JPH08269459A - 石炭の液化方法 - Google Patents

石炭の液化方法

Info

Publication number
JPH08269459A
JPH08269459A JP7074743A JP7474395A JPH08269459A JP H08269459 A JPH08269459 A JP H08269459A JP 7074743 A JP7074743 A JP 7074743A JP 7474395 A JP7474395 A JP 7474395A JP H08269459 A JPH08269459 A JP H08269459A
Authority
JP
Japan
Prior art keywords
coal
reaction
solvent
liquefaction
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7074743A
Other languages
English (en)
Inventor
Yoshiki Sato
芳樹 佐藤
Hiroshi Yamaguchi
宏 山口
Yasuo Okuyama
泰男 奥山
Shozo Itagaki
省三 板垣
Noriaki Mochida
典秋 持田
Kenji Matsubara
健次 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
National Institute of Advanced Industrial Science and Technology AIST
Nippon Kokan Pipe Techno Service Co Ltd
Original Assignee
Agency of Industrial Science and Technology
NKK Corp
Nippon Kokan Ltd
Nippon Kokan Pipe Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, NKK Corp, Nippon Kokan Ltd, Nippon Kokan Pipe Techno Service Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP7074743A priority Critical patent/JPH08269459A/ja
Priority to AU50351/96A priority patent/AU697855B2/en
Priority to KR1019960009271A priority patent/KR0176002B1/ko
Priority to CN96102808A priority patent/CN1054392C/zh
Publication of JPH08269459A publication Critical patent/JPH08269459A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/322Coal-oil suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】 【目的】 石炭液化製品のコストを大幅に下げることが
できる石炭の液化方法を提供する。 【構成】 (A)粉砕した石炭に溶剤を加えて石炭スラリ
ーを調製する工程、(B)この石炭スラリーを高温高圧
かつ水素の存在下で液化反応させて液化生成物を得る工
程、(C)この液化生成物を液化スラリーとガス類に分
離する工程、(D)液化スラリーを蒸留して液化油と溶
剤精製炭に分離し、分離した液化油を溶剤として(A)
の石炭スラリー調製工程へ所要量をリサイクルする工程
からなる石炭の液化方法において、(A)の工程では石
炭および溶剤とともに触媒を添加するとともに、石炭/
溶剤/触媒の重量混合比を100/100〜233/
0.5〜10の範囲にし、(B)の工程では水素源とし
てコークス炉ガスを反応塔へ供給し、温度350〜48
