% 前記急冷薄片は粉砕機により平均粉末粒径が3μm〜5
00μmになるように粉砕した後、実質的に90%以上
の非晶質である粉砕粉に、不活性ガス中で結晶化が開始
する温度付近から600℃〜750℃の処理温度までの
昇温速度が10℃/分〜50℃/秒の結晶化熱処理を施
すことにより、α−鉄および鉄を主成分とする強磁性化
合物からなる軟磁性相とNd2Fe14B型結晶構造を有
する硬磁性相が共存し、各構成相の平均結晶粒径が1n
m〜50nmの微細結晶の磁石粉末が得られる。
By the manufacturing method of the present invention, substantially 90
While% or more amorphous quenched foils is obtained, the magnet composition represents the composition formula Fe 100-xy R x B y , symbol x to limit the composition ranges, y can satisfy the following values, 3 ≦ x ≦ 6 at% 10 ≦ y ≦ 30 at% The quenched flakes have an average powder particle size of 3 μm to 5 by a pulverizer.
After being pulverized to have a particle size of 00 μm, the pulverized powder is substantially 90% or more amorphous and the temperature is increased from around the temperature at which crystallization starts in an inert gas to 600 ° C. to 750 ° C. By performing a crystallization heat treatment at a rate of 10 ° C./min to 50 ° C./sec, a soft magnetic phase composed of α-iron and a ferromagnetic compound containing iron as a main component and a hard structure having an Nd 2 Fe 14 B type crystal structure. Magnetic phase coexists and average crystal grain size of each constituent phase is 1n
Microcrystalline magnet powder of m-50 nm is obtained.

【0026】この発明において、組成式のx、yの値を
限定した理由はRは3at%未満では3.0kOe以上
のiHcが得られず、また6at%を超えると6kG以
上のBrが得られないため、3at%〜6at%の範囲
とする。好ましいRの範囲は4〜5.5at%である。
又、Bは10at%未満では超急冷法を用いても非晶質
組織が得られず、熱処理を施しても2.0kOe未満の
iHcしか得られず、又30at%を超えると3.0k
Oe以上のiHcが得られないため、10at%〜30
at%の範囲とする。好ましいBの範囲は15at%〜
20at%である。
In the present invention, the reason for limiting the values of x and y in the composition formula is that when R is less than 3 at%, iHc of 3.0 kOe or more cannot be obtained, and when it exceeds 6 at%, Br of 6 kG or more is obtained. Since it does not exist, the range is 3 at% to 6 at%. The preferable range of R is 4 to 5.5 at%.
Further, if B is less than 10 at%, an amorphous structure cannot be obtained even if the ultra-quenching method is used, iHc of less than 2.0 kOe is obtained even if heat treatment is applied, and if it exceeds 30 at%, it becomes 3.0 k.
Since iHc higher than Oe cannot be obtained, 10 at% to 30
The range is at%. The preferred range of B is 15 at%
It is 20 at%.

【0027】この発明において、結晶化熱処理温度を6
00〜750℃に限定した理由は、600℃未満ではN
2Fe14B相が析出しないためiHcが発現せず、ま
た、750℃を超えると粒成長が著しく、iHc、Br
及び減磁曲線の角型性を劣化するので好ましくない。ま
た、この発明において、熱処理を結晶化が開始する温度
付近からの昇温速度が、10℃/分未満では昇温中に粒
成長が起こり良好な硬磁気特性が得られる微細結晶集合
体とならず、3kOe以上のiHcが得られず、また、
50℃/秒を超えると600℃を通過してから生成する
Nd2Fe14B相の析出が十分に行はれず、iHcが低
下するだけでなく、磁化曲線の第2象限にBr点近傍に
磁化の低下のある減磁曲線となり、(BH)maxが劣
化するので好ましくない。
In the present invention, the crystallization heat treatment temperature is set to 6
The reason for limiting the temperature to 00 to 750 ° C is N below 600 ° C.
iHc is not expressed because the d 2 Fe 14 B phase does not precipitate, and grain growth is remarkable when the temperature exceeds 750 ° C., iHc, Br
And the squareness of the demagnetization curve is deteriorated, which is not preferable. Further, in the present invention, if the temperature rising rate from around the temperature at which crystallization of heat treatment starts is less than 10 ° C./minute, grain growth will occur during temperature rising, and good hard magnetic characteristics will be obtained. No iHc of 3 kOe or more was not obtained, and
If it exceeds 50 ° C / sec, the Nd 2 Fe 14 B phase formed after passing over 600 ° C is not sufficiently precipitated, iHc is not only lowered, but also near the Br point in the second quadrant of the magnetization curve. The demagnetization curve has a decrease in magnetization, and (BH) max deteriorates, which is not preferable.

【0028】この発明において、Feの一部をAl、S
i、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、
Ga、Zr、Nb、Mo、Ag、Pt、Au、Pbの一
種または数種を組み合せて置換することにより、平均結
晶粒径が1nm〜30nmに微細化されるために、残留
磁束密度が向上し、さらに保磁力を発現するNd2Fe
14B型結晶構造を有する硬磁性相の金属組織中における
体積比率が増すため、保磁力が向上し、同時に耐熱性お
よび耐食性も向上する。ただし、Feに対する置換量が
0.1%以下の場合はかかる効果を得られず、50%以
上の場合は、飽和磁化が大きく低下するため良好な磁気
特性が得られないため、Feに対する置換量を0.1%
〜50%の範囲とする。好ましいFeに対する置換量は
2%〜20%である。
In the present invention, a part of Fe is Al, S
i, Ti, V, Cr, Mn, Co, Ni, Cu, Zn,
By substituting one or several of Ga, Zr, Nb, Mo, Ag, Pt, Au, and Pb in combination, the average crystal grain size is reduced to 1 nm to 30 nm, so that the residual magnetic flux density is improved. , Nd 2 Fe that further develops coercive force
Since the volume ratio of the hard magnetic phase having the 14 B-type crystal structure in the metal structure increases, the coercive force improves, and at the same time, the heat resistance and the corrosion resistance also improve. However, when the substitution amount of Fe is 0.1% or less, such an effect cannot be obtained, and when the substitution amount of Fe is 50% or more, good magnetization characteristics cannot be obtained because the saturation magnetization is significantly reduced. 0.1%
-50% range. The preferable substitution amount for Fe is 2% to 20%.

