JPH08269644A - Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production - Google Patents

Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production

Info

Publication number
JPH08269644A
JPH08269644A JP7075795A JP7579595A JPH08269644A JP H08269644 A JPH08269644 A JP H08269644A JP 7075795 A JP7075795 A JP 7075795A JP 7579595 A JP7579595 A JP 7579595A JP H08269644 A JPH08269644 A JP H08269644A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
slab
grain
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7075795A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
康成 吉冨
Masao Matsuo
征夫 松尾
Takashi Mogi
尚 茂木
Osamu Tanaka
収 田中
Katsuro Kuroki
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP7075795A priority Critical patent/JPH08269644A/en
Publication of JPH08269644A publication Critical patent/JPH08269644A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To improve magnetic properties by incorporating specific amounts of Si, Cu, Mn, and Fe and regulating the magnetic flux density B8 , secondary recrystallized grain size, and iron loss of a product to specific values, respectively. CONSTITUTION: This material has a composition consisting of, by weight, 2.5-5% Si, 0.05-0.5% Cu, 0.06-0.8% Mn, and the balance essentially Fe and further satisfying 0.005<=Cu×Mn<=0.15. Moreover, B8 (T) is regulated to >=1.88, and also the average value d(mm) of secondary recrystallized grain sizes is regulated so that it satisfies 1<=d<=23B8 -40. Further the relation of W MWP>=0 08 is satisfied when WP and WM mean the iron loss W13/50 (W/kg) of a product and that after film removal, respectively. By this method, iron loss characteristic as high as to satisfy W13/50 <=0.4 can be provided and also high magnetic flux density can be provided without requiring magnetic domain controlling technique.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は主にトランスその他
の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表わす数値としては、通常磁場の強さ8
00A/m における磁束密度B8 が使用される。又、鉄損
特性を表わす数値としては、周波数50Hzで1.7テス
ラー(T)まで磁化した時の1kg当りの鉄損W17/50
使用している。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. As a numerical value showing the excitation characteristic, the strength of a normal magnetic field is 8
A magnetic flux density B 8 at 00 A / m is used. Further, as a numerical value showing the iron loss characteristic, the iron loss W 17/50 per 1 kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is used.

【0003】磁束密度は、鉄損特性の最大支配因子であ
り、一般的にいって磁束密度が高いほど鉄損特性が良好
になる。なお、一般的に磁束密度を高くすると二次再結
晶粒が大きくなり、鉄損特性が不良となる場合がある。
これに対しては、磁区制御により、二次再結晶粒の粒径
に拘らず、鉄損特性の改善をすることができる。
The magnetic flux density is the most dominant factor of the iron loss characteristics. Generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics.
On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である〈001〉を圧延方向に高
度に揃えることが必要である。このような高磁束密度一
方向性電磁鋼板の製造技術として代表的なものに、特公
昭40−15644号公報、及び特公昭51−1346
9号公報記載の方法がある。
This unidirectional electrical steel sheet is produced by causing secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} axis on the steel sheet surface and <001> axis in the rolling direction. Has been done. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction. Typical techniques for producing such a high magnetic flux density unidirectional electrical steel sheet include Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-1346.
There is a method described in Japanese Patent No. 9 publication.

【0005】前者においては主なインヒビターとしてM
nS及びAlNを、後者ではMnS,MnSe,Sb等
を用いている。従って現在の技術においてはこれらのイ
ンヒビターとして機能する析出物の大きさ、形態及び分
散状態を適正に制御することが不可欠である。
In the former, M is the main inhibitor
nS and AlN are used, and the latter uses MnS, MnSe, Sb and the like. Therefore, in the current technology, it is essential to appropriately control the size, morphology and dispersion state of the precipitates that function as these inhibitors.

【0006】MnSに関して言えば、現在の工程では熱
延前のスラブ加熱時にMnSを一旦完全固溶させた後、
熱延時に析出する方法がとられている。二次再結晶に必
要な量のMnSを完全固溶するためには1400℃程度
の温度が必要である。これは普通鋼のスラブ加熱温度に
比べて200℃以上も高く、この高温スラブ加熱処理に
は以下に述べるような不利な点がある。1)方向性電磁
鋼専用の高温スラブ加熱炉が必要。2)加熱炉のエネル
ギー原単位が高い。3)溶融スケール量が増大し、いわ
ゆるノロかき出し等に見られるように操業上の悪影響が
大きい。
As for MnS, in the present process, after the MnS is completely solid-soluted at the time of heating the slab before hot rolling,
The method of precipitation during hot rolling is adopted. A temperature of about 1400 ° C. is necessary to completely form a solid solution of the required amount of MnS for secondary recrystallization. This is higher than the slab heating temperature of ordinary steel by 200 ° C. or more, and this high-temperature slab heating treatment has the following disadvantages. 1) A high-temperature slab heating furnace dedicated to directional magnetic steel is required. 2) The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as seen in so-called shaving.

【0007】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並に下げれば良いわけであるが、こ
のことは同時にインヒビターとして有効なMnSの量を
少なくするか、あるいは全く用いないことを意味し、必
然的に二次再結晶の不安定化をもたらす。このため低温
スラブ加熱化を実現するためには、何らかの形でMnS
以外の析出物等によりインヒビターを強化し、仕上焼鈍
時の正常粒成長の抑制を充分にする必要がある。
In order to avoid such problems, the slab heating temperature may be lowered to the same level as that of ordinary steel, but at the same time, the amount of MnS effective as an inhibitor is reduced or not used at all. This means that the destabilization of the secondary recrystallization is inevitably brought about. Therefore, in order to realize low-temperature slab heating, some form of MnS
It is necessary to strengthen the inhibitor with precipitates other than those mentioned above to sufficiently suppress normal grain growth during finish annealing.

【0008】このようなインヒビターとしては、硫化物
の他、窒化物、酸化物及び粒界析出元素等が考えられ、
公知の技術として例えば次のようなものがあげられる。
特公昭54−24685号公報ではAs,Bi,Sn,
Sb等の粒界偏析元素を鋼中に含有することにより、ス
ラブ加熱温度を1050〜1350℃の範囲にする方法
が開示される。
As such inhibitors, in addition to sulfides, nitrides, oxides, grain boundary precipitation elements, etc. are considered.
Examples of known techniques include the following.
In Japanese Examined Patent Publication No. 54-24685, As, Bi, Sn,
A method of controlling the slab heating temperature in the range of 1050 to 1350 ° C. by containing grain boundary segregation elements such as Sb in steel is disclosed.

【0009】特開昭52−24116号公報ではAlの
他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の
窒化物生成元素を含有することによりスラブ加熱温度を
1100〜1260℃の範囲にする方法を開示してい
る。又、特開昭57−158322号公報ではMn含有
量を下げ、Mn/Sの比率を2.5以下にすることによ
り低温スラブ加熱化を行い、さらにCuの添加により二
次再結晶を安定化する技術を開示している。
In JP-A-52-24116, the slab heating temperature is 1100 to 1260 ° C. by containing a nitride forming element such as Zr, Ti, B, Nb, Ta, V, Cr and Mo in addition to Al. Is disclosed. Further, in JP-A-57-158322, low-temperature slab heating is performed by lowering the Mn content and setting the Mn / S ratio to 2.5 or less, and further adding Cu to stabilize secondary recrystallization. The technology to do is disclosed.

【0010】これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMnに加えS,
Se,Sb,Bi,Pb,Sn,B等の元素を加え、こ
れにスラブの柱状晶率と二次冷延圧下率を組み合わせる
ことにより1100〜1250℃の低温スラブ加熱化を
実現している。さらに特開昭59−1990324号公
報ではSあるいはSeに加え、Al及びBと窒素を主体
としてインヒビターを構成し、これに冷延後の一次再結
晶焼鈍時にパルス焼鈍を施すことにより二次再結晶を安
定化する技術を公開している。
Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S, in addition to Mn,
Elements such as Se, Sb, Bi, Pb, Sn, and B are added, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined to realize low-temperature slab heating at 1100 to 1250 ° C. Further, in Japanese Patent Laid-Open No. 59-1990324, in addition to S or Se, an inhibitor is mainly composed of Al and B and nitrogen, which is subjected to pulse annealing during primary recrystallization annealing after cold rolling to carry out secondary recrystallization. The technology to stabilize is released.

【0011】このように方向性電磁鋼板製造における低
温スラブ加熱化実現のためには、これまでに多大な努力
が続けられてきている。さらに、特開昭59−5652
2号公報においてはMnを0.08〜0.45%、Sを
0.007%以下にすることにより低温スラブ加熱化を
可能にする技術が開示された。この方法により高温スラ
ブ加熱時のスラブ結晶粒粗大化に起因する製品の線状二
次再結晶不良発生の問題が解消された。
As described above, in order to realize low temperature slab heating in the production of grain-oriented electrical steel sheets, great efforts have been made so far. Furthermore, JP-A-59-5652
Japanese Patent Publication No. 2 discloses a technique that enables low temperature slab heating by setting Mn to 0.08 to 0.45% and S to 0.007% or less. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0012】[0012]

【発明が解決しようとする課題】一方向性電磁鋼板の品
質向上のためには、通常、磁束密度を向上させる方策が
試みられる。低温スラブ加熱を行うプロセスにおいても
同様である。しかし、磁束密度を向上させると、製品の
二次再結晶粒径が大きくなる傾向があり、鉄損特性向上
が困難となる。そこで、磁区制御技術を用いて、二次再
結晶粒径に関わらず磁束密度が高い程、鉄損特性を良好
にしてきたわけである。
In order to improve the quality of the grain-oriented electrical steel sheet, a measure to improve the magnetic flux density is usually tried. The same applies to the process of performing low temperature slab heating. However, if the magnetic flux density is improved, the secondary recrystallized grain size of the product tends to increase, and it becomes difficult to improve the iron loss characteristics. Therefore, the magnetic domain control technique has been used to improve the iron loss characteristics as the magnetic flux density is higher regardless of the secondary recrystallized grain size.

【0013】しかしながら、このように磁区制御技術を
付加することは、当然のことながら、コストアップとな
るため、この磁区制御技術を施さずに、鉄損特性を良好
ならしめる技術が求められてきた。本発明の目的は、高
磁束密度と低鉄損を同時に達成する製品とその製法を提
供することにある。
However, since the addition of the magnetic domain control technique naturally raises the cost, there has been a demand for a technique for improving the iron loss characteristics without applying the magnetic domain control technique. . An object of the present invention is to provide a product and a manufacturing method thereof that simultaneously achieve high magnetic flux density and low iron loss.