0℃、圧力20〜200気圧で液化反応を行わせること
を特徴とする石炭の液化方法。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、石炭と水素を高温高圧
下で反応させ、主な製品として、コークス製造時に粘結
性補填材として使用される溶剤精製炭(以下、SRCと
言う。)を得る石炭の液化方法に関する。なお、本明細
書においては、石炭の液化反応とは、石炭と水素を反応
させることによって液化油が生成する反応およびSRC
が生成する反応の双方を指すものとする。
【0002】
【従来の技術】図3は、従来における一般的な石炭の液
化方法に係る説明図である。この方法においては、ま
ず、粉砕された石炭と、後述する蒸留工程で得られた液
化油(溶剤)がスラリー槽1へ装入され、攪拌・混合さ
れて石炭スラリーが調製される。
【0003】次いで、この石炭スラリーは、加圧され、
後述するガス精製工程で分離された水素を主体とするガ
ス(循環水素)と別途製造された水素が加えられた後、予
熱器2へ導入される。予熱器2へ導入された石炭スラリ
ーは、圧力100気圧以上、温度400℃以上の状態に
され、液化反応塔3へ送られる。反応塔3内では高温且
つ水素加圧下で液化反応が行われる。
【0004】そして、反応塔3から排出する液化反応の
生成物はガス分離器4へ導入され、液化油と未液化物の
混合物である液化スラリーとガス類に分別される。
【0005】上記液化スラリーには未反応有機残渣およ
び灰分より成る未液化物が多量に含まれており、これが
後の蒸留工程などにおける処理操作に支障を来すので、
フィルター50へ送られ、上記未液化物が除去される。
未液化物が除去された液化物は蒸留装置5へ送られて軽
油、燃料油に分留され、液化油が回収される。この液化
油の一部は石炭スラリー調製用の溶剤として上記スラリ
ー槽1へ装入される。また、フィルター50で除去され
た濾過残渣は水素発生用の原料として水素製造装置51
へ送られ、ガス化される。
【0006】一方、上記ガス分離器4で分離されたガス
類は、ガス精製装置6へ送られて精製される。このガス
の組成は水素が主体であるので、循環使用され、液化反
応塔3へ導入される石炭スラリーに加えられる。しか
し、この循環させる水素だけでは、液化反応に必要な水
素量が不足するので、水素製造装置51で濾過残渣をガ
ス化して得た水素が補給される。水素製造装置51は、
酸素の存在下で濾過残渣を完全分解するガス化工程と、
その生成ガスを精製する工程、生成ガス中のCOガスを
シフト反応させて水素富化する工程、その後にガスを冷
却する工程そしてアルカリによるガス中のCO2除去工
程を有し、非常に複雑な装置である。
【0007】
【発明が解決しようとする課題】しかし、上記従来の方
法において、液化反応を行わせるための水素は、非常に
複雑な水素製造装置51で製造した水素を使用しなけれ
ばならない。そして、水素製造装置51は非常に複雑な
装置であるので、その建設費が極めて多額である(液化
設備全体の建設費の40%近くになることもある)とと
もに、その運転費も多額を要する。このため、石炭液化
製品のコストに占める水素製造費の割合は極めて大き
い。
【0008】さらに、上記従来技術における液化反応
は、温度400〜480℃(通常430〜450℃)、
圧力100〜300気圧(通常150〜200気圧)の
高温高圧下で行われるため、設備費および運転費が一層
多額になる。
【0009】本発明は、石炭液化製品のコストを大幅に
下げることができる石炭の液化方法を提供することを目
的とする。
【0010】
【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、(A)粉砕した石炭に溶剤を
加えて石炭スラリーを調製する工程、(B)この石炭ス
ラリーを高温高圧かつ水素の存在下で液化反応させて液
化生成物を得る工程、(C)この液化生成物を液化スラ
リーとガス類に分離する工程、(D)液化スラリーを蒸
留して液化油とSRCに分離し、分離した液化油を溶剤
として(A)の石炭スラリー調製工程へ所要量をリサイ