【0029】この発明において、各構成相の平均結晶粒
径を1nm〜50nmに限定した理由は1nm未満の平
均結晶粒径を得ることは工業生産上困難であり、また、
50nmを超えると減磁曲線の角型性が著しく劣化し所
要の磁気特性を得ることができない。また、この発明の
実質的に非晶質組織の急冷薄帯を粉砕機にて3μm〜5
00μmに粉砕する理由は、3μm未満では粉砕粉の表
面積が増大するため、ボンド磁石の成形体密度が低下し
て好ましくなく、500μmを超えるとボンド磁石内部
の空隙が大きくなり成形体密度が低下するため好ましく
ない。
In the present invention, the reason why the average crystal grain size of each constituent phase is limited to 1 nm to 50 nm is that it is difficult to obtain an average crystal grain size of less than 1 nm in industrial production.
If it exceeds 50 nm, the squareness of the demagnetization curve is significantly deteriorated, and the required magnetic characteristics cannot be obtained. In addition, the quenched ribbon of the substantially amorphous structure of the present invention is 3 μm to 5 μm with a pulverizer.
The reason for pulverizing to 00 μm is not preferable because the surface area of the pulverized powder is increased when the particle diameter is less than 3 μm, which is not preferable because the molded body density of the bonded magnet decreases, and when it exceeds 500 μm, the voids inside the bonded magnet increase and the molded material density decreases. Therefore, it is not preferable.

【0030】また、この発明により結晶粒径が10nm
以下の超微細結晶組織を有する急冷薄帯の得られる磁石
組成は、組成式Fe100-x-yxy(但しRはPr、N
d、Dyの一種または二種以上)と表し、組成範囲を限
定する記号x、yは下記値を満足し、 8≦x≦20at%、 4≦y≦10at% 前記薄片を粉砕機にて、平均粉末粒径が3μm〜500
μmになるよう粉砕した後、結晶粒径が10nm以下で
ある粉砕粉を不活性ガス中にて、550℃〜800℃の
温度に平均結晶粒系が300nm〜50nmに粒成長す
る金属組織制御の熱処理を施し、Nd2Fe14B型結晶
構造を有する硬磁性相を主相とする平均結晶粒径が30
0nm以下のボンド磁石用磁石合金粉末が得られる。
According to the present invention, the crystal grain size is 10 nm.
The following magnet composition obtained the quenched ribbon having ultra fine crystalline structure, composition formula Fe 100-xy R x B y ( where R is Pr, N
d, one or more of Dy), and the symbols x and y that limit the composition range satisfy the following values: 8 ≦ x ≦ 20 at%, 4 ≦ y ≦ 10 at% Average powder particle size is 3 μm to 500
After crushing to a particle size of μm, a crushed powder having a crystal grain size of 10 nm or less is grown in an inert gas at a temperature of 550 ° C. to 800 ° C. to have an average crystal grain size of 300 nm to 50 nm. After heat treatment, the average grain size of the hard magnetic phase having the Nd 2 Fe 14 B type crystal structure as the main phase is 30
A magnet alloy powder for a bonded magnet having a particle size of 0 nm or less is obtained.

【0031】この発明において、組成式のx、yの値を
限定した理由は、Rは8at%未満ではα−Feと同一
構造の立方晶組織が存在するため、80kOe以上のi
Hc、ならびに7kG以上のBrが得られず、また、2
0at%を超えるとRリッチの非磁性相が多くなるため
飽和磁化が低下して好ましくないため、8at%〜20
at%の範囲とする。好ましいRの範囲は10at%〜
16at%である。Bは、4at%未満では菱面体組織
となるため、8kOe以上のiHcならびに7kG以上
のBrが得られず、また、10at%を超えると飽和磁
化が低下して好ましくないため、4at%〜10at%
の範囲とする。好ましいBの範囲は6at%〜8at%
である。
In the present invention, the reason for limiting the values of x and y in the composition formula is that when R is less than 8 at%, a cubic crystal structure having the same structure as α-Fe exists, so that i of 80 kOe or more is present.
Hc and Br of 7 kG or more were not obtained, and 2
If it exceeds 0 at%, the R-rich non-magnetic phase increases and the saturation magnetization decreases, which is not preferable.
The range is at%. The preferred range of R is 10 at%
It is 16 at%. When B is less than 4 at%, a rhombohedral structure is formed, so iHc of 8 kOe or more and Br of 7 kG or more cannot be obtained, and when it exceeds 10 at%, saturation magnetization is unfavorably reduced, and therefore 4 at% to 10 at%.
Range. The preferred range of B is 6 at% to 8 at%
Is.

【0032】Feは一部又は全量をCoと置換しても良
く、さらにFe+Coの量に対し、0.1%〜20%の
範囲であれば、Al、Si、Ti、V、Cr、Mn、N
i、Cu、Ga、Zr、Nb、Mo、Ag、Pt、A
u、Pbを含有しても磁気特性をそれほど劣化させるも
のでなく許容される。
Fe may be partially or wholly replaced with Co, and within the range of 0.1% to 20% with respect to the amount of Fe + Co, Al, Si, Ti, V, Cr, Mn, N
i, Cu, Ga, Zr, Nb, Mo, Ag, Pt, A
Even if u and Pb are contained, they do not deteriorate the magnetic properties so much and are allowed.