【0014】[0014]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)重量%で、Si:2.5〜5.0%、Cu:0.
05〜0.50%、Mn:0.06〜0.8%、残部が
Fe及び不可避的不純物からなる一方向性電磁鋼板で、
0.005≦Cu(%)×Mn(%)≦0.15を満
し、かつ、B8 (T)≧1.88であり、かつ、製品の
二次再結晶粒径の平均値d(mm)が 1.0≦d≦23×B8 −40 を満し、かつ、製品と被膜除去後の鉄損W13/50 (w/k
g)を、各々、WP ,WMとした時、 WM −WP ≧0.08 であることを特徴とする磁気特性と被膜特性の優れた一
方向性電磁鋼板。
The gist of the present invention is as follows. (1) In weight%, Si: 2.5 to 5.0%, Cu: 0.
05 to 0.50%, Mn: 0.06 to 0.8%, the balance being Fe and unavoidable impurities in the grain-oriented electrical steel sheet,
0.005 ≦ Cu (%) × Mn (%) ≦ 0.15 is satisfied, B 8 (T) ≧ 1.88, and the average value d ( mm) satisfies 1.0 ≦ d ≦ 23 × B 8 -40, and the iron loss W 13/50 (w / k) after product and film removal
g) is W P and W M , respectively, W M −W P ≧ 0.08. A unidirectional electrical steel sheet having excellent magnetic properties and coating properties.

【0015】(2)重量%で、Cu:0.20〜0.4
0%を含有する(1)記載の磁気特性と被膜特性の優れ
た一方向性電磁鋼板。 (3)重量%で、Sn:0.01〜0.15%を含有す
る(1)又は(2)記載の磁気特性と被膜特性の優れた
一方向性電磁鋼板。
(2) In weight%, Cu: 0.20 to 0.4
A unidirectional electrical steel sheet containing 0% and having excellent magnetic properties and coating properties according to (1). (3) The grain-oriented electrical steel sheet having excellent magnetic properties and coating properties according to (1) or (2), which contains Sn: 0.01 to 0.15% by weight.

【0016】(4)重量%で、C:0.025〜0.0
75%、Si:2.5〜5.0%、酸可溶性Al:0.
010〜0.060%、N:0.0010〜0.013
0%、S+0.405Se:0.005〜0.020
%、Mn:0.06〜0.8%、Cu:0.01〜0.
50%、残部がFe及び不可避的不純物からなるスラブ
を1280℃未満の温度で加熱し、熱延し、引き続き必
要に応じて熱延板焼鈍を施し、次いで圧下率80%以上
の最終冷延を含み、必要に応じて中間焼鈍をはさむ1回
以上の冷延を施し、次いで脱炭焼鈍、最終仕上焼鈍を施
して一方向性電磁鋼板を製造する方法において、スラブ
のCu,Mnの含有量(重量%)を下記(1)式の範囲
に制御し、脱炭焼鈍完了後最終仕上焼鈍開始までの一次
再結晶粒の平均粒径(D(μm))を18〜35μmと
し、スラブのCu量とDを下記(2)式の範囲に制御
し、かつ、脱炭焼鈍後の鋼板の表面酸化膜中の全SiO
2 量(SIO2(g/m2 ))とスラブのCu量(Cu
(%))を下記(3)式の範囲に制御し、熱延後最終仕
上焼鈍の二次再結晶開始までの間に鋼板に増窒素量で
0.0010%以上の窒化処理を施すことにより、
(1)記載の良好な磁気特性と被膜特性を有する一方向
性電磁鋼板を製造する方法。 0.005 ≦Cu(%)×Mn(%)≦0.15 ………………(1) 16×Cu(%)+14≦D≦16×Cu(%)+27 ………………(2) 0.8 −0.6 ×Cu(%)≦SIO2≦1.8 −0.6 ×Cu(%) ……(3)
(4) C: 0.025 to 0.0% by weight
75%, Si: 2.5 to 5.0%, acid-soluble Al: 0.
010 to 0.060%, N: 0.0010 to 0.013
0%, S + 0.405Se: 0.005-0.020
%, Mn: 0.06 to 0.8%, Cu: 0.01 to 0.
A slab consisting of 50% and the balance of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot-rolled, followed by hot-rolled sheet annealing if necessary, and then final cold-rolling with a rolling reduction of 80% or more. In the method of producing a unidirectional electrical steel sheet by performing cold rolling one or more times with intermediate annealing if necessary, followed by decarburization annealing and final finishing annealing, the content of Cu and Mn in the slab ( (% By weight) is controlled within the range of the following formula (1), the average particle diameter (D (μm)) of the primary recrystallized grains after completion of decarburization annealing until the start of final finishing annealing is set to 18 to 35 μm, and the Cu content of the slab is set. And D are controlled within the range of the following formula (2), and the total SiO in the surface oxide film of the steel sheet after decarburizing and annealing is controlled.
2 amount (SIO2 (g / m 2 )) and Cu amount of slab (Cu
(%)) Is controlled within the range of the following formula (3), and the steel sheet is subjected to a nitriding treatment of 0.0010% or more with a nitrogen increase amount before the secondary recrystallization of the final finish annealing after hot rolling. ,
(1) A method for producing a grain-oriented electrical steel sheet having good magnetic properties and coating properties as described above. 0.005 ≤ Cu (%) x Mn (%) ≤ 0.15 ………… (1) 16 x Cu (%) + 14 ≤ D ≤ 16 x Cu (%) + 27 ………… (2) 0.8- 0.6 × Cu (%) ≦ SIO2 ≦ 1.8 −0.6 × Cu (%) (3)

【0017】(5)Cu:0.20〜0.40重量%を
含有するスラブを用いることを特徴とする(4)記載の
磁気特性と被膜特性の優れた一方向性電磁鋼板の製造
法。 (6)Sn:0.01〜0.15重量%を含有するスラ
ブを用いることを特徴とする(4)又は(5)記載の磁
気特性と被膜特性に優れた一方向性電磁鋼板の製造法。
(5) A method for producing a grain-oriented electrical steel sheet excellent in magnetic properties and coating properties according to (4), characterized in that a slab containing Cu: 0.20 to 0.40 wt% is used. (6) A method for producing a grain-oriented electrical steel sheet excellent in magnetic properties and coating properties according to (4) or (5), characterized in that a slab containing Sn: 0.01 to 0.15 wt% is used. .

【0018】[0018]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程をはさ
んでスラブとし、引き続き熱間圧延して熱延板とし、必
要に応じて熱延板を焼鈍し、次いで圧下率が80%以上
となる最終冷延を含み、必要に応じて中間焼鈍をはさむ
1回以上の冷延を施し、次いで、脱炭焼鈍、最終仕上焼
鈍を順次行うことによって製造される。
The unidirectional electrical steel sheet targeted by the present invention is
Molten steel obtained by the conventional steelmaking method is cast by a continuous casting method or an ingot casting method, and if necessary, a slab is formed by interposing the agglomeration process, and subsequently hot rolled into a hot rolled sheet. Annealing the hot-rolled sheet according to the above, and then including final cold rolling with a rolling reduction of 80% or more, if necessary, performing one or more cold rollings with intermediate annealing, followed by decarburizing annealing and final finishing. It is manufactured by sequentially performing annealing.

【0019】本発明者らは、低温スラブ加熱材を製造し
た場合の磁気特性の向上策及び高磁束密度と低鉄損を同
時に達成する製品の具備条件について詳細に検討した。
The inventors of the present invention have made detailed studies on measures for improving magnetic properties when a low-temperature slab heating material is manufactured and the conditions for equipping a product that simultaneously achieves high magnetic flux density and low iron loss.

【0020】そしてこの方策として、Cu,Mnを含
有し、Cu量とMn量の積を制御し、製品の二次再
結晶粒径の平均値と磁束密度B8 の関係を所定の条件に
制御し、被膜除去前後の鉄損差を所定の範囲とし、さ
らにはCu量を所定の範囲に精密に制御し、又Sn
を含有することが有効であることがわかった。又、この
特徴ある製品を製造するための具備条件についても明ら
かにできた。
As a measure for this, Cu, Mn are contained, the product of the Cu amount and the Mn amount is controlled, and the relationship between the average value of the secondary recrystallized grain size of the product and the magnetic flux density B 8 is controlled to a predetermined condition. Then, the iron loss difference before and after the film removal is set to a predetermined range, and the Cu content is precisely controlled to a predetermined range.
Was found to be effective. It was also possible to clarify the necessary conditions for manufacturing this characteristic product.

【0021】本発明を、以下実験結果を基に詳細に説明
する。重量%で、C=0.052%、Si=3.50
%、酸可溶性Al=0.020〜0.041%、N=
0.0076%、S=0.010%、Mn=0.06〜
0.57%、Cu=0〜0.63%を含有し、残余Fe
及び不可避的不純物からなる250mm厚のスラブを作成
した。そして、1120℃で60分均熱後5パスの粗熱
延後、6パスの仕上熱延を行って2.3mm厚の熱延板と
した。この時、仕上熱延温度は837〜1040℃であ
った。
The present invention will be described in detail below based on the experimental results. % By weight, C = 0.052%, Si = 3.50
%, Acid-soluble Al = 0.020 to 0.041%, N =
0.0076%, S = 0.010%, Mn = 0.06-
0.57%, Cu = 0 to 0.63%, balance Fe
A slab having a thickness of 250 mm composed of unavoidable impurities was prepared. Then, after soaking at 1120 ° C. for 60 minutes, rough hot rolling for 5 passes and finish hot rolling for 6 passes were performed to obtain a hot rolled sheet having a thickness of 2.3 mm. At this time, the finish hot rolling temperature was 837 to 1040 ° C.

【0022】かかる熱延板に1100℃に30秒保持
し、900℃に30秒保持した後に急冷する熱延板焼鈍
を施した。しかる後、圧下率約90%で強圧下圧延を行
って最終板厚0.22mmの冷延板とした。この冷延板を
810〜860℃に90秒保持する脱炭焼鈍(N2 :2
5%、H2 :75%、D.P.=40〜71℃)を施
し、次いで750℃に30秒保持する焼鈍時、焼鈍雰囲
気中にNH3 ガスを混入させ、鋼板に窒素を吸収せしめ
た。この窒化処理後のN量は、0.0161〜0.02
37重量%であった。これらの窒化板の一次再結晶平均
粒径は、19〜27μmであった。
The hot-rolled sheet was annealed at 1100 ° C. for 30 seconds, then at 900 ° C. for 30 seconds, and then rapidly cooled. Then, strong reduction rolling was performed at a reduction rate of about 90% to obtain a cold rolled sheet having a final sheet thickness of 0.22 mm. The cold-rolled sheet decarburization annealing for 90 seconds held at eight hundred and ten to eight hundred and sixty ° C. The (N 2: 2
5%, H 2 : 75%, D.I. P. = 40 to 71 ° C.), and then, at the time of annealing for holding at 750 ° C. for 30 seconds, NH 3 gas was mixed into the annealing atmosphere to cause the steel sheet to absorb nitrogen. The amount of N after this nitriding treatment is 0.0161 to 0.02.
It was 37% by weight. The average primary recrystallization grain size of these nitride plates was 19 to 27 μm.