クルする工程からなる石炭の液化方法において、(A)
の工程では石炭および溶剤とともに触媒を添加するとと
もに、石炭/溶剤/触媒の重量混合比を100/100
〜233/0.5〜10の範囲にし、(B)の工程では
水素源としてコークス炉ガスを反応塔へ供給し、温度3
50〜480℃、圧力20〜200気圧で液化反応を行
わせることを特徴としている。
【0011】ここで、石炭と溶剤の比率で石炭は無水無
灰の状態を基準とする。
【0012】石炭の種類は問わないが、歴青炭、亜歴青
炭、褐炭、亜炭等を挙げることができる。歴青炭は粘結
炭、非粘結炭のいずれであってもよい。好ましいものは
歴青炭より石炭化度の低い非粘結炭で、安価ないわゆる
一般炭である。粉砕した石炭の粒度は20〜300メッ
シュパス程度、好ましくは60〜80メッシュパス程度
のものが適当である。
【0013】溶剤には後工程で生成分離される液化油が
リサイクル使用され、石炭/溶剤の比は重量比で100
/100〜233、好ましくは100/100〜170
が適当である。石炭/溶剤が100/100より小さく
なると、石炭スラリーの粘度が急増し、液化プラントの
操業が困難になる。また、石炭/溶剤の比が100/2
33を越えると、溶剤の循環量が増加し、液化製品の製
造コストが上がるため、好ましくない。
【0014】本発明の方法は、石炭スラリーを液化反応
させる際に触媒を用いるところにひとつの特徴がある。
触媒は、鉄系触媒が用いられ、それに硫黄を添加すると
良い。鉄と硫黄の両者の存在するFeS2(パイライト)
なども用いられる。触媒の作用は、後述する様に、溶剤
に溶けた水素が溶剤を水素化する、いわゆる水添作用を
持つ。触媒の使用量は石炭/触媒の重量比で100/
0.5〜10程度、好ましくは0.5〜4.0程度が適当
である。石炭/触媒の比が100/0.5より小さくな
ると、反応用の水素移動効率が低下して逆反応が起こる
ようになる。また、石炭/触媒の比が100/10を越
えると、高価な触媒の使用量が増加するため、液化製品
の製造コストが上がるとともに、SRC中の灰分含有量
が増加し、その品質が低下するからである。
【0015】石炭スラリーに高カロリー化材を混ぜて液
化反応を行わせると、その熱分解による炭化水素類の生
成や、石炭転化率の上昇などによって液化生成物の収率
が向上する。高カロリー化材とは、その熱分解によっ
て、液状またはガス状の炭化水素を生成するものの総称
であり、重質油、プラスチック類等である。上記重質油
とは、石炭系または石油系の油類であって、高沸点の残
油類を指す。また、上記プラスチック類とは、ポリスチ
レン、ポリプロピレン、ポリエチレン、および塩化ビニ
ルのような高分子物質の成形品、またはその廃棄物(廃
プラスチック)等である。
【0016】例えば、重質油を混ぜて液化反応を行わせ
た場合、軽油類の生成量が増加して循環溶剤の確保が容
易になる。重質油を添加する場合、その添加割合は、溶
剤/重質油の比(重量比)が100/5〜20程度にな
るようにする。溶剤/重質油の比が100/5よりも小
さい場合、上述したメリットが小さくなるので、重質油
添加の意味が薄れる。そして、その比が100/20よ
りも大きい場合には、製品の製造コストが割高となるの
で好ましくない。また、特に、重質油が石油系のものを
上記比よりも多く混ぜた場合には、得られたSRC中に
重質油に由来するパラフィニックな成分が増加して、そ
のコークス化性が阻害され、品質が低下するので、好ま
しくない。
【0017】プラスチック類を混ぜて液化反応を行わせ
ると、エネルギーの節減が図れる。プラスチック類を熱
分解する場合、その反応が吸熱反応であるため、多大な
反応エネルギーを要するが、その処理を石炭の液化と同
時に行えば、石炭の液化反応時に発生する熱でプラスチ
ック類を熱分解することができる。なお、プラスチック
類を熱分解処理する場合、プラスチック類がポリスチレ
ンなどであれば分解しやすいが、ポリエチレンやポリプ
ロピレンなどは分解しにくく、一部は残渣となり残るこ
とも予想される。しかし、このように残渣が生じても、
その処理を石炭の液化と同時に行えば、上記残渣はSR