【0033】急冷薄帯の結晶粒径を10nm以下に限定
した理由は、10nmを超えると粗大なα−Fe粒子を
含む組織となり好ましくない。この発明の急冷薄帯を粉
砕機にて3μm〜500μmに粉砕した理由は、3μm
未満では粉砕粉の表面積が増大するためボンド磁石成形
密度が低下して好ましくなく、500μmを超えるとボ
ンド磁石内部の空隙が大きくなり、成形体密度が低下す
るため好ましくない。本発明における金属組織制御熱処
理温度を550℃〜800℃に限定した理由は550℃
未満では8KOe以上のiHcを得るために必要な結晶
粒に成長せず、800℃を超えると平均結晶粒径が30
0nm以上となり、Brが著しく低下するため、好まし
くない。
The reason for limiting the crystal grain size of the quenched ribbon to 10 nm or less is not preferable when it exceeds 10 nm because the structure contains coarse α-Fe particles. The reason for crushing the quenched ribbon of the present invention to 3 μm to 500 μm with a crusher is 3 μm.
If it is less than 500 μm, the surface area of the pulverized powder increases, and the molded density of the bonded magnet decreases, which is not preferable, and if it exceeds 500 μm, voids inside the bonded magnet increase and the density of the molded product decreases, which is not preferable. The reason why the metallographic structure control heat treatment temperature in the present invention is limited to 550 ° C to 800 ° C is 550 ° C.
When the temperature is less than 80 ° C, the grains do not grow into grains necessary for obtaining iHc of 8 KOe or more, and when the temperature exceeds 800 ° C, the average grain size is 30.
It becomes 0 nm or more and Br is remarkably lowered, which is not preferable.

【0034】[0034]

【実施例】【Example】

実施例1 製造装置として、図1に示すこの発明による連続製造装
置を用い、Nd4.5Fe7718.5at%磁石組成になる
如く、配合原料20kgを原料供給装置より溶解炉に装
入し、溶解時間20分後、温度1350℃の溶湯を外周
部に高周波加熱装置を配設して溶湯を1300℃に保持
可能な容量3.2lの貯湯容器内に装入後、前記貯湯容
器底部に開閉自在の出湯ノズルより、回転数1200r
pmの外径350mmの水冷Cuロール外周面に出湯し
て、非晶質組織よりなる厚み40μm、幅3.0mmの
急冷薄帯20kgを22分にて急冷凝固させた。この
際、前記急冷薄帯を製造中に溶解炉内では連続に装入さ
れた配合原料を溶解し、前記貯湯容器内の減少した溶湯
に再度溶解した溶湯を追加補充する、溶解、貯湯、急冷
凝固工程を連続5回繰返し行って、みかけ密度(嵩比
重)0.02g/cm3の急冷薄帯を連続して96kg
製造した。
Example 1 As a manufacturing apparatus, a continuous manufacturing apparatus according to the present invention shown in FIG. 1 was used, and 20 kg of compounded raw material was charged into a melting furnace from a raw material supply apparatus so as to have a Nd 4.5 Fe 77 B 18.5 at% magnet composition and melted. After 20 minutes, a molten metal having a temperature of 1350 ° C. is placed on the outer peripheral portion by a high-frequency heating device, and the molten metal is charged into a 3.2 l storage container capable of holding the molten metal at 1300 ° C., and then freely opened and closed at the bottom of the molten metal storage container. 1,200 rpm from the hot water nozzle
A water-cooled Cu roll having an outer diameter of 350 mm and an outer diameter of 350 mm was poured onto the outer peripheral surface of the water-cooled Cu roll, and 20 kg of a rapidly cooling thin ribbon having an amorphous structure and a thickness of 40 μm and a width of 3.0 mm was rapidly solidified in 22 minutes. At this time, during the production of the quenched ribbon, the compounded raw materials continuously charged in the melting furnace are melted, and the reduced melt in the hot water storage container is replenished with additional melted metal, melting, hot storage, rapid cooling. The solidification process is repeated 5 times in succession, and 96 kg of quenched thin strips with an apparent density (bulk specific gravity) of 0.02 g / cm 3 are continuously cast.
Manufactured.

【0035】得られた急冷薄帯は、急冷槽内で続いて破
断機により50cm以下のみかけ密度0.8g/cm3
の薄片にした後、圧縮機に圧力6.4kg/cm3にて
前記薄片を圧縮して、みかけ密度2.4g/cm3に圧
縮後、圧縮機外に排出した。その後、前記圧縮合金薄片
を粉砕機にて平均粉末粒径150μmに粉砕後、不活性
ガス中で結晶化が開始する温度580℃から640℃の
処理温度までの昇温速度30℃/分にて結晶化熱処理を
施し、この後粉砕してα−鉄および鉄を主成分とする強
磁性合金からなる軟磁性相とNd2Fe14B型結晶構造
を有する硬磁性相が共存し、各構成相の平均結晶粒径が
50nmのボンド磁石用磁石合金粉末を得た。
The quenched ribbon thus obtained was subsequently crushed by a breaking machine in a quench tank to give an apparent density of 0.8 g / cm 3 or less.
The thin pieces were compressed into a compressor at a pressure of 6.4 kg / cm 3 , compressed to an apparent density of 2.4 g / cm 3 , and then discharged to the outside of the compressor. After that, the compressed alloy flakes were crushed by a crusher to an average powder particle size of 150 μm, and then the temperature was raised from 30 ° C./min to a treatment temperature of 580 ° C. to 640 ° C. at which crystallization started in an inert gas. Crystallization heat treatment is performed, and then pulverization is performed to coexist a soft magnetic phase made of α-iron and a ferromagnetic alloy containing iron as a main component and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure, and each constituent phase A magnet alloy powder for a bonded magnet having an average crystal grain size of 50 nm was obtained.

【0036】得られた合金粉末にエポキシ樹脂からなる
バインダーを3at%の割合で混合したのち、12nm
×12nm×8nm寸法のボンド磁石を作成した。得ら
れたボンド磁石は密度6g/cm3、その磁気特性は、
iHc=3.5kOe、Br=8.4kG、BHmax
=5.5MGOeであった。
A binder made of epoxy resin was mixed with the obtained alloy powder at a ratio of 3 at%, and then 12 nm
A bonded magnet having dimensions of 12 nm and 8 nm was prepared. The obtained bonded magnet has a density of 6 g / cm 3 , and its magnetic characteristics are
iHc = 3.5 kOe, Br = 8.4 kG, BHmax
= 5.5 MGOe.