【0023】かかる窒化処理後の鋼板にMgOを主成分
とする焼鈍分離剤を塗布し、最終仕上焼鈍を施した。こ
の最終仕上焼鈍は、N2 :50%、H2 :50%の雰囲
気中で1200℃まで15℃/時で昇温し、引き続き、
2 :100%焼鈍雰囲気中で、20時間保持する条件
で行った。しかる後張力コーティングと形状矯正を兼ね
た焼鈍を施した。製品の具備条件と鉄損との関係を図1
に示す。
An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finishing annealing was performed. In this final finish annealing, the temperature was raised to 1200 ° C. at 15 ° C./hour in an atmosphere of N 2 : 50% and H 2 : 50%, and then,
H 2 : Performed in a 100% annealing atmosphere for 20 hours. After that, annealing was performed to combine tension coating and shape correction. Fig. 1 shows the relationship between product preparation conditions and iron loss.
Shown in

【0024】図1から明らかなように、0.005≦C
u(%)×Mn(%)≦0.15、かつ、WM −WP
0.08(w/kg)の条件が、製品の鉄損W13/50 (w/k
g)≦0.40なる良好な特性を得るための必要条件で
あることがわかった。この知見をさらに詳細に検討した
結果を図2に示す。
As is clear from FIG. 1, 0.005 ≦ C
u (%) × Mn (%) ≦ 0.15 and W M −W P
The condition of 0.08 (w / kg) is iron loss of the product W 13/50 (w / k
It has been found that this is a necessary condition for obtaining good characteristics of g) ≦ 0.40. The result of examining this finding in more detail is shown in FIG.

【0025】図2は、図1において、W13/50 (w/kg)
≦0.40を得る必要条件である。0.005≦Cu
(%)×Mn(%)≦0.15かつ、WM −WP ≧0.
08(w/kg)となる場合の試料について、製品の二次再
結晶粒径の平均値d(mm)と磁束密度B8 (T)との関
係において、W13/50 ≦0.40w/kgを実現する十分条
件を検討した結果である。この場合、製品の板厚を貫通
した粒を二次再結晶粒と判定し、かつ、粒径とは、板面
での二次元の粒に対して、円相当直径として測定した。
FIG. 2 shows that in FIG. 1, W 13/50 (w / kg)
This is a necessary condition for obtaining ≦ 0.40. 0.005 ≦ Cu
(%) × Mn (%) ≦ 0.15 and W M −W P ≧ 0.
About 08 (w / kg) as a sample case made, in relation to the average value of the secondary recrystallized grain size of the product d as (mm) and the magnetic flux density B 8 (T), W 13/50 ≦ 0.40w / This is the result of examining sufficient conditions for realizing kg. In this case, the grains that penetrated the plate thickness of the product were determined as secondary recrystallized grains, and the grain size was measured as the equivalent circle diameter for the two-dimensional grains on the plate surface.

【0026】図2から明らかなように、B8 ≧1.88
Tかつ1.0≦d≦23×B8 −40を満す場合に、W
13/50 ≦0.40w/kgなる良好な磁気特性が得られた。
図1,図2で示された現象のメカニズムについて必ずし
も明らかではないが本発明者らは、次のように推察して
いる。
As is apparent from FIG. 2, B 8 ≧ 1.88
When T and 1.0 ≦ d ≦ 23 × B 8 −40 are satisfied, W
13/50 ≦ 0.40 W / kg good magnetic properties comprising were obtained.
Although the mechanism of the phenomenon shown in FIGS. 1 and 2 is not always clear, the present inventors presume as follows.

【0027】本発明の場合、Cu,Mnを含有すること
を前提としている。Cuは表面に濃化する元素であり、
脱炭焼鈍時及び最終仕上焼鈍時の酸化を抑制する。一
方、Mnは酸化傾向があり、酸化を促進する傾向があ
る。他方、本発明の製品の場合、スラブでは、S,Se
をある程度含むこととなる。
The present invention is premised on containing Cu and Mn. Cu is an element that concentrates on the surface,
Suppresses oxidation during decarburization annealing and final finish annealing. On the other hand, Mn tends to oxidize and tends to accelerate oxidation. On the other hand, in the case of the product of the present invention, in the slab, S, Se
Will be included to some extent.

【0028】S,Seは、Cu,Mnと結合して、Cu
−S,Cu−Se,MnS,MnSeを形成する。Cu
−S,Cu−Seと比較して、MnS,MnSeの方が
安定な化合物であり、最終仕上焼鈍(BOX焼鈍)で長
時間かけて昇温する際に、 Cu−S→MnS, Cu−Se→MnSe の置換が生じる。従って、最終仕上焼鈍昇温過程の80
0〜1000℃の温度域で生じるCu固溶量の増加によ
り、Cuがその温度域で表面部へ一部拡散していくと考
えられる。
S and Se combine with Cu and Mn to form Cu
-S, Cu-Se, MnS, MnSe are formed. Cu
Compared with -S and Cu-Se, MnS and MnSe are more stable compounds, and when the temperature is raised for a long time in the final finish annealing (BOX annealing), Cu-S → MnS, Cu-Se. → Substitution of MnSe occurs. Therefore, the temperature of the final finish annealing temperature increase process of 80
It is considered that due to the increase in the amount of Cu solid solution generated in the temperature range of 0 to 1000 ° C., Cu partially diffuses to the surface portion in the temperature range.

【0029】一方、脱炭焼鈍時に形成される表面酸化層
及び内部酸化層におけるSiO2 と焼鈍分離剤の主成分
であるMgOは、最終仕上焼鈍昇温時(800〜110
0℃)反応して、Mg2 SiO4 を形成する。このMg
2 SiO4 形成反応と、 Cu−S→MnS, Cu−Se→MnSe の置換現象及びCu表面拡散と酸化抑制とは、ほぼ並行
して生じる。従って、Mn,Cuの量は、Mg2 SiO
4 形成反応に影響を与えると考えられる。
On the other hand, SiO 2 in the surface oxide layer and the internal oxide layer formed during decarburization annealing and MgO which is the main component of the annealing separating agent are contained in the final finish annealing (800 to 110).
(0 ° C.) to form Mg 2 SiO 4 . This Mg
2 The SiO 4 formation reaction, the substitution phenomenon of Cu—S → MnS and Cu—Se → MnSe, the diffusion of Cu surface and the suppression of oxidation occur almost in parallel. Therefore, the amounts of Mn and Cu are Mg 2 SiO
4 It is thought to affect the formation reaction.

【0030】その詳細は過程については、必ずしも明ら
かではないが、このMg2 SiO4形成反応に対する影
響のため最終仕上焼鈍後の表面状態が変化していること
が観察された。鋼板の表面状態は、磁気特性とりわけ鉄
損特性に影響を与える。
Although the details of the process are not always clear, it was observed that the surface condition after the final finish annealing was changed due to the influence on the Mg 2 SiO 4 forming reaction. The surface condition of a steel sheet affects magnetic properties, especially iron loss properties.

【0031】本発明材の場合、渦電流損が激減してお
り、磁区も細分化していたことから、磁区細分化効果を
内在する被膜が形成されたと考えられる。一例として、
8 =1.935Tの板厚9mil のサンプル同志で、本
発明の場合、W13/50 =0.38w/kgのうち、渦電流損
が0.21w/kg、ヒステリシス損が0.17w/kgである
のに対して、本発明の具備条件を満足しない場合(比較
材)W13/50 =0.47w/kgのうち、渦電流損が0.3
2w/kg、ヒステリシス損が0.15w/kgであった。
In the case of the material of the present invention, the eddy current loss was drastically reduced, and the magnetic domains were also subdivided. Therefore, it is considered that a film having a magnetic domain subdivision effect was formed. As an example,
Sample comrade thickness 9mil of B 8 = 1.935T, in the present invention, W 13/50 = of 0.38 W / kg, eddy current loss 0.21 W / kg, hysteresis loss 0.17 W / In contrast to W 13/50 = 0.47 w / kg, the eddy current loss is 0.3 when the condition of the present invention is not satisfied (comparative material) .
It was 2 w / kg and the hysteresis loss was 0.15 w / kg.

【0032】本発明材の場合、比較材より渦電流損が3
5%程度低くなっており、ヒステリシス損は10%程度
高くなっている。この結果は、本発明材の場合、磁区細
分化(渦電流損低減)効果を有する被膜が形成されてい
ることを示唆している。
In the case of the material of the present invention, the eddy current loss is 3 compared with the comparative material.
It is about 5% lower and the hysteresis loss is about 10% higher. This result suggests that in the case of the material of the present invention, a coating having a magnetic domain subdivision (eddy current loss reduction) effect is formed.

【0033】ヒステリシス損については、本発明の場
合、被膜性状との関係で若干劣化する傾向がある。加え
て、被膜を除去した場合、本発明の鉄損の優位性は消失
する。図1は、上記本発明材の被膜の特徴から生じた現
象と考えられる。一方図2においては、磁束密度と二次
再結晶粒径の関係において、必要な条件範囲があること
が示されている。
In the case of the present invention, the hysteresis loss tends to be slightly deteriorated in relation to the film properties. In addition, the iron loss advantage of the present invention disappears when the coating is removed. FIG. 1 is considered to be a phenomenon caused by the characteristics of the coating film of the present invention material. On the other hand, FIG. 2 shows that there is a necessary condition range in the relationship between the magnetic flux density and the secondary recrystallized grain size.

【0034】鉄損特性を良好ならしめる手段として、磁
束密度を高めることは良く知られているが、通常、磁束
密度を高めると二次再結晶粒径が大きくなり、渦電流損
が劣化することから、良好な鉄損特性が得にくい。
It is well known that the magnetic flux density is increased as a means for improving the iron loss characteristics, but normally, when the magnetic flux density is increased, the secondary recrystallized grain size becomes large and the eddy current loss deteriorates. Therefore, it is difficult to obtain good iron loss characteristics.

【0035】本発明の場合、磁区細分化効果を有する被
膜が形成されているため、磁束密度が高くても良好な鉄
損特性が得られやすいが、あまりに二次再結晶粒径が大
きすぎると鉄損特性を確保しにくくなる。
In the case of the present invention, since a film having a magnetic domain refining effect is formed, good iron loss characteristics are easily obtained even if the magnetic flux density is high, but if the secondary recrystallized grain size is too large. It becomes difficult to secure iron loss characteristics.

【0036】図2における二次再結晶粒径の上限につい
ては、上記の理由によると考えられる。良好な鉄損を得
るための二次再結晶粒径の下限が生じる理由について
は、次のように推察している。二次再結晶粒の平均粒径
が1.0mm未満となる場合は、二次再結晶の不安定化現
象が生じた場合であり、多数の1.0mm以下の粒が混入
した結晶組織となっている。この場合、磁束密度を高位
に保ちにくいのに加えて、本発明の如き、磁区細分化効
果は発揮しにくい。
The upper limit of the secondary recrystallized grain size in FIG. 2 is considered to be due to the above reason. The reason for the lower limit of the secondary recrystallized grain size for obtaining good iron loss is presumed as follows. When the average grain size of the secondary recrystallized grains is less than 1.0 mm, the destabilization phenomenon of the secondary recrystallization occurs, and the crystal structure becomes a mixture of many grains of 1.0 mm or less. ing. In this case, it is difficult to maintain the magnetic flux density at a high level, and it is difficult to exert the magnetic domain subdivision effect as in the present invention.