Cに混入して排出され、装置の運転等に支障を来すこと
はない。プラスチック類の添加割合は、プラスチック類
の種類によっても異なるが、石炭/プラスチック類の比
(重量比)の上限を100/25程度にすることが望ま
しい。この比が100/25を越えると、プラスチック
類の液化に使用される水素量が増加し、石炭液化用の水
素が不足しの逆反応が起こるようになる。
【0018】次に、この石炭スラリーを水素の存在下で
液化反応させる。水素ガスとしてはコークス炉ガス、水
素富化コークス炉ガスが使用される。水素濃度としては
45〜80vol.%程度、好ましくは50〜80vo
l.%程度のものが適当である。ガスの供給量は水素ガ
スとして石炭スラリーkgあたり0.1〜2Nm3程度、
好ましくは0.2〜1Nm3程度供給する。
【0019】反応温度は350〜480℃程度が適当で
ある。反応温度が350℃より低いと、反応速度が小さ
くなり、石炭転化率(石炭の液化生成物への転換率)が低
下する。一方、反応温度が480℃を越えると、石炭液
化の逆反応が支配的になり、プラントの操業が困難とな
る。液化反応は上記の範囲で実施可能であるが、より望
ましい範囲は390〜420℃程度である。
【0020】反応圧力は20〜200気圧程度が適当で
ある。反応圧力が20気圧よりも低くなると、石炭に対
する気相中の水素量が少なくなりすぎて石炭液化の逆反
応が支配的になる。また、圧力が200気圧を越える
と、装置建設費が大幅に増加するので、好ましくない。
より望ましい反応圧力の範囲は30〜100気圧程度で
ある。上記圧力は全て水素ガスに依存してもよいが、通
常は他のガス成分を含む混合ガス雰囲気が用いられる。
他のガス成分としては、窒素、一酸化炭素、二酸化炭
素、そのほかメタン、エタン、エチレンなどのガス状炭
化水素ガス等を挙げることができる。
【0021】反応時間は10〜120分程度が適当であ
る。反応塔はいわゆる一般的に用いる円筒状の空塔で攪
拌は吹込みガス(コークス炉ガス)で行えばよい。
【0022】液化反応で得られた液化生成物を液化スラ
リーとガス類に分離する。ガス類は20〜200気圧、
300〜400℃でガス状のものであり、主成分は水
素、一酸化炭素、メタン、エタン、エチレン、窒素、炭
酸ガス、水蒸気等である。
【0023】分離された液化スラリーは真空蒸留して液
化油と溶剤精製炭に分離する。その際、蒸留温度は30
0〜350℃程度、圧力は1〜5Torr程度が適当で
ある。触媒は溶剤精製炭に残っていて差し支えない。こ
うして得られる溶剤精製炭の収率は石炭(灰分、水分を
含む)に対し通常50〜90%程度、特に70〜85%
程度である。
【0024】液化油は石炭スラリーの溶剤としてその必
要量をリサイクルし、残余は系外に抜き出して有効利用
する。
【0025】
【作用】石炭の液化反応においては、高分子量の石炭が
熱分解することによって生成したフラグメントに水素が
添加され、低分子化されて液状物が生成する。そして、
この熱分解フラグメントへの水素の移動には、主に次の
三つの移動過程があることが知られている。
【0026】(1) 石炭の内部の水素移動 石炭中には水素が豊富な部分と不足した部分があり、石
炭を加熱した時に発生する水素が豊富な熱分解フラグメ
ントから、これと同時に発生する水素が不足している熱
分解フラグメントへ水素の供与が行われる水素移動で、
これによって熱分解フラグメントが低分化して安定化す
る。 (2) 溶剤中の水素供与性成分からの水素の移動 (3) 気相の水素が溶剤に溶解し、溶剤が液化触媒など
により水添され、非水素供与性から水素供与性となった
ものからの水素の移動、いわゆる間接移動
【0027】このため、石炭の液化反応においては、そ
の熱分解によるフラグメントの生成量と、このフラグメ
ントへ移動する水素量がバランスした状態になっていな
ければならず、そのバランスが崩れるような反応温度と
圧力の組合せによる条件で反応させると、フラグメント
へ移動させなければならない水素の量が不足し、石炭液
化の逆反応がおこる。この逆反応が起こると、石炭スラ
リーとなって循環していた溶剤が液化反応の過程で取り