【0037】実施例2 実施例1と同一の製造装置を用い、Nd13Fe807
t%磁石組成になる如く、実施例1と同一条件にて溶
製、急冷凝固して、結晶粒径が10nm以下の超微細結
晶組織を有する急冷薄片を作製し、その後粉砕機にて平
均粉末粒径が150μmになるよう粉砕した後、結晶粒
径が10nm以下の粉砕粉を不活性ガス中で650℃に
10分間、金属組織制御の熱処理を行い、平均結晶粒径
が200nmに粒成長させ、Nd2Fe14B型結晶構造
を有する硬磁性相を主相とする平均結晶粒径200nm
以下のボンド磁石用磁性合金粉末を得た。得られた合金
粉末を実施例1と同一条件にてボンド磁石を作成し、得
られたボンド磁石は密度6g/cm3、その磁気特性
は、iHc=9.2kOe、Br=6.5kG、BHm
ax=9MGOeであった。
Example 2 Using the same manufacturing apparatus as in Example 1, Nd 13 Fe 80 B 7 a
To obtain a t% magnet composition, it was melted and rapidly solidified under the same conditions as in Example 1 to prepare a quenched thin piece having an ultrafine crystal structure with a crystal grain size of 10 nm or less, and then an average powder with a pulverizer. After pulverizing to a particle size of 150 μm, pulverized powder having a crystal grain size of 10 nm or less is heat-treated at 650 ° C. for 10 minutes in an inert gas to control the metallographic structure to grow the average crystal grain size to 200 nm. , Nd 2 Fe 14 B type crystal structure having a hard magnetic phase as a main phase and an average crystal grain size of 200 nm
The following magnetic alloy powder for bonded magnets was obtained. A bond magnet was prepared from the obtained alloy powder under the same conditions as in Example 1. The obtained bond magnet had a density of 6 g / cm 3 , and its magnetic characteristics were iHc = 9.2 kOe, Br = 6.5 kG, BHm.
It was ax = 9MGOe.

【0038】[0038]

【発明の効果】この発明は、実施例に明らかなように、
溶解炉の能力と溶湯を急冷薄帯化する急冷ロール装置の
能力をほぼ等しくして連続化可能にし、かつ装置内のガ
ス供給及び排気時間の増大化を防止したもので、溶解炉
にて溶解した溶湯を急冷装置にて急冷薄帯化する前に、
出湯温度に保温された貯湯装置に溶湯を貯湯し、貯湯装
置内の溶湯を急冷装置にて急冷薄帯にする時、溶解炉に
て磁石組成の配合原料を連続的に溶解し、貯湯装置内の
減少した溶湯に追加補充し、追加補充した溶湯を連続し
て急冷薄帯化すると共に、貯湯容器内の溶湯レベルを検
出器にて検出し、前記検出信号により貯湯容器内の出湯
ノズルのオリフィス部に働く溶湯のヘッド圧の変化に対
応して、急冷槽の圧力を調整することにより、溶解槽と
急冷槽の槽間圧力差と貯湯容器内の溶湯のヘッド圧から
なる出湯圧力に依存する出湯量を一定に保持して、急冷
薄帯の品質を均一に保持することができ、さらに、急冷
薄帯を急冷槽内にて切断圧縮することにより、後続工程
での設備を大型化することなく、安定した磁気特性をも
つボンド磁石用磁粉を量産規模で安価に製造できる。
The present invention, as is apparent from the examples,
The capacity of the melting furnace and the capacity of the quenching roll device for quenching the molten metal into a thin strip are made almost equal, making it possible to achieve continuity and preventing the increase of gas supply and exhaust time in the device. Before quenching the molten metal into a thin ribbon with a quenching device,
When the molten metal is stored in the hot water storage device that is kept at the tapping temperature, and when the molten metal in the hot water storage device is made into a rapid cooling ribbon, the raw materials of the magnet composition are continuously melted in the melting furnace and Of the molten metal that has been reduced, the melt that has been supplemented is continuously quenched and thinned, and the level of the molten metal in the hot water storage container is detected by a detector, and the orifice of the tap nozzle in the hot water storage container is detected by the detection signal. By adjusting the pressure of the quench tank in response to changes in the head pressure of the molten metal working on the part, it depends on the pressure difference between the melting tank and the quench tank and the tapping pressure, which is the head pressure of the molten metal in the hot water container. The amount of tapping water can be kept constant and the quality of the quenched ribbon can be kept uniform. Furthermore, by cutting and compressing the quenched ribbon in the quench tank, the equipment in the subsequent process can be enlarged. Magnets for bonded magnets that have stable magnetic characteristics without The can be manufactured at low cost in mass production scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明によるボンド磁石用永久磁石合金粉末
の製造するための製造装置の概略を示す説明図である。
FIG. 1 is an explanatory view showing an outline of a manufacturing apparatus for manufacturing a permanent magnet alloy powder for a bonded magnet according to the present invention.

【符号の説明】[Explanation of symbols]

1 溶解槽 1a,2a,8a,9a 排気口 1b,2b,8b,9b ガス供給口 2 急冷槽 3 溶解炉 4 貯湯容器 5 出湯ノズル 6 ロート 7 水冷ロール 8 配合原料供給装置 9 合金回収機構部 10 破断機 11 圧縮機 12 ボールバルブ 13 覗き窓 14 CCDカメラ 15 浮き 20 配合原料 21 溶湯 22 急冷薄帯 23 急冷薄片 DESCRIPTION OF SYMBOLS 1 Melting tank 1a, 2a, 8a, 9a Exhaust port 1b, 2b, 8b, 9b Gas supply port 2 Quenching tank 3 Melting furnace 4 Hot water storage container 5 Hot water nozzle 6 Roto 7 Water cooling roll 8 Blended raw material supply device 9 Alloy recovery mechanism part 10 Breaking machine 11 Compressor 12 Ball valve 13 Viewing window 14 CCD camera 15 Floating 20 Blended material 21 Molten metal 22 Rapid cooling ribbon 23 Rapid cooling flakes