【0037】本発明者らは、図1,図2に結果を示した
種々の試料の工程条件や、中間製品の特徴について広範
に調査した結果、W13/50 ≦0.40w/kgなる良好な磁
気特性を得る条件として、次のことを確認した。スラブ
のCu量(Cu(%))、Mn量(Mn(%))に関し
て、 0.005 ≦Cu(%)×Mn(%)≦0.15 ………………(A) の関係が成り立ち、かつ、脱炭焼鈍及び窒化処理完了後
の鋼板の表面酸化膜中の全SiO2 量(SIO2(g/
2 ))と上記Cu量の間に、 0.8 −0.6 ×Cu(%)≦SIO2≦1.8 −0.6 ×Cu(%) ……(B) の関係が成り立ち、脱炭焼鈍及び窒化処理完了後の鋼板
の一次再結晶粒の平均粒径(D(μm))と上記Cu量
の間に、 16×Cu(%)+14≦D≦16×Cu(%)+27 ………………(C) なる関係が成り立っていたことをつきとめた。
The present inventors have 1, result different and samples of process conditions showing in FIG. 2, as a result of extensive research the characteristics of the intermediate product, W 13/50 ≦ 0.40w / kg become better The following were confirmed as conditions for obtaining good magnetic properties. Regarding the Cu content (Cu (%)) and Mn content (Mn (%)) of the slab, the relationship 0.005 ≤ Cu (%) x Mn (%) ≤ 0.15 (A) holds, and The total amount of SiO 2 in the surface oxide film of the steel sheet after completion of decarburization annealing and nitriding treatment (SIO2 (g /
m 2 )) and the above Cu content, the relationship of 0.8-0.6 × Cu (%) ≤ SIO2 ≤ 1.8-0.6 × Cu (%) (B) is established, and after the decarburization annealing and the nitriding treatment are completed, 16 × Cu (%) + 14 ≦ D ≦ 16 × Cu (%) + 27 ……………… (C) between the average grain size (D (μm)) of the primary recrystallized steel sheet and the above Cu content He found that the following relationship was established.

【0038】(A),(B),(C)がW13/50 ≦0.
40w/kgであるための具備条件となった理由については
必ずしも明らかではないが、本発明者らは、次のように
推定している。
(A), (B) and (C) are W 13/50 ≦ 0.
Although the reason for the requirement of being 40 w / kg is not always clear, the present inventors presume as follows.

【0039】(A)の条件については、これを満せば、
図1におけるW13/50 ≦0.40w/kgを得るための製品
としての必要条件であるCu(%)とMn(%)に関す
る具備条件が満足しやすいためと考えられる。
Regarding the condition (A), if this is satisfied,
A necessary condition as a product for obtaining a W 13/50 ≦ 0.40w / kg in Fig. 1 Cu (%) and includes conditions related to Mn (%) is considered to be because the easily satisfied.

【0040】(B)の条件のSiO2 の下限値の存在に
ついては、最終仕上焼鈍昇温時におけるMg2 SiO4
形成反応との関係から次のようなメカニズムが考えられ
る。本発明の製品は製品の被膜に特徴がある。(B)の
下限値の条件は、Cu量が多いほど、Mg2 SiO4
成に必要な鋼板のSiO2 量の下限値が低いことを示し
ており、Mg2 SiO4 の量とCu量は相互に補い合う
関係にあると考えられる。
Regarding the existence of the lower limit value of SiO 2 in the condition (B), Mg 2 SiO 4 at the time of the temperature of the final annealing is raised.
The following mechanism can be considered in relation to the formation reaction. The product of the invention is characterized by the coating of the product. Conditions of the lower limit of (B), the more Cu amount is large, it indicates that the lower limit of the SiO 2 amount of steel required for the Mg 2 SiO 4 formation is low, the amount and the Cu content of Mg 2 SiO 4 is It is considered that they are in a mutually complementary relationship.

【0041】このメカニズムは渦電流損に対するCu
量、Mg2 SiO4 量の影響から理解できる。つまり、
製品のMg2 SiO4 の量が少ないと、被膜張力が低下
し、渦電流損が上昇する傾向がある。一方、Cu量を増
すと、被膜のMg2 SiO4 量が同一でも、渦電流損が
低下する傾向が観察された。
This mechanism is based on Cu against eddy current loss.
It can be understood from the influence of the amount and the amount of Mg 2 SiO 4 . That is,
When the amount of Mg 2 SiO 4 in the product is small, the film tension tends to decrease and the eddy current loss tends to increase. On the other hand, when the amount of Cu was increased, it was observed that the eddy current loss tended to decrease even if the amount of Mg 2 SiO 4 in the coating was the same.

【0042】つまり、(B)の下限値の条件は、渦電流
損を低くするための具備条件と考えられる。従って、
(B)の下限値の条件は、図1に示した製品の具備条件
であるWM −WP ≧0.08(w/kg)を実現する必要条
件となっているものと考えられる。
That is, the condition of the lower limit value of (B) is considered to be a necessary condition for reducing the eddy current loss. Therefore,
It is considered that the condition of the lower limit value of (B) is a necessary condition for realizing the condition W M −W P ≧ 0.08 (w / kg) that the product shown in FIG. 1 has.

【0043】一方、(B)の上限値の存在は、最終仕上
焼鈍昇温時のAlの酸化挙動との関係から次のように考
えられる。本発明における二次再結晶のための主インヒ
ビターはAlNであり、表面酸化膜のSiO2 の量が多
いほど、表面近傍のAlの酸化に伴うAlNの分解が生
じやすい。
On the other hand, the existence of the upper limit value of (B) is considered as follows from the relationship with the oxidation behavior of Al at the time of final finish annealing temperature rise. The main inhibitor for secondary recrystallization in the present invention is AlN, and the larger the amount of SiO 2 in the surface oxide film, the easier the decomposition of AlN due to the oxidation of Al near the surface.

【0044】言い換えると、SiO2 の量が多い程Al
Nの分解が生じやすくなる。他方、Cu量が多いほどA
lNのサイズが小さくなり、分解しやすくなるので、
(B)の条件の上限値の存在は、AlNの分解を過度に
生じさせないための規制となっている。このため、この
(B)の条件の上限値を守ることによって、図2に示し
た製品の具備条件であるB8 とdの適正範囲が実現でき
る。
In other words, the greater the amount of SiO 2 , the more Al
Decomposition of N is likely to occur. On the other hand, the higher the amount of Cu, the more A
Since the size of 1N becomes smaller and it becomes easier to disassemble,
The existence of the upper limit value of the condition (B) is a regulation to prevent excessive decomposition of AlN. Therefore, by complying with the upper limit of the condition (B), it is possible to realize the proper range of B 8 and d which is the condition of the product shown in FIG.

【0045】(C)の条件については、二次再結晶温度
の適正値との関係から次のようなメカニズムが考えられ
る。スラブのCu量を増すと、硫化物の組成としてCu
量が増加すると共に、サイズが小さくなる傾向が認めら
れた。最終仕上焼鈍昇温時このCu−richな硫化物
を核として、AlN,(Al,Si)Nが析出するた
め、Cu量が多いほど、最終仕上焼鈍昇温時の析出物の
サイズが小さくなった。
Regarding the condition (C), the following mechanism can be considered from the relationship with the appropriate value of the secondary recrystallization temperature. When the amount of Cu in the slab is increased, the sulfide composition becomes Cu.
It was observed that the size tended to decrease with increasing amount. Since AlN, (Al, Si) N precipitates with this Cu-rich sulfide as a nucleus at the time of final finish annealing temperature rise, the larger the amount of Cu, the smaller the size of the precipitate at the time of final finish annealing temperature rise. It was

【0046】サイズが小さいほど、析出物としては分解
しやすくなるので、Cu量が多いほど二次再結晶開始温
度が低下する傾向が観察された。
It was observed that the smaller the size, the more easily the precipitate decomposes, so that the larger the amount of Cu, the lower the secondary recrystallization starting temperature tends to be.

【0047】元来、二次再結晶は、粒界移動の粒界性格
依存性に起因する現象と考えられ、{110}〈00
1〉方位粒の二次再結晶の場合、一般粒界とΣ9粒界の
粒界移動速度差が大きい温度域で二次再結晶を生ぜしめ
た場合に{110}〈001〉方位の集積度が高いと考
えられる。
Originally, secondary recrystallization is considered to be a phenomenon resulting from the grain boundary character dependence of grain boundary movement, and {110} <00
1) In the case of secondary recrystallization of oriented grains, the degree of integration of {110} <001> orientation occurs when secondary recrystallization occurs in a temperature range where the difference in grain boundary migration speed between general grain boundaries and Σ9 grain boundaries is large. Is considered to be high.

【0048】Cu量を増すと二次再結晶が生じる温度が
低下するため、この二次再結晶温度を適切な範囲に保つ
ための方策が必要となる。
When the amount of Cu is increased, the temperature at which the secondary recrystallization occurs decreases, so it is necessary to take measures to keep the secondary recrystallization temperature within an appropriate range.

【0049】(C)に示された如く、一次再結晶粒径を
Cu量に応じて高め、二次再結晶粒の粒成長の駆動力を
低下させることは、二次再結晶温度を適切な範囲に保つ
のに有効であり、その結果、(C)の条件を満す場合に
は、図2における製品の具備条件B8 ≧1.88Tを満
すことが可能となる。
As shown in (C), increasing the primary recrystallized grain size according to the amount of Cu and lowering the driving force for the grain growth of the secondary recrystallized grain can increase the secondary recrystallized temperature appropriately. It is effective to keep the range, and as a result, when the condition (C) is satisfied, it becomes possible to satisfy the condition B 8 ≧ 1.88T of the product in FIG.

【0050】さらに、(C)の条件を満せば、二次再結
晶温度と進行速度を制御できることから、図2における
製品の二次再結晶粒径の具備条件を満すことが可能とな
る。
Further, if the condition (C) is satisfied, the secondary recrystallization temperature and the advancing speed can be controlled, so that the condition for the secondary recrystallization grain size of the product in FIG. 2 can be satisfied. .

【0051】次に本発明の構成要件を限定した理由につ
いて述べる。まず、スラブの成分について、限定理由を
説明する。Cは0.025重量%(以下単に%と略述)
未満になると二次再結晶が不安定になり、かつ二次再結
晶した場合でもB8 >1.80(T)が得がたいので
0.025%以上と限定した。一方、Cが多くなりすぎ
ると脱炭焼鈍時間が長くなり経済的でないので0.07
5%以下と規定した。
Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the components of the slab will be described. C is 0.025% by weight (hereinafter simply referred to as%)
If it is less than the above value, the secondary recrystallization becomes unstable, and even if the secondary recrystallization is performed, it is difficult to obtain B 8 > 1.80 (T), so the content is limited to 0.025% or more. On the other hand, if the amount of C is too large, the decarburization annealing time becomes long and it is not economical, so 0.07
It was defined as 5% or less.

【0052】Siは5.0%を超えると冷延時の割れが
著しくなるので5.0%以下とした。又、2.5%未満
では素材の固有抵抗が低すぎ、トランス鉄心材料として
必要な低鉄損が得られないので2.5%以上とした。望
ましくは3.2%以上である。
If Si exceeds 5.0%, cracking during cold rolling becomes significant, so the content was made 5.0% or less. On the other hand, if it is less than 2.5%, the specific resistance of the material is too low, and a low iron loss required as a transformer core material cannot be obtained. It is preferably 3.2% or more.