込まれてしまい、製品としての液化油の収率が低下す
る。そして、さらに収率が低下すると、循環溶剤量より
液化油の生成量の方が少なくなり、溶剤(液化油)を循環
することができなくなる。また、同時に、スラリーのコ
ーキングが起こることもあり、この場合には、反応塔の
内壁にコークス層が生成し、液化プラントの運転が困難
になる。
【0028】このような理由から、液化反応は、前記従
来技術におけるように、反応温度が400〜480℃の
場合には、圧力は100〜300気圧程度の高圧下で行
わなければならないものとされていた。
【0029】しかし、本発明者らの研究結果によれば、
液化処理の目的生成物がSRCであり、液化油とともに
多量のSRCを得ることを前提にして液化反応を行う場
合には、圧力を下げても反応温度を下げて水素の移動量
を減少させることにより反応が効率よく進行することを
見出した。
【0030】このため、本発明においては、反応用の水
素源として水素濃度が50〜60vol%のコークス炉
ガスを使用しても、反応圧を特段に高い領域にして液化
反応を行う必要はなく、液化反応としては極めて低圧側
の値を含む20〜200気圧の領域で実施する。
【0031】そして、反応温度については、その範囲
を、溶剤の水素を石炭の熱分解フラグメントが引き抜く
速度よりも、溶剤の水素化速度の方が優るようになる範
囲にしなければならないが、ある温度領域内において
は、触媒を使うことにより、溶剤中の水素を上記熱分解
フラグメントが引き抜く量よりも、気相の水素が溶剤に
付与される量の方が大きくなる。
【0032】このため、一般には、石炭液化の逆反応が
顕著に起こるような温度域であっても、触媒を使用する
ことによって液化反応が進行するようになり、液化反応
を行うことができる温度はかなり高温側へシフトする。
また、上述のような水素移動のバランスをとることによ
り、反応温度の範囲を低温側へ広げることもできる。こ
のため、本発明においては、350〜480℃と言う広
範囲の温度領域で液化反応を行うことができ、液化プラ
ントの操業が容易になる。
【0033】
【実施例】図1は請求項1の発明に係る一実施例で使用
した装置のフローシートである。粉砕された石炭、後の
工程から循環される液化油(溶剤)、および液化触媒が
石炭スラリー調製槽1へ供給され、攪拌・混合されて石
炭スラリーとなる。
【0034】この石炭スラリーはスラリー昇圧ポンプで
昇圧された後、予熱器2を経て反応塔3へ供給される。
反応塔3へ供給される石炭スラリーには、反応用の水素
源として、コークス炉ガス、または水素富化処理された
コークス炉ガスが、圧縮器7で所定の圧力まで昇圧され
た後、予熱器2、反応塔3へ導入される段階で添加され
る。なお、コークス炉ガスの水素富化処理は、コークス
炉ガスをメタン変換反応(1式)させ、次いでシフト反
応(2式)をさせて水素富化する処理であってもよく、
あるいは、コークス炉ガスを膜分離して水素富化する処
理などであってもよい。
【0035】 CH4 + H2O = 3H2 + CO (1) CO + H2O = H2 + CO2 (2)
【0036】コークス炉ガスが添加された石炭スラリー
は、温度350〜480℃、圧力20〜200気圧の条
件に保持されている反応塔3内で、所定時間滞留して反
応し、液化油と未液化物の混合物である液化スラリーと
ガス類になる。これらの液化生成物はガス分離器4へ送
られる。
【0037】ガス分離器4では、液化スラリーとガス類
に分離される。ガス類は、ガス精製装置6で精製された
後、水素源として反応系内へ循環して再使用されるか、
または反応系外へ抜き出される。
【0038】反応塔3の圧力が30気圧以上の場合に
は、精製ガスはライン30を経て、圧縮器7に連結され
たガスエキスパンダー8へ導入され、圧縮器駆動用の動
力源として使用された後、常圧付近まで減圧され、コー
クス炉ガス供給系統に戻され、通常の用途である燃料ガ
ス、化学原料等として使用される。また、反応圧力が3
0気圧よりも低い場合には、ライン31によって抜き出
され、常圧付近まで減圧された後、コークス炉ガス供給