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年8月17日[Submission date] August 17, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】貯湯容器4には溶湯レベルを検出するため
耐火物製浮き15を配置し、前記浮き15の上下動を検
出するCCDカメラ14を溶解槽1上部に設けた覗き窓
13上部配置し、CCDカメラ14にて検知された浮
き15の上下動の変位は、図1に示すごとく演算器に
溶解槽1内の圧力を検出した信号P1と急冷槽2内
の圧力を検出した信号P2 とともに演算され、出湯ノズ
ル5の出湯圧力を算出し、予め設定された出湯圧力との
偏差信号が急冷槽2のガス供給口2bに送られて出湯圧
力が一定になるように制御されると共に前記偏差信号は
溶解槽1のガス供給口1bに送られ、溶解槽1内の圧力
が一定なる如く、排気量に応じて各々ガス供給口1b,
2bよりガスが供給される。この発明において、溶湯レ
ベルの検出装置としてここでは耐火物製浮きとCCDカ
メラを挙げたが、レーザービームの反射光をCCDカメ
ラにて測定する方法や熱電対法、接触子を入れる方法、
γ線法等公知の方法を用いることができる。
[0019] The reservoir 4 is arranged refractory steel float 15 for detecting the soluble water level, arranged in viewing window 13 top having a CCD camera 14 in the dissolution tank 1 top for detecting the vertical movement of the float 15 and, the displacement of the vertical movement of the float 15, which is detected by the CCD camera 14, in the arithmetic unit as shown in FIG. 1, detects the pressure of the quench tank 2 and the signal P 1 detects the pressure in the dissolution tank 1 Calculated together with the generated signal P 2 , the tapping pressure of the tapping nozzle 5 is calculated, and a deviation signal from the preset tapping pressure is sent to the gas supply port 2b of the quenching tank 2 so that the tapping pressure is controlled to be constant. At the same time, the deviation signal is sent to the gas supply port 1b of the dissolution tank 1, and the gas supply ports 1b, 1b,
Gas is supplied from 2b. In this invention, a refractory float and a CCD camera were mentioned as the molten metal level detection device, but a method of measuring reflected light of a laser beam with a CCD camera, a thermocouple method, a method of inserting a contact,
A known method such as a γ-ray method can be used.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】出湯ノズル5から水冷ロール7へ溶湯21
が出湯する際、上述のごとく、貯容器4内の溶湯レベ
ルに応じて、急冷槽2及び溶解槽1の槽内圧力を調整す
ることにより、出湯量は一定に保持され、また、水冷ロ
ール7による溶湯21の急冷凝固中、溶解炉3へ配合原
料20を配合原料供給装置8より供給し、前記溶解炉3
にて溶解後、再度溶湯21を貯湯容器4内に傾注する作
業を繰返し、連続的に水冷ロール7により急冷薄帯22
を製造することができる。
Molten metal 21 from the tapping nozzle 5 to the water cooling roll 7
There upon tapping, as described above, depending on the melt level of savings hot water container 4, by adjusting the bath in the pressure of the quench tank 2 and the dissolving tank 1, tapping amount is held constant, also water-cooled roll During the rapid solidification of the molten metal 21 by 7, the compounding raw material 20 is supplied to the melting furnace 3 from the compounding raw material supply device 8 and the melting furnace 3
After being melted in, the operation of tilting the molten metal 21 into the hot water storage container 4 is repeated, and the rapid cooling thin strip 22 is continuously made by the water cooling roll 7.
Can be manufactured.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】この発明において、出湯ノズル5から溶湯
21を出湯する際、出湯ノズル5のオリフィスの直径が
0.5mm〜2mmと小さいため、溶湯21の粘性が
1.7Pa・S以上と高い場合、溶解炉3から貯湯容器
4へ傾注するだけでは、溶湯23と出湯ノズル5の内部
壁面の摩擦力により出湯できないため、溶解槽1内の圧
力より急冷槽2内の圧力を下げることで、溶解槽1と急
冷層2に圧力差を付け、この圧力差により出湯ノズル5
から溶湯21を出湯することができる。また、溶解温度
が高いために溶湯21の粘性が1.7Pa・S未満の場
合、溶解炉3から貯湯容器4へ傾注後、直ちに出湯が開
始するため、下部に開閉自在の機構を有した出湯ノズル
5を設けることにより、出湯操作を行うことができる。
In the present invention, when the molten metal 21 is discharged from the molten metal discharge nozzle 5, since the diameter of the orifice of the molten metal discharge nozzle 5 is as small as 0.5 mm to 2 mm, when the molten metal 21 has a high viscosity of 1.7 Pa · S or more, Since the molten metal 23 cannot be tapped due to the frictional force between the molten metal 23 and the inner wall surface of the tapping nozzle 5, the pressure in the quenching tank 2 is lower than the pressure in the quenching tank 2 so that the melting tank 3 is simply poured into the hot water storage container 4. 1 and the quenching layer 2 have a pressure difference, and the hot water discharge nozzle 5 is caused by this pressure difference.
The molten metal 21 can be discharged from the molten metal. Further, when the viscosity of the molten metal 21 is less than 1.7 Pa · S due to the high melting temperature, tapping from the melting furnace 3 to the hot water storage container 4 immediately starts tapping, so tapping with a mechanism that can be opened and closed at the bottom By providing the nozzle 5, hot water discharge operation can be performed.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22F 9/10 B22F 9/10 C22C 38/00 303 C22C 38/00 303A 303S H01F 1/06 H01F 1/06 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B22F 9/10 B22F 9/10 C22C 38/00 303 C22C 38/00 303A 303S H01F 1/06 H01F 1 / 06 A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系磁石合金(但しRはP
r、Nd、Dyの一種または二種以上)組成になる如く
配合した原料を真空もしくは不活性ガス雰囲気の溶解槽
内で、配合原料を追加供給できる機構を有する溶解炉に
て溶解後、この溶湯を底部に出湯ノズルを有し出湯温度
を保持できる貯湯容器へ傾注後、貯湯容器内の溶湯を出
湯ノズル直下に配置した水冷ロール上へ出湯して急冷・
凝固により非晶質もしくは平均結晶粒径が1nm以下の
超微細結晶組織をもつ合金薄帯を作製するに際し、出湯
ノズルからの出湯時、貯湯容器内の溶湯レベルに応じて
水冷ロールを配置する急冷槽内の圧力を制御して一定の
出湯量を保持し、又水冷ロールにより溶湯の急冷凝固中
に溶解炉へ配合原料を追加供給し、溶解後、再び溶湯容
器へ溶湯を供給する作業を繰り返して連続的に合金薄帯
を作製し、作製した前記薄帯を急冷槽内に設けた破断機
により薄片となし、さらに、圧縮機により薄片を2g/
cm3〜3g/cm3に圧縮した後、急冷槽外へと排出
し、圧縮薄片を粉砕機により平均粉末粒径が3μm〜5
00μmになるよう粉砕した後、不活性ガス中にて60
0℃〜800℃の熱処理を行い、平均結晶粒径300n
m以下である微細結晶型永久磁石合金粉末を連続的に製
造することを特徴とするボンド磁石用永久磁石合金粉末
の製造方法。
1. An R-Fe-B magnet alloy (where R is P
(1 or more of r, Nd, Dy) The raw materials mixed so as to have a composition are melted in a melting furnace having a mechanism capable of additionally supplying the mixed raw materials in a melting tank in a vacuum or an inert gas atmosphere, and then the molten metal Is poured into a hot water storage container that has a hot water discharge nozzle at the bottom and can hold the hot water temperature, and then the molten metal in the hot water storage container is tapped onto a water-cooling roll placed immediately below the hot water discharge nozzle to rapidly cool it.
When producing an alloy ribbon having an amorphous or ultrafine crystal structure with an average crystal grain size of 1 nm or less by solidification, at the time of tapping from the tap nozzle, a water cooling roll is arranged according to the level of the molten metal in the hot water storage container. The pressure in the tank is controlled to maintain a constant amount of molten metal, and the work of repeatedly supplying the blended raw material to the melting furnace during the rapid solidification of the molten metal by the water-cooled roll and then melting the molten metal and then supplying the molten metal to the molten metal container is repeated. To continuously produce alloy ribbons, and the produced ribbons are made into thin pieces by a breaking machine provided in a quenching tank, and further, 2g / thick pieces are made by a compressor.