【0053】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)Nを確保するため、酸可溶性A
lとして0.010%以上とする必要がある。酸可溶性
Alが0.060%を超えると熱延板のAlNが不適切
となり二次再結晶が不安定となるので、0.060%以
下とする必要がある。
Al is AlN necessary for stabilizing the secondary recrystallization.
Alternatively, to secure (Al, Si) N, acid-soluble A
It is necessary to set l to 0.010% or more. If the acid-soluble Al exceeds 0.060%, the AlN of the hot-rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, so it is necessary to set it to 0.060% or less.

【0054】Nは0.0010〜0.0130%とする
ことが好ましい。この範囲にすることによって、後述す
る一次再結晶粒径制御と窒化時にフリーなAl量の確保
の両立が可能となる。さらに、加えて、Nが0.013
0%を超えるとブリスターと呼ばれるフクレが鋼板に発
生して好ましくない。
N is preferably 0.0010 to 0.0130%. Within this range, it becomes possible to achieve both the control of primary recrystallized grain size, which will be described later, and the securing of a free Al amount during nitriding. In addition, N is 0.013
If it exceeds 0%, blisters called blister are generated on the steel sheet, which is not preferable.

【0055】S+0.405Seの範囲は、0.005
〜0.020%と規定した。0.005%未満では、本
発明の本質であるCu−S(又はCu−Se)からMn
S(又はMnSe)への最終仕上焼鈍昇温過程での置換
現象が生じにくく好ましくない。又、0.020%超で
は、圧延方向に列状に生じる二次再結晶不良現象が生じ
て好ましくない。
The range of S + 0.405Se is 0.005.
It was defined as ~ 0.020%. If it is less than 0.005%, Cu-S (or Cu-Se), which is the essence of the present invention, is changed to Mn.
The substitution phenomenon of S (or MnSe) in the final finishing annealing temperature rising process hardly occurs, which is not preferable. On the other hand, if it exceeds 0.020%, a secondary recrystallization failure phenomenon occurs in rows in the rolling direction, which is not preferable.

【0056】Mn量、Cu量の範囲は、各々0.06〜
0.8%、0.01〜0.50%とする必要がある。こ
れらの範囲にすることにより高磁束密度化が可能とな
る。Cu量を0.20〜0.40%とすることは、高磁
束密度化のためにさらに好ましい。
The range of Mn content and Cu content is 0.06 to
It is necessary to set it to 0.8% and 0.01 to 0.50%. Higher magnetic flux density can be achieved by setting these ranges. The Cu content of 0.20 to 0.40% is more preferable for increasing the magnetic flux density.

【0057】Snの範囲は、0.01〜0.15%とす
ることはさらに好ましい。Snは、一次再結晶集合組織
において、{110}〈001〉方位粒を増加させ、そ
の結果として、二次再結晶粒径を小さくさせる効果があ
ると共に、硫化物の析出を均一化する効果がある。従っ
て、本発明の如き硫化物析出制御の効果を一増助長す
る。このSnの量は、0.01%未満では上記効果が不
十分であり、0.15%を超えると鋼板の窒化が難しく
なり、二次再結晶不良の原因となるため好ましくない。
この他インヒビター構成元素として知られているSb,
Cr,Ni,B,Ti,Nb等を微量に含有することは
差し支えない。
The range of Sn is more preferably 0.01 to 0.15%. Sn has the effect of increasing the {110} <001> oriented grains in the primary recrystallization texture and, as a result, reducing the secondary recrystallized grain size and the effect of making the precipitation of sulfide uniform. is there. Therefore, the effect of controlling sulfide precipitation as in the present invention is further enhanced. If the amount of Sn is less than 0.01%, the above effect is insufficient, and if it exceeds 0.15%, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.
Sb, which is also known as an inhibitor constituent element,
There is no problem in containing a minute amount of Cr, Ni, B, Ti, Nb or the like.

【0058】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。加熱されたスラ
ブは、引き続き熱延されて熱延板となる。
The slab heating temperature was limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower. The heated slab is subsequently hot rolled to form a hot rolled plate.

【0059】この熱延は、リバース又はタンデムで低速
で行われる粗圧延と、タンデムで行われる高速の仕上熱
延からなる。特に限定するものではないが、この仕上熱
延の温度を700〜1100℃とすることが好ましい。
これは、この温度範囲で仕上熱延を行うことにより、熱
延で導入された転位を核としたCu−Sの析出が生じや
すく、Cu−Sの微細析出分散相が得やすいためであ
る。
This hot rolling consists of rough rolling which is carried out at a low speed in reverse or tandem, and high speed finish hot rolling which is carried out in a tandem. Although not particularly limited, it is preferable that the temperature of the hot rolling for finishing is 700 to 1100 ° C.
This is because by performing finish hot rolling within this temperature range, precipitation of Cu—S with dislocations introduced by hot rolling as nuclei is likely to occur, and a fine precipitation dispersed phase of Cu—S is easily obtained.

【0060】この熱延板は次いで、1回又は中間焼鈍を
はさむ2回以上の冷延を施される。この際の最終冷延の
圧下率を80%以上とする。最終冷延の圧下率を80%
以上としたのは、圧下率を上記範囲とすることによっ
て、脱炭板において尖鋭な{110}〈001〉方位粒
と、これに蚕食されやすい対応方位粒({111}〈1
12〉方位粒等)を適正量得ることができ、磁束密度を
高める上で好ましいためである。
The hot-rolled sheet is then cold-rolled once or twice or more with intermediate annealing. At this time, the final cold rolling reduction is 80% or more. Final cold rolling reduction of 80%
The reason for the above is that by setting the reduction ratio in the above range, sharp {110} <001> oriented grains in the decarburized plate and corresponding oriented grains ({111} <1
12> oriented grains) can be obtained in an appropriate amount, which is preferable for increasing the magnetic flux density.

【0061】特に限定するものではないが、前記熱延の
後、必要により800〜1200℃の熱延板焼鈍を施す
ことは、磁気特性を高位安定化する上でさらに好まし
い。この温度域で熱処理することは、AlN,MnS,
Cu−S等の熱延板の場所的不均一性を低減する効果が
ある。
Although not particularly limited, it is more preferable to perform hot-rolled sheet annealing at 800 to 1200 ° C. after the hot rolling, if necessary, in order to stabilize the magnetic properties at a high level. The heat treatment in this temperature range is effective for AlN, MnS,
It is effective in reducing the spatial non-uniformity of the hot rolled sheet such as Cu-S.

【0062】最終冷延後の鋼板は、脱炭焼鈍、焼鈍分離
剤塗布、最終仕上焼鈍を施されて最終製品となる。ここ
で脱炭焼鈍完了後、最終仕上焼鈍開始までの間の一次再
結晶粒の平均粒径(D)を18〜35μmに制御するこ
とが必要である。
The steel sheet after the final cold rolling is subjected to decarburizing annealing, applying an annealing separating agent, and finally finishing annealing to obtain a final product. Here, it is necessary to control the average grain size (D) of the primary recrystallized grains to 18 to 35 μm after the completion of decarburization annealing and before the start of final finish annealing.

【0063】その理由は平均粒径の範囲で良好な磁束密
度が得られやすく、かつ粒径変動に対する磁束密度の変
化が少ないからである。さらには、上記D(μm)とス
ラブのCu量の間に、 16×Cu(%)+14≦D≦16×Cu(%)+27 の関係を満す必要がある。
The reason is that a good magnetic flux density is easily obtained within the range of the average particle diameter, and the change of the magnetic flux density due to the particle diameter variation is small. Furthermore, it is necessary to satisfy the relationship of 16 × Cu (%) + 14 ≦ D ≦ 16 × Cu (%) + 27 between the D (μm) and the Cu content of the slab.

【0064】この理由は、上記関係を満すことで、製品
において、{110}〈001〉方位に高度に集積した
二次再結晶集合組織形成と多数の二次再結晶粒の発生が
同時に達成できる。従ってW13/50 ≦0.40w/kgなる
良好な磁気特性を得るためには、上記関係を満すことが
必須となる。
The reason for this is that by satisfying the above relationship, in the product, the formation of secondary recrystallized textures highly integrated in the {110} <001> orientation and the generation of a large number of secondary recrystallized grains are achieved at the same time. it can. Thus in order to obtain a W 13/50 ≦ 0.40w / kg good magnetic properties comprising, it Mitsurusu the relationship is essential.

【0065】一次再結晶粒径を制御する手段は、特に限
定しない。スラブ加熱温度、熱延の熱履歴、熱延板焼鈍
条件、脱炭焼鈍条件を制御することが有効である。Cu
量を増加させ、同一条件で工程処理を行うと、一次再結
晶粒径が小さくなる傾向があるので、一次再結晶粒径を
Cu量に応じて大きくするためには、工程条件を変更す
る必要がある。
The means for controlling the primary recrystallized grain size is not particularly limited. It is effective to control the slab heating temperature, heat history of hot rolling, hot rolled sheet annealing conditions, and decarburization annealing conditions. Cu
When the amount is increased and the process treatment is performed under the same conditions, the primary recrystallized grain size tends to be small. Therefore, in order to increase the primary recrystallized grain size according to the Cu amount, it is necessary to change the process condition. There is.

【0066】又、脱炭焼鈍後の鋼板の表面酸化膜中の全
SiO2 量(SIO2(g/m2 ))とスラブのCu量
(Cu(%))の関係を 0.8−0.6×Cu(%)≦SIO2≦1.8−0.
6×Cu(%) とする必要がある。SIO2の下限値の規定は、この条
件を満すことが、図1において製品の具備条件WM −W
P ≧0.08を満すために必要なためである。
The relationship between the total amount of SiO 2 (SIO 2 (g / m 2 )) in the surface oxide film of the steel sheet after decarburization annealing and the amount of Cu (Cu (%)) in the slab is 0.8-0. 6 × Cu (%) ≦ SIO2 ≦ 1.8-0.
It is necessary to set 6 × Cu (%). The provisions of the lower limit of the SIO2 is the condition that Mitsurusu, provided the conditions of the product in Fig. 1 W M -W
This is because it is necessary to satisfy P ≧ 0.08.

【0067】SIO2の上限値の規定は、この条件を満
すことが、図2における製品の具備条件B8 ≧1.88
Tを満すために必要なためである。上記条件を満すため
の手段については特に限定しない。脱炭焼鈍時の温度、
露点を制御することによって上記関係を満足させること
ができる。
The upper limit value of SIO2 must satisfy this condition if the condition B 8 ≧ 1.88 of the product in FIG. 2 is satisfied.
This is because it is necessary to satisfy T. The means for satisfying the above conditions is not particularly limited. Temperature during decarburization annealing,
The above relationship can be satisfied by controlling the dew point.

【0068】酸化挙動は、鋼への添加元素及びその量の
影響を受ける。従って、上記関係を満すためには材料に
応じた条件設定が必要となる。Sn,Cuは酸化を抑制
する元素なので、特に注意する必要がある。
Oxidation behavior is affected by the elements added to the steel and their amounts. Therefore, in order to satisfy the above relationship, it is necessary to set the conditions according to the material. Since Sn and Cu are elements that suppress oxidation, special attention is required.

【0069】脱炭焼鈍時の露点、雰囲気ガス、熱サイク
ルについては特に限定しない。露点としては、30〜8
0℃、雰囲気ガスとしては通常N2 とH2 の混合ガスが
用いられる。熱サイクルについては、800〜900℃
まで鋼板は加熱される。露点、雰囲気ガス、熱サイクル
をMn,Cu等に応じて制御することは、図1,図2に
示された如き本発明の効果を実現するために、好まし
い。
The dew point, atmosphere gas and heat cycle during decarburization annealing are not particularly limited. The dew point is 30 to 8
At 0 ° C., a mixed gas of N 2 and H 2 is usually used as the atmosphere gas. About heat cycle, 800 ~ 900 ℃
Until the steel plate is heated. It is preferable to control the dew point, the atmospheric gas, and the heat cycle according to Mn, Cu, etc. in order to realize the effects of the present invention as shown in FIGS.

【0070】1280℃未満の低温スラブ加熱を行う場
合には、二次再結晶に必要なインヒビター強度が不足が
ちになるから熱延後最終仕上焼鈍の二次再結晶開始まで
に窒化処理を施す必要がある。さらに窒化の方法として
は特に限定するものではなく、脱炭焼鈍後引き続き焼鈍
雰囲気にNH3 ガスを混入させ窒化する方法、プラズマ
を用いる方法、焼鈍分離剤に窒化物を添加し、最終仕上
焼鈍の昇温中に窒化物が分解してできた窒素を鋼板に吸
収させる方法、最終仕上焼鈍の雰囲気のN2 分圧を高め
とし、鋼板を窒化する方法等いずれの方法でも良い。
When low-temperature slab heating below 1280 ° C. is performed, the inhibitor strength required for secondary recrystallization tends to be insufficient, so it is necessary to perform nitriding treatment after hot rolling and before the start of secondary recrystallization in final annealing. There is. Further, the nitriding method is not particularly limited, and a method of nitriding by mixing NH 3 gas in an annealing atmosphere after decarburization annealing, a method of using plasma, a nitride is added to an annealing separator and a final finishing annealing is performed. Any method such as a method of absorbing nitrogen generated by decomposition of nitride during temperature rise into a steel sheet, a method of increasing the N 2 partial pressure in the atmosphere of final annealing and nitriding the steel sheet may be used.

【0071】窒化量は、増窒素量として、0.0010
%以上とする必要がある。0.0010%未満では、本
発明の本質である最終仕上焼鈍昇温過程でのSi又はM
nを多く含有する窒化物からAlN又は(Al,Si)
Nへの置換現象が十分生じないので好ましくない。増窒
素量の上限も、特に規定するものではないが、フォルス
テライト被膜の欠陥を少なく抑えるには、0.1000
%以下にすることが好ましい。
The amount of nitriding is 0.0010 as the amount of nitrogen increase.
It must be at least%. If it is less than 0.0010%, Si or M in the final finishing annealing temperature rising process which is the essence of the present invention is used.
AlN or (Al, Si) from n-rich nitrides
It is not preferable because the phenomenon of substitution with N does not occur sufficiently. The upper limit of the amount of nitrogen increase is not particularly specified, but in order to suppress the defects of the forsterite coating to be small, it is 0.1000.
% Or less is preferable.

【0072】さらに、特に限定するものではないが、最
終仕上焼鈍昇温時の800〜1000℃の間を100℃
/時以下の昇温速度で加熱することは好ましい。これ
は、この800〜1000℃の温度範囲で、Cu−Sか
らMnSへの置換及びSi又はMnが多い窒化物からA
lN又は(Al,Si)Nへの置換が生じるので、これ
らの現象が十分起こるための時間を確保することが好ま
しいためである。
Further, although not particularly limited, the temperature between 800 and 1000 ° C. during the final finish annealing temperature increase is 100 ° C.
It is preferable to heat at a heating rate of not more than / hour. This is because, in the temperature range of 800 to 1000 ° C., the substitution of Cu—S with MnS and the nitride containing a large amount of Si or Mn give A.
This is because substitution with 1N or (Al, Si) N occurs, and it is preferable to secure a time for these phenomena to sufficiently occur.

【0073】最終仕上焼鈍時の雰囲気については、特に
限定するものではないが、酸化ポテンシャルを確保する
点においては、N2 ガスを含む雰囲気で焼鈍を行うこと
が好ましい。
The atmosphere for the final finish annealing is not particularly limited, but from the viewpoint of securing the oxidation potential, it is preferable to perform the annealing in an atmosphere containing N 2 gas.

【0074】最終仕上焼鈍後は、形状矯正と張力コーテ
ィングを兼ねた焼鈍を施される。この焼鈍は鋼板を80
0〜900℃に加熱して行われ、リン酸等を含むコーテ
ィングも施される。
After the final finish annealing, annealing is performed for both shape correction and tension coating. This annealing was performed on the steel plate at 80
The heating is performed at 0 to 900 ° C., and a coating containing phosphoric acid or the like is also applied.

【0075】本発明の特徴となる製品の具備条件の限定
理由について説明する。Siは2.5〜5.0%含有さ
れる必要がある。5.0%を超えると製品加工時割れが
生じる可能性が高まり、好ましくない。2.5%未満で
は固有抵抗が低すぎ、低鉄損が得られない。望ましく
は、3.2%以上である。
The reasons for limiting the conditions for equipping the product, which is a feature of the present invention, will be described. Si needs to be contained in 2.5 to 5.0%. If it exceeds 5.0%, cracking may occur during product processing, which is not preferable. If it is less than 2.5%, the specific resistance is too low and a low iron loss cannot be obtained. Desirably, it is 3.2% or more.

【0076】Cuは、0.05〜0.50%とした。C
u量をこの範囲にすることによって、図1に示した本発
明の効果が得られやすい。又、Cu量を0.20〜0.
40%とすることによって、磁束密度が向上するのでさ
らに好ましい。Mnについては、0.06〜0.8%と
した。Mn量についても、この範囲にすることによって
図1に示した本発明の効果が得られやすい。
Cu was set to 0.05 to 0.50%. C
By setting the amount of u in this range, the effect of the present invention shown in FIG. 1 can be easily obtained. Further, the Cu content is 0.20 to 0.
The content of 40% is more preferable because the magnetic flux density is improved. About Mn, it was 0.06-0.8%. With respect to the amount of Mn as well, the effect of the present invention shown in FIG. 1 can be easily obtained by setting it in this range.

【0077】Cu(%)×Mn(%)量及びWM −WP
の値については、図1に示した如く、各々0.005〜
0.15、0.08以上とする必要がある。この値の範
囲に各々制御することによって、良好な鉄損特性が得ら
れる。
Cu (%) × Mn (%) amount and W M −W P
As shown in FIG. 1, the values of 0.005 to 0.005
It should be 0.15, 0.08 or more. Good iron loss characteristics can be obtained by controlling within this range of values.

【0078】磁束密度B8 (T)及び製品の二次再結晶
粒径の平均値d(mm)は、図2に示した如く、各々、B
8 (T)≧1.88、1.0≦d≦23×B8 −40と
する必要がある。この値の範囲に各々制御することによ
って、良好な鉄損特性が得られる。Sn量については、
0.01〜0.15%とすることがさらに好ましい。こ
の値の範囲とすることによって、高磁束密度と低鉄損が
得られやすい。
The magnetic flux density B 8 (T) and the average value d (mm) of the secondary recrystallized grain size of the product are respectively B as shown in FIG.
8 (T) ≧ 1.88, 1.0 ≦ d ≦ 23 × B 8 -40. Good iron loss characteristics can be obtained by controlling within this range of values. Regarding the Sn amount,
It is more preferable to set it to 0.01 to 0.15%. By setting the range of this value, it is easy to obtain high magnetic flux density and low iron loss.

【0079】[0079]

【実施例】【Example】

〔実施例1〕C:0.056%(%は重量%、以下同
じ)、Si:3.40%、Mn:0.11%、S:0.
010%、酸可溶性Al:0.030%、N:0.00
85%を基本成分とし、Cu量を、<0.001%、
0.15%、0.35%なる3水準で添加した3種
類の250mm厚のスラブを作成した。この時、Cu
(%)×Mn(%)の値は、各々、<0.0001
1、0.0165、0.0385であった。
[Example 1] C: 0.056% (% is weight%, the same applies hereinafter), Si: 3.40%, Mn: 0.11%, S: 0.
010%, acid-soluble Al: 0.030%, N: 0.00
85% as a basic component, Cu content <0.001%,
Three kinds of slabs having a thickness of 250 mm were added at three levels of 0.15% and 0.35%. At this time, Cu
The value of (%) × Mn (%) is <0.0001, respectively.
It was 1, 0.0165 and 0.0385.

【0080】かかるスラブを1150℃で60分均熱し
た後、直ちに熱延を開始し、5パスの粗熱延で40mm厚
とした後、6パスの仕上熱延で2.3mm厚の熱延板とし
た。
After soaking the slab at 1150 ° C. for 60 minutes, hot rolling was immediately started, and after 5 passes of rough hot rolling to 40 mm thickness, 6 passes of finish hot rolling to 2.3 mm thick hot rolling. It was a plate.

【0081】この熱延板を1050℃に3分間保持する
熱延板焼鈍を施し、次いで圧下率約88%で0.285
mmの冷延板とし、845℃で150秒保持する脱炭焼鈍
を施した。
The hot-rolled sheet was annealed at 1050 ° C. for 3 minutes, then 0.285 at a rolling reduction of about 88%.
A cold-rolled sheet having a thickness of mm was subjected to decarburization annealing at 845 ° C. for 150 seconds.

【0082】この脱炭焼鈍時の焼鈍雰囲気を(a)
2 :25%、H2 :75%、露点62℃、(b)
2 :25%、H2 :75%、露点40℃、(c)
2 :10%、H2 :90%、露点30℃の3条件とし
た。しかる後、750℃で30秒保持する焼鈍を行い、
焼鈍雰囲気中にNH3 ガスを混入させ鋼板に窒素を吸収
せしめた。窒化後のこの鋼板のN量は0.0193〜
0.0231%であった。
The annealing atmosphere during this decarburization annealing is (a)
N 2 : 25%, H 2 : 75%, dew point 62 ° C, (b)
N 2 : 25%, H 2 : 75%, dew point 40 ° C, (c)
Three conditions of N 2 : 10%, H 2 : 90%, and dew point 30 ° C. were set. After that, annealing is performed at 750 ° C. for 30 seconds,
NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of this steel sheet after nitriding is 0.0193-
It was 0.0231%.

【0083】次いで、この鋼板にMgOを主成分とし、
Na2 4 7 ,TiO2 を各々、0.3%,5%添加
した焼鈍分離剤を塗布し、N2 :25%、H2 :75%
の雰囲気ガス中で10℃/時の速度で1200℃まで昇
温し、引き続きH2 :100%雰囲気ガス中で1200
℃で20時間保持する最終仕上焼鈍を行った。しかる
後、張力コーティングと形状矯正を兼ねた焼鈍を行っ
た。実験条件と製品特徴量、磁気特性の結果を表1に示
す。
Next, this steel sheet was mainly composed of MgO,
An annealing separator containing 0.3% and 5% of Na 2 B 4 O 7 and TiO 2 was applied, and N 2 : 25%, H 2 : 75%
In an atmosphere gas of 10 ° C./hour to 1200 ° C., and then H 2 : 100% in an atmosphere gas of 1200.
Final finishing annealing was carried out at 20 ° C. for 20 hours. After that, annealing was carried out for both tension coating and shape correction. Table 1 shows the results of the experimental conditions, product characteristic amounts, and magnetic characteristics.