After being compressed to cm 3 to 3 g / cm 3, it is discharged to the outside of the quenching tank, and the compressed flakes are pulverized by a pulverizer to have an average powder particle diameter of 3 μm to 5
After pulverizing to a size of 00 μm, 60 in an inert gas
Heat treatment at 0 ° C to 800 ° C is performed to obtain an average crystal grain size of 300n.
A method for producing a permanent magnet alloy powder for a bonded magnet, which comprises continuously producing a fine crystalline permanent magnet alloy powder having a particle size of m or less.
【請求項2】 組成式をFe100-x-yxy(但しRは
Pr、Nd、Dyの一種または二種以上)と表し、組成
範囲を限定する記号x、yが下記値を満足する実質的に
90%以上非晶質である合金薄片を粉砕機により平均粉
末粒径が3μm〜500μmになるよう粉砕した後、実
質的に90%以上非晶質である粉砕粉を不活性ガス中に
て結晶化が開始する温度付近から600℃〜750℃の
処理温度までの昇温速度が10℃/分〜50℃/秒にな
る結晶化熱処理を施し、α−鉄および鉄を主成分とする
強磁性合金からなる軟磁性相とNd2Fe14B型結晶構
造を有する硬磁性相とが共存し、各構成相の平均結晶粒
径が1nm〜50nmである請求項1に記載のボンド磁
石用永久磁石合金粉末の製造方法。 3≦x≦6at% 10≦y≦30at%
Wherein the composition formula Fe 100-xy R x B y ( where R is Pr, Nd, one or two or more Dy) represents the symbol x to limit the composition range, y satisfies the following value The alloy flakes that are substantially 90% or more amorphous are pulverized by a pulverizer so that the average powder particle size is 3 μm to 500 μm, and then the pulverized powder that is substantially 90% or more amorphous in an inert gas. In the above, crystallization heat treatment is performed such that the temperature rising rate from the temperature near the start of crystallization to the processing temperature of 600 ° C to 750 ° C is 10 ° C / min to 50 ° C / sec, and α-iron and iron are the main components. 2. The bond magnet according to claim 1, wherein a soft magnetic phase made of a ferromagnetic alloy and a hard magnetic phase having a Nd 2 Fe 14 B type crystal structure coexist, and the average crystal grain size of each constituent phase is 1 nm to 50 nm. For manufacturing permanent magnet alloy powder for automobiles. 3 ≦ x ≦ 6 at% 10 ≦ y ≦ 30 at%
【請求項3】 組成式をFe100-x-yxy(但しRは
Pr、Nd、Dyの一種または二種以上)と表し、組成
範囲を限定する記号x、yが下記値を満足する結晶粒径
が10nm以下の超微細結晶組織を有する合金薄片を粉
砕機により平均粉末粒径が3μm〜500μmになるよ
う粉砕した後、結晶粒径が10nm以下である粉砕粉を
不活性ガス中にて550℃〜800℃の温度で平均結晶
粒径が300nm〜50nmに粒成長する金属組織制御
のための熱処理を施し、Nd2Fe14B型結晶構造を有
する硬磁性相を主相とする平均結晶粒径300nm以下
である請求項1に記載のボンド磁石用永久磁石合金粉末
の製造方法。 8≦x≦20at% 4≦y≦10at%
3. A composition formula Fe 100-xy R x B y ( where R is Pr, Nd, one or two or more Dy) represents the symbol x to limit the composition range, y satisfies the following value The alloy flakes having an ultrafine crystal structure with a crystal grain size of 10 nm or less were pulverized by a pulverizer so that the average powder grain size was 3 μm to 500 μm, and the pulverized powder having a crystal grain size of 10 nm or less was placed in an inert gas. And an average grain size of 300 nm to 50 nm at a temperature of 550 ° C. to 800 ° C., a heat treatment for controlling a metal structure is performed, and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure as a main phase is used as an average. The method for producing a permanent magnet alloy powder for a bonded magnet according to claim 1, wherein the crystal grain size is 300 nm or less. 8 ≦ x ≦ 20 at% 4 ≦ y ≦ 10 at%
【請求項4】 真空又は不活性ガス雰囲気を保持かつ槽
内圧力を調整可能な溶解槽と急冷槽とから構成され、溶
解槽はR−Fe−B(但しRはPr、Nd、Dyの一種
または二種以上)磁石合金組成になる如く配合原料を溶
解する溶解炉と、底部に出湯ノズルを有しかつ出湯温度
に保持する加熱装置を有する貯湯容器と、大気の浸入を
防止しつつ配合原料を溶解炉に供給する配合原料供給機
構とを配設し、急冷槽は出湯ノズルから出湯された溶湯
を急冷凝固して急冷薄帯とするための水冷可能な回転ロ
ールと、得られた急冷薄帯を破断するための破断機と、
破断片を更に嵩比重2g/cm3〜3g/cm3に圧縮す
る水冷可能な圧縮機と、大気の浸入を防止して合金薄片
を槽外に排出可能な合金薄帯回収機構とを有し、雰囲気
を破ることなく、溶解、出湯、急冷凝固、破断、圧縮、
排出を並行、連続して行うことを特徴とするボンド磁石
用永久磁石合金粉末の製造装置。
4. A melting tank capable of holding a vacuum or an inert gas atmosphere and adjusting the pressure in the tank and a quenching tank, wherein the melting tank is R-Fe-B (where R is one of Pr, Nd and Dy). Or two or more) A melting furnace that melts the raw materials to obtain a magnet alloy composition, a hot water storage container that has a hot water outlet nozzle at the bottom and a heating device that maintains the hot water temperature, and a raw material mixture that prevents atmospheric air from entering. The quenching tank is equipped with a compounded raw material supply mechanism for supplying the molten metal to the melting furnace, and the quenching tank is a water-coolable rotating roll for rapidly solidifying the molten metal discharged from the tapping nozzle into a quenching ribbon, and the obtained quenching thin film. A breaking machine for breaking the belt,
It has a water-cooled possible compressor, and a possible alloy ribbon recovery mechanism discharged to prevent ingress of atmospheric alloy flakes Sogai to the fracture fragment further compressed to a bulk density 2g / cm 3 ~3g / cm 3 , Melting, tapping, rapid solidification, rupture, compression without breaking the atmosphere,
An apparatus for producing permanent magnet alloy powder for bonded magnets, which discharges in parallel and continuously.
【請求項5】 溶解槽内の圧力を一定に保持しながら、
溶解炉から貯湯容器へ傾注した溶湯レベルを検出し、前
記検出信号により貯湯容器内の出湯ノズルオリフィス部
に働く溶湯のヘッド圧の変化に対応して急冷槽内の圧力
を調整することにより、溶解槽と急冷槽の槽間差圧と貯
湯容器内の溶湯のヘッド圧の和からなる出湯圧力に依存
する出湯量を一定に保持し、均質な急冷・凝固組織をも
つ合金薄帯を連続的に製造することを特徴とする請求項
4記載のボンド磁石用永久磁石合金粉末の製造装置。
5. While maintaining a constant pressure in the melting tank,
Detecting the level of molten metal that has been poured into the hot water storage container from the melting furnace, and adjusting the pressure in the quench tank in accordance with the change in the head pressure of the molten metal working at the tap nozzle orifice in the hot water storage container by the detection signal The amount of tapping is dependent on the tapping pressure, which is the sum of the pressure difference between the tank and the quenching tank and the head pressure of the molten metal in the hot water storage container. It manufactures, The manufacturing apparatus of the permanent magnet alloy powder for bond magnets of Claim 4 characterized by the above-mentioned.
JP10799895A 1995-04-06 1995-04-06 Method and apparatus for producing permanent magnet alloy powder for bonded magnet Expired - Lifetime JP3845461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10799895A JP3845461B2 (en) 1995-04-06 1995-04-06 Method and apparatus for producing permanent magnet alloy powder for bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10799895A JP3845461B2 (en) 1995-04-06 1995-04-06 Method and apparatus for producing permanent magnet alloy powder for bonded magnet