【0084】[0084]

【表1】 [Table 1]

【0085】〔実施例2〕C:0.049%、Si:
3.39%、S:0.008%、Cu:0.27%、
N:0.0020%、酸可溶性Al:0.0029%を
基本成分とし、Mnを、0.14%、0.65%の
2水準のレベルで添加し、残部Fe及び不可避的不純物
からなる2種類の250mm厚のスラブを作成した。この
時、Cu(%)×Mn(%)の値は、各々0.037
8、0.1755であった。かかるスラブを1120
℃で60分均熱した後、直ちに熱延を開始し、5パスの
粗熱延で40mm厚とした後、6パスの仕上熱延で2.3
mm厚の熱延板とした。
Example 2 C: 0.049%, Si:
3.39%, S: 0.008%, Cu: 0.27%,
N: 0.0020% and acid-soluble Al: 0.0029% are the basic components, Mn is added at two levels of 0.14% and 0.65%, and the balance is Fe and inevitable impurities. A variety of 250 mm thick slabs were created. At this time, the value of Cu (%) × Mn (%) is 0.037 each.
It was 8, 0.1755. 1120 this slab
After soaking at 60 ° C for 60 minutes, hot rolling is immediately started, and after 5 passes of rough hot rolling to a thickness of 40 mm, 6 passes of finishing hot rolling to 2.3.
A hot-rolled sheet having a thickness of mm was used.

【0086】この熱延板を1100℃に30秒保持し、
引き続き900℃に30秒保持した後急冷する熱延板焼
鈍を施した。次いで、圧下率約90%で0.220mmの
冷延板とし、840℃で90秒保持する脱炭焼鈍を施し
た。この脱炭焼鈍時の焼鈍雰囲気を(a)N2 :25
%、H2 :75%、露点60℃、(b)N2 :75%、
2 :25%、露点75℃なる2条件とした。
The hot rolled sheet was kept at 1100 ° C. for 30 seconds,
Successively, hot-rolled sheet annealing was carried out by holding the material at 900 ° C. for 30 seconds and then rapidly cooling it. Next, a 0.220 mm cold-rolled sheet with a reduction rate of about 90% was subjected to decarburization annealing at 840 ° C. for 90 seconds. The annealing atmosphere during this decarburization annealing is (a) N 2 : 25
%, H 2 : 75%, dew point 60 ° C., (b) N 2 : 75%,
H 2 : 25% and dew point 75 ° C. under two conditions.

【0087】しかる後、770℃で30秒保持する焼鈍
を行い、焼鈍中にNH3 ガスを混入させ鋼板に窒素を吸
収せしめた。窒化後のこの鋼板のN量は、0.0195
〜0.0228%であった。
After that, annealing was carried out at 770 ° C. for 30 seconds, and NH 3 gas was mixed during the annealing to make the steel sheet absorb nitrogen. The N content of this steel sheet after nitriding is 0.0195.
It was -0.0228%.

【0088】次いで、この鋼板にMgOを主成分とし、
TiO2 を3%添加した焼鈍分離剤を塗布し、N2 :5
0%、H2 :50%の雰囲気ガス中で25℃/時の速度
で1200℃まで昇温し、引き続きH2 :100%雰囲
気ガス中で1200℃で20時間保持する最終仕上焼鈍
を行った。しかる後、張力コーティングと形状矯正を兼
ねた焼鈍を行った。実験条件と製品特徴量、磁気特性の
関係を表2に示す。
Next, this steel sheet was mainly composed of MgO,
An annealing separator containing 3% of TiO 2 was applied and N 2 : 5 was added.
Final finishing annealing was carried out by raising the temperature to 1200 ° C. at a rate of 25 ° C./hour in an atmosphere gas of 0% and H 2 : 50%, and then maintaining the temperature in the atmosphere gas of H 2 : 100% at 1200 ° C. for 20 hours. . After that, annealing was carried out for both tension coating and shape correction. Table 2 shows the relationship among the experimental conditions, the product characteristic amount, and the magnetic characteristics.

【0089】[0089]

【表2】 [Table 2]

【0090】〔実施例3〕C:0.040%、Si:
3.10%、Mn:0.10%、S:0.010%、C
u:0.11%、酸可溶性Al:0.032%、N:
0.0058%を添加し、残部Fe及び不可避的不純物
からなる250mm厚のスラブを作成した。この時、Cu
(%)×Mn(%)の値は、0.011であった。かか
るスラブを1100℃で60分均熱した後、直ちに熱延
を開始し、5パスの粗熱延で40mm厚とした後、6パス
の仕上熱延で2.3mm厚の熱延板とした。
[Example 3] C: 0.040%, Si:
3.10%, Mn: 0.10%, S: 0.010%, C
u: 0.11%, acid-soluble Al: 0.032%, N:
0.0058% was added to form a 250 mm thick slab consisting of the balance Fe and unavoidable impurities. At this time, Cu
The value of (%) × Mn (%) was 0.011. After soaking the slab at 1100 ° C. for 60 minutes, hot rolling was immediately started, and after 5 passes of rough hot rolling to 40 mm thickness, 6 passes of finish hot rolling to 2.3 mm thick hot rolled sheet .

【0091】次いで、かかる熱延板を酸洗して圧下率約
85%で0.335mmの冷延板とし840℃で150秒
保持する脱炭焼鈍を施した。この脱炭焼鈍時の焼鈍雰囲
気をN2 :50%、H2 :50%、露点50℃、N
2 :50%、H2 :50%、露点70℃なる2条件とし
た。しかる後、750℃で30秒保持する焼鈍を行い、
焼鈍雰囲気中にNH3 ガスを混入させ鋼板に窒素吸収を
生ぜしめた。窒化後のこの鋼板のN量は0.0226%
であった。そしてこの鋼板の平均結晶粒径は、21μm
であった。
Then, the hot-rolled sheet was pickled to form a cold-rolled sheet of 0.335 mm with a reduction rate of about 85% and subjected to decarburization annealing at 840 ° C. for 150 seconds. The annealing atmosphere during this decarburization annealing is N 2 : 50%, H 2 : 50%, dew point 50 ° C., N
2: 50%, H 2: 50%, has a two conditions that dew point 70 ° C.. After that, annealing is performed at 750 ° C. for 30 seconds,
NH 3 gas was mixed into the annealing atmosphere to cause the steel sheet to absorb nitrogen. The N content of this steel sheet after nitriding is 0.0226%
Met. The average grain size of this steel sheet is 21 μm.
Met.

【0092】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、(a)N2 :50%、H2 :50
%、(b)N2 :10%、H2 :90%なる2水準の雰
囲気ガス中で15℃/時の速度で1200℃まで昇温
し、引き続きH2 :100%雰囲気ガス中で1200℃
で20時間保持する最終仕上焼鈍を行った。しかる後、
張力コーティングと形状矯正を兼ねた焼鈍を行った。実
験条件と製品特徴量、磁気特性の関係を表3に示す。
Then, an annealing separator containing MgO as a main component was applied to this steel sheet, and (a) N 2 : 50%, H 2 : 50.
%, (B) N 2 : 10%, H 2 : 90% in two levels of atmospheric gas, the temperature is raised to 1200 ° C. at a rate of 15 ° C./hour, and then H 2 : 100% in atmospheric gas at 1200 ° C.
Final annealing was carried out for 20 hours. After a while
Annealing was performed for both tension coating and shape correction. Table 3 shows the relationship among the experimental conditions, the product characteristic amount, and the magnetic characteristics.

【0093】[0093]

【表3】 [Table 3]

【0094】[0094]

【発明の効果】本発明においては、製品の状態で、S
i,Cu,Mn含有量を制御し、Cu量とMn量の積を
制御し、磁束密度及び製品の二次再結晶粒径の平均値を
制御し、さらには、製品と被膜除去後の鉄損差を制御す
ることによって、さらに好ましくは、Cu量を激しく制
御し、所定のSn量を含有することによって良好な磁気
特性を有する一方向性電磁鋼板を提供できるので、その
工業的意義は極めて大である。
According to the present invention, in the state of the product, S
i, Cu, Mn contents are controlled, the product of Cu amount and Mn amount is controlled, the magnetic flux density and the average value of the secondary recrystallized grain size of the product are controlled, and further, the product and the iron after film removal By controlling the loss difference, more preferably, the amount of Cu is violently controlled, and by containing a predetermined amount of Sn, it is possible to provide a grain-oriented electrical steel sheet having good magnetic properties. Therefore, its industrial significance is extremely high. Is large.

【0095】さらに、この特徴ある製品を製造する方法
においては、Cuを添加しCu量とMn量の積を制御す
ること、スラブのCu量に応じて、脱炭焼鈍完了後最終
仕上焼鈍開始までの一次再結晶粒の平均粒径を制御する
こと、スラブのCu量に応じて、脱炭焼鈍後の鋼板のS
iO2 量を制御すること、熱延後最終仕上焼鈍の二次再
結晶開始までの間に鋼板に所定量の窒化処理を施すこ
と、さらに好ましくは、スラブのCu量を激しく制御
し、所定のSn量を添加することによって良好な磁気特
性を安定して得られるので、その工業的効果が極めて大
である。
Further, in the method for producing this characteristic product, Cu is added to control the product of the amount of Cu and the amount of Mn, and depending on the amount of Cu in the slab, after completion of decarburization annealing until the start of final finishing annealing. Controlling the average grain size of the primary recrystallized grains, S of the steel sheet after decarburization annealing depending on the Cu content of the slab
Controlling the amount of iO 2 , performing a predetermined amount of nitriding treatment on the steel sheet after the hot rolling and before the start of secondary recrystallization in the final finish annealing, and more preferably, by controlling the amount of Cu in the slab vigorously to a predetermined amount. Good magnetic characteristics can be stably obtained by adding the Sn amount, so that the industrial effect thereof is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】製品のCu(%)×Mn(%)、及び製品の被
膜除去後の鉄損W13/50 (WM)と製品の鉄損W13/50
(WP )との差と製品の鉄損特性との関係を表わすグラ
フである。
[Fig. 1] Cu (%) × Mn (%) of the product, and the iron loss W 13/50 (W M ) of the product after removing the film and the product iron loss W 13/50
It is a graph showing the relationship between the difference with (W P ) and the iron loss characteristics of the product.

【図2】製品の磁束密度(B8 )及び製品の二次再結晶
粒の平均粒径(d)と製品の鉄損特性との関係を表わす
グラフである。
FIG. 2 is a graph showing the relationship between the magnetic flux density (B 8 ) of the product, the average grain size (d) of the secondary recrystallized grains of the product, and the iron loss characteristics of the product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茂木 尚 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 (72)発明者 田中 収 北九州市戸畑区大字中原46−59 日鐵プラ ント設計株式会社内 (72)発明者 黒木 克郎 北九州市戸畑区大字中原46−59 日鐵プラ ント設計株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nao Mogi 1-1 No. 1 Tobata-cho, Tobata-ku, Kitakyushu City Inside Nippon Steel Yawata Works (72) Inventor Osamu Tanaka 46-59 Nakahara, Tobata-ku, Kitakyushu City Nittetsu Plant Design Co., Ltd. (72) Inventor Katsuro Kuroki 46-59 Nakahara, Tobata-ku, Kitakyushu City Nittetsu Plant Design Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Si:2.5〜5.0%、C
u:0.05〜0.50%、Mn:0.06〜0.8
%、残部がFe及び不可避的不純物からなる一方向性電
磁鋼板で、 0.005≦Cu(%)×Mn(%)≦0.15 を満し、かつ、B8 (T)≧1.88であり、かつ、製
品の二次再結晶粒径の平均値d(mm)が 1.0≦d≦23×B8 −40 を満し、かつ、製品と被膜除去後の鉄損W13/50 (w/k
g)を、各々、WP ,WMとした時、 WM −WP ≧0.08 であることを特徴とする磁気特性と被膜特性の優れた一
方向性電磁鋼板。
1. By weight%, Si: 2.5-5.0%, C
u: 0.05 to 0.50%, Mn: 0.06 to 0.8
%, The balance is Fe and unavoidable impurities in the grain-oriented electrical steel sheet, which satisfies 0.005 ≦ Cu (%) × Mn (%) ≦ 0.15 and B 8 (T) ≧ 1.88. And the average value d (mm) of the secondary recrystallized grain size of the product satisfies 1.0 ≦ d ≦ 23 × B 8 −40, and the iron loss W 13 / 50 (w / k
g) is W P and W M , respectively, W M −W P ≧ 0.08. A unidirectional electrical steel sheet having excellent magnetic properties and coating properties.
【請求項2】 重量%で、Cu:0.20〜0.40%
を含有する請求項1記載の磁気特性と被膜特性の優れた
一方向性電磁鋼板。
2. Cu: 0.20 to 0.40% by weight
The grain-oriented electrical steel sheet according to claim 1, which is excellent in magnetic properties and coating properties.
【請求項3】 重量%で、Sn:0.01〜0.15%
を含有する請求項1又は2記載の磁気特性と被膜特性の
優れた一方向性電磁鋼板。
3. Sn: 0.01 to 0.15% by weight
A grain-oriented electrical steel sheet according to claim 1 or 2, which is excellent in magnetic properties and coating properties.
【請求項4】 重量%で、C :0.025〜0.07
5%、Si:2.5〜5.0%、酸可溶性Al:0.0
10〜0.060%、N :0.0010〜0.013
0%、S+0.405Se:0.005〜0.020
%、Mn:0.06〜0.8%、Cu:0.01〜0.
50%、残部がFe及び不可避的不純物からなるスラブ
を1280℃未満の温度で加熱し、熱延し、引き続き熱
延板焼鈍を施し、次いで圧下率80%以上の最終冷延を
含み、中間焼鈍をはさむ1回以上の冷延を施し、次いで
脱炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製
造する方法において、スラブのCu,Mnの含有量(重
量%)を下記(1)式の範囲に制御し、脱炭焼鈍完了後
最終仕上焼鈍開始までの一次再結晶粒の平均粒径(D
(μm))を18〜35μmとし、スラブのCu量とD
を下記(2)式の範囲に制御し、かつ、脱炭焼鈍後の鋼
板の表面酸化膜中の全SiO2 量(SIO2(g/
2 ))とスラブのCu量(Cu(%))を下記(3)
式の範囲に制御し、熱延後最終仕上焼鈍の二次再結晶開
始までの間に鋼板に増窒素量で0.0010%以上の窒
化処理を施すことを特徴とする磁気特性と被膜特性の優
れた一方向性電磁鋼板の製造法。 0.005 ≦Cu(%)×Mn(%)≦0.15 ………………(1) 16×Cu(%)+14≦D≦16×Cu(%)+27 ……………(2) 0.8 −0.6 ×Cu(%)≦SIO2≦1.8 −0.6 ×Cu(%) ……(3)
4. C: 0.025 to 0.07 in% by weight.
5%, Si: 2.5 to 5.0%, acid-soluble Al: 0.0
10 to 0.060%, N: 0.0010 to 0.013
0%, S + 0.405Se: 0.005-0.020
%, Mn: 0.06 to 0.8%, Cu: 0.01 to 0.
A slab consisting of 50%, the balance being Fe and unavoidable impurities, is heated at a temperature of less than 1280 ° C., hot-rolled, subsequently hot-rolled sheet annealed, and then finally cold-rolled with a rolling reduction of 80% or more, and an intermediate annealing. In the method for producing a grain-oriented electrical steel sheet by performing cold rolling one or more times after sandwiching, followed by decarburizing annealing and final finishing annealing, the Cu and Mn contents (% by weight) of the slab are set as follows (1). The average grain size of the primary recrystallized grains (D
(Μm)) is set to 18 to 35 μm, and the Cu content of the slab and D
In the range of the following formula (2), and the total amount of SiO 2 in the surface oxide film of the steel sheet after decarburization annealing (SIO2 (g /
m 2 )) and the Cu content (Cu (%)) of the slab are given in (3) below.
It is controlled within the range of the formula, and the steel sheet is subjected to a nitriding treatment of 0.0010% or more with a nitrogen increase amount before the secondary recrystallization of the final finish annealing after the hot rolling. An excellent method for producing grain-oriented electrical steel sheets. 0.005 ≤ Cu (%) x Mn (%) ≤ 0.15 ………… (1) 16 x Cu (%) + 14 ≤ D ≤ 16 x Cu (%) +27 ………… (2) 0.8 -0.6 × Cu (%) ≦ SIO2 ≦ 1.8 −0.6 × Cu (%) (3)
【請求項5】 重量%で、C :0.025〜0.07
5%、Si:2.5〜5.0%、酸可溶性Al:0.0
10〜0.060%、N :0.0010〜0.013
0%、S+0.405Se:0.005〜0.020
%、Mn:0.06〜0.8%、Cu:0.01〜0.
50%、 残部がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱延し、引き続き熱延板焼鈍
を施さず、次いで圧下率80%以上の最終冷延を含み、
中間焼鈍をはさむ1回以上の冷延を施し、次いで脱炭焼
鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製造する
方法において、スラブのCu,Mnの含有量(重量%)
を下記(1)式の範囲に制御し、脱炭焼鈍完了後最終仕
上焼鈍開始までの一次再結晶粒の平均粒径(D(μ
m))を18〜35μmとし、スラブのCu量とDを下
記(2)式の範囲に制御し、かつ、脱炭焼鈍後の鋼板の
表面酸化膜中の全SiO2 量(SIO2(g/m2 ))
とスラブのCu量(Cu(%))を下記(3)式の範囲
に制御し、熱延後最終仕上焼鈍の二次再結晶開始までの
間に鋼板に増窒素量で0.0010%以上の窒化処理を
施すことを特徴とする磁気特性と被膜特性の優れた一方
向性電磁鋼板の製造法。 0.005 ≦Cu(%)×Mn(%)≦0.15 ………………(1) 16×Cu(%)+14≦D≦16×Cu(%)+27 ………………(2) 0.8 −0.6 ×Cu(%)≦SIO2≦1.8 −0.6 ×Cu(%) ……(3)
5. C: 0.025 to 0.07 in% by weight.
5%, Si: 2.5 to 5.0%, acid-soluble Al: 0.0
10 to 0.060%, N: 0.0010 to 0.013
0%, S + 0.405Se: 0.005-0.020
%, Mn: 0.06 to 0.8%, Cu: 0.01 to 0.
Slab consisting of 50% and the balance Fe and unavoidable impurities 128
Heating at a temperature of less than 0 ° C., hot rolling, followed by no hot-rolled sheet annealing, and then final cold rolling with a rolling reduction of 80% or more,
In the method of producing a grain-oriented electrical steel sheet by performing cold rolling one or more times with intermediate annealing, followed by decarburizing annealing and final finishing annealing, the content of Cu and Mn in the slab (% by weight)
Is controlled within the range of the following formula (1), and the average grain size of primary recrystallized grains (D (μ
m)) is 18 to 35 μm, the Cu amount and D of the slab are controlled within the range of the following formula (2), and the total amount of SiO 2 (SIO2 (g / g) in the surface oxide film of the steel sheet after decarburization annealing is controlled. m 2 ))
The Cu content (Cu (%)) of the slab and the slab is controlled within the range of the following formula (3), and the amount of nitrogen added to the steel sheet is 0.0010% or more after hot rolling and before the start of secondary recrystallization in final annealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties, which is characterized by performing nitriding treatment of. 0.005 ≤ Cu (%) x Mn (%) ≤ 0.15 ………… (1) 16 x Cu (%) + 14 ≤ D ≤ 16 x Cu (%) + 27 ………… (2) 0.8- 0.6 × Cu (%) ≦ SIO2 ≦ 1.8 −0.6 × Cu (%) (3)
【請求項6】 Cu:0.20〜0.40重量%を含有
するスラブを用いることを特徴とする請求項4又は5記
載の磁気特性と被膜特性の優れた一方向性電磁鋼板の製
造法。
6. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties according to claim 4, wherein a slab containing Cu: 0.20 to 0.40 wt% is used. .
【請求項7】 Sn:0.01〜0.15重量%を含有
するスラブを用いることを特徴とする請求項4又は5又
は6記載の磁気特性と被膜特性の優れた一方向性電磁鋼
板の製造法。
7. A unidirectional electrical steel sheet having excellent magnetic properties and coating properties according to claim 4, 5 or 6, wherein a slab containing Sn: 0.01 to 0.15 wt% is used. Manufacturing method.
JP7075795A 1995-03-31 1995-03-31 Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production Withdrawn JPH08269644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7075795A JPH08269644A (en) 1995-03-31 1995-03-31 Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7075795A JPH08269644A (en) 1995-03-31 1995-03-31 Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production

Publications (1)

Publication Number Publication Date
JPH08269644A true JPH08269644A (en) 1996-10-15

Family

ID=13586506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7075795A Withdrawn JPH08269644A (en) 1995-03-31 1995-03-31 Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production

Country Status (1)

Country Link
JP (1) JPH08269644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019359A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019359A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6444051B2 (en) Method of manufacturing a grain-oriented electromagnetic steel sheet
EP2025767B2 (en) Process for producing grain-oriented electrical steel sheet with high magnetic flux density
US6613160B2 (en) Method to produce grain-oriented electrical steel sheet having high magnetic flux density
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
CN113166892A (en) Oriented electrical steel sheet and method for manufacturing the same
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
CN113195770A (en) Oriented electrical steel sheet and method for manufacturing the same
JPH06228646A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269644A (en) Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production
JPH11269544A (en) Manufacture of high flux density low core loss grain oriented silicon steel sheet
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07138643A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
USRE39482E1 (en) Method of making grain-oriented magnetic steel sheet having low iron loss

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604