Publications (2)

Publication Number Publication Date
JPH08277403A true JPH08277403A (en) 1996-10-22
JP3845461B2 JP3845461B2 (en) 2006-11-15

Family

ID=14473399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10799895A Expired - Lifetime JP3845461B2 (en) 1995-04-06 1995-04-06 Method and apparatus for producing permanent magnet alloy powder for bonded magnet

Country Status (1)

Country Link
JP (1) JP3845461B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045952A (en) * 2000-08-02 2002-02-12 Ulvac Japan Ltd Apparatus for producing metallic strip and its production method
KR100361569B1 (en) * 1998-12-29 2003-02-05 재단법인 포항산업과학연구원 Rapid Cooling Permanent Magnet Powder Manufacturing Equipment
KR100414462B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Magnetic material manufacturing method, ribbon-shaped magnetic materials, powdered magnetic materials and bonded magnets
JPWO2002030595A1 (en) * 2000-10-06 2004-02-19 株式会社三徳 Method for producing raw alloy for nanocomposite permanent magnet using strip casting method
JP2006231381A (en) * 2005-02-25 2006-09-07 Hitachi Metals Ltd Molten metal supply apparatus
JP2007144428A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Rare earth-iron-boron-based magnet alloy, and manufacturing method and device for the same alloy
JP2007277655A (en) * 2006-04-07 2007-10-25 Showa Denko Kk Apparatus for manufacturing alloy
JP2009001911A (en) * 2008-08-12 2009-01-08 Ihi Corp Method and equipment for manufacturing quenched thin band
WO2009084781A1 (en) * 2007-12-27 2009-07-09 Iljin Electric Co., Ltd. Device of manufacturing rapidly solidified powder alloy used as anode active material for rechargeable li secondary cell
JP2012062578A (en) * 2011-12-13 2012-03-29 Ihi Corp Method for manufacturing quenched thin strip
CN103406543A (en) * 2013-07-31 2013-11-27 攀钢集团攀枝花钢铁研究院有限公司 Ultrafine titanium powder or titanium alloy powder and production method and device thereof
WO2014019319A1 (en) * 2012-07-30 2014-02-06 江苏巨鑫磁业有限公司 Method for crystallizing rapidly-quenched neodymium powder
WO2014019318A1 (en) * 2012-07-30 2014-02-06 江苏巨鑫磁业有限公司 A method for industrialized cryogenic production of a rapidly-quenched nanocrystalline permanent magnetic neodymium powder
US20140116577A1 (en) * 2012-10-29 2014-05-01 Toyota Jidosha Kabushiki Kaisha Method of production of rare earth magnetic alloy ribbon
WO2014155852A1 (en) * 2013-03-27 2014-10-02 新東工業株式会社 Method and device for manufacturing shot particles
JP2015030903A (en) * 2013-08-06 2015-02-16 大同特殊鋼株式会社 Device of producing alloy for magnets
CN106887322A (en) * 2017-03-03 2017-06-23 北京科技大学 A kind of method of high-efficiency production of nano crystalline substance rare earth permanent magnet powder
CN109554628A (en) * 2018-11-23 2019-04-02 中国航发北京航空材料研究院 The preparation method of graphene composite high speed tool steel
CN109940167A (en) * 2018-12-25 2019-06-28 西安赛隆金属材料有限责任公司 A kind of rotation electrode fuel pulverizing plant and method
CN115041646A (en) * 2022-06-30 2022-09-13 宁波中科毕普拉斯新材料科技有限公司 Preparation method of constant-pressure thin strip

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100361569B1 (en) * 1998-12-29 2003-02-05 재단법인 포항산업과학연구원 Rapid Cooling Permanent Magnet Powder Manufacturing Equipment
KR100414462B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Magnetic material manufacturing method, ribbon-shaped magnetic materials, powdered magnetic materials and bonded magnets
JP4494604B2 (en) * 2000-08-02 2010-06-30 株式会社アルバック Metal strip manufacturing apparatus and manufacturing method
JP2002045952A (en) * 2000-08-02 2002-02-12 Ulvac Japan Ltd Apparatus for producing metallic strip and its production method
JPWO2002030595A1 (en) * 2000-10-06 2004-02-19 株式会社三徳 Method for producing raw alloy for nanocomposite permanent magnet using strip casting method
JP4787459B2 (en) * 2000-10-06 2011-10-05 株式会社三徳 Manufacturing method of raw material alloy for nanocomposite permanent magnet using strip casting method
JP2006231381A (en) * 2005-02-25 2006-09-07 Hitachi Metals Ltd Molten metal supply apparatus
JP2007144428A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Rare earth-iron-boron-based magnet alloy, and manufacturing method and device for the same alloy
JP2007277655A (en) * 2006-04-07 2007-10-25 Showa Denko Kk Apparatus for manufacturing alloy
WO2009084781A1 (en) * 2007-12-27 2009-07-09 Iljin Electric Co., Ltd. Device of manufacturing rapidly solidified powder alloy used as anode active material for rechargeable li secondary cell
JP2009001911A (en) * 2008-08-12 2009-01-08 Ihi Corp Method and equipment for manufacturing quenched thin band
JP2012062578A (en) * 2011-12-13 2012-03-29 Ihi Corp Method for manufacturing quenched thin strip
WO2014019319A1 (en) * 2012-07-30 2014-02-06 江苏巨鑫磁业有限公司 Method for crystallizing rapidly-quenched neodymium powder
WO2014019318A1 (en) * 2012-07-30 2014-02-06 江苏巨鑫磁业有限公司 A method for industrialized cryogenic production of a rapidly-quenched nanocrystalline permanent magnetic neodymium powder
JP2014087812A (en) * 2012-10-29 2014-05-15 Toyota Motor Corp Method of manufacturing rare earth magnet alloy ribbon
US20140116577A1 (en) * 2012-10-29 2014-05-01 Toyota Jidosha Kabushiki Kaisha Method of production of rare earth magnetic alloy ribbon
CN103794349A (en) * 2012-10-29 2014-05-14 丰田自动车株式会社 Method of production of rare earth magnetic alloy ribbon
WO2014155852A1 (en) * 2013-03-27 2014-10-02 新東工業株式会社 Method and device for manufacturing shot particles
US10293408B2 (en) 2013-03-27 2019-05-21 Sintokogio, Ltd. Method and device for producing shots
CN103406543A (en) * 2013-07-31 2013-11-27 攀钢集团攀枝花钢铁研究院有限公司 Ultrafine titanium powder or titanium alloy powder and production method and device thereof
JP2015030903A (en) * 2013-08-06 2015-02-16 大同特殊鋼株式会社 Device of producing alloy for magnets
CN106887322A (en) * 2017-03-03 2017-06-23 北京科技大学 A kind of method of high-efficiency production of nano crystalline substance rare earth permanent magnet powder
CN109554628A (en) * 2018-11-23 2019-04-02 中国航发北京航空材料研究院 The preparation method of graphene composite high speed tool steel
CN109940167A (en) * 2018-12-25 2019-06-28 西安赛隆金属材料有限责任公司 A kind of rotation electrode fuel pulverizing plant and method
CN109940167B (en) * 2018-12-25 2022-03-01 西安赛隆金属材料有限责任公司 Rotary electrode powder making device and method
CN115041646A (en) * 2022-06-30 2022-09-13 宁波中科毕普拉斯新材料科技有限公司 Preparation method of constant-pressure thin strip
CN115041646B (en) * 2022-06-30 2023-08-18 宁波中科毕普拉斯新材料科技有限公司 Constant-pressure thin belt preparation method

Also Published As

Publication number Publication date
JP3845461B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JPH08277403A (en) Production of permanent magnet alloy powder for bond magnet and apparatus therefor
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US20090000701A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-tb type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
EP2128290A1 (en) R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
US6527822B2 (en) Quenched thin ribbon of rare earth/iron/boron-based magnet alloy
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
US8182618B2 (en) Rare earth sintered magnet and method for producing same
US7138017B2 (en) Rare earth magnet and method for producing the magnet
US11087922B2 (en) Production method of rare earth magnet
EP1479787B1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
US6419723B2 (en) Thin ribbon of rare earth-based permanent magnet alloy
JP4329318B2 (en) Rare earth sintered magnet and manufacturing method thereof
EP0632471A2 (en) Permanent magnet containing rare earth metal, boron and iron
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP4000620B2 (en) Method for producing permanent magnet alloy powder
JP4120253B2 (en) Quenched alloy for nanocomposite magnet and method for producing the same
US7390369B2 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP3712595B2 (en) Alloy ribbon for permanent magnet and sintered permanent magnet
WO2003020993A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JP3452561B2 (en) Rare earth magnet and manufacturing method thereof
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP2003286548A (en) Rapidly cooled alloy for nano-composite magnet and production method therefor
JPH0745412A (en) R-fe-b permanent magnet material
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH0750646B2 (en) Alloy powder for rare earth / boron / iron based magnetic anisotropic permanent magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

EXPY Cancellation because of completion of term