系統に戻される。
【0039】液化スラリーは減圧弁により大気圧まで降
圧された後、濾過処理されることなく、未溶解の有機質
分や灰分を含んだまま蒸留塔5へ供給される。蒸留塔5
から留出する液化油は一部が軽油として製品化され、残
りはスラリー調製槽1へ循環される。また、蒸留塔5の
塔底からは、未溶解の有機質分や灰分を含んだSRCが
排出される。このSRCは、高品質コークス製造用粘結
炭として使用される。
【0040】図2は請求項2の発明に係る一実施例で使
用した装置のフローシートである。図2において、図1
と同じ構成部分については、同一の符号を付しその説明
を省略する。本実施例においては、重質油あるいは溶融
させた廃プラスチックなどの高カロリー化材が、別途昇
圧され、ライン20を経て予熱器2へ導入される前の石
炭スラリーに混合される。高カロリー化材が混合された
石炭スラリーは予熱器2を経て反応塔3へ送られる。反
応塔3内では、石炭の液化反応が生じるとともに、重質
油および廃プラスチックは熱分解する。そして、この熱
分解生成物は石炭の液化生成物とともに、液化スラリー
とガス類に混入して排出される。
【0041】なお、重質油および廃プラスチックの両者
を混合する場合には、加熱され加圧された重質油と、溶
融され加圧された廃プラスチックをそれぞれ別系統のラ
インで供給することができる。
【0042】(実施例1)図1に示す方法を実施できる
装置を組み立て、一般炭を溶媒抽出液化させた。この実
験では、反応用の水素源として、水素富化しないコーク
ス炉ガス(組成は表1に示す。)を供給した。
【0043】
【表1】
【0044】まず、−80メッシュ100%に粉砕した
一般炭(灰分が無水基準で8.26%、水分2.75
%)を112kg/時、蒸留塔5で得た液化油(循環溶
剤)を150kg/時、および、触媒として、天然パイ
ライト(FeS2)を3kg/時の割合でスラリー調製槽
1へ供給し、混合攪拌して石炭スラリーを調製した。従
って、この場合の、石炭(無水無灰基準)/溶剤/触媒の
重量比は100/150/3であった。
【0045】この石炭スラリーを100気圧に加圧し、
これと100気圧に加圧された100Nm3/時のコー
クス炉ガスを予熱器2の入口で混合した。予熱器2で昇
温された石炭スラリーとコークス炉ガスに、さらに、1
00気圧に加圧された65Nm3/時のコークス炉ガス
を供給して混合した後、これを反応塔3へ導入し、44
0℃、圧力100気圧、滞留時間20分の条件で液化反
応を行わせた。
【0046】実験条件と結果は表2に示す通りであり、
蒸留塔5からは、液化油が156kg/時で得られた。
このうち、150kg/時の液化油を循環溶剤として石
炭スラリー調製槽1へ循環させ、6kg/時の軽油が製
品として得られた。
【0047】また、蒸留塔5の塔底からは、未溶解の有
機質分および灰分を含むSRCが86kg/時の割合で
得られた。このSRCには、未溶解の有機質分が15.
1wt%、灰分が14.0wt%含まれていたが、未溶
解の有機質分の含有量が多すぎるものではなく、このS
RCは高品質コークス製造用粘結炭として使用できるも
のであった。
【0048】そして、実験終了後に反応塔3を開放し、
その内壁を調べたところ、石炭スラリーのコーキングは
認められなかった。
【0049】(実施例2)反応温度を410℃にしたこ
と以外は、実験例1と同じ条件で石炭の液化反応を行っ
た。他の実験条件および結果は表2に示す。
【0050】表2のように、この実験では、製品として
の軽油が15kg/時の割合で得られ、液化触媒や灰分
および未溶解の有機質分を含むSRCが82kg/時の
割合で得られた。
【0051】SRCに含まれていた未溶解の有機質分は
8.5wt%、灰分は14.6wt%であり、このSR
Cの品質は実施例1で得られたものよりも未溶解の有機
質分の含有量が少なく、高品質コークス製造用粘結炭と
しては更に好ましいものであった。
【0052】そして、この実験においても、反応塔3の
内壁における石炭スラリーのコーキングは認められなか
った。
【0053】(実施例3)反応温度を400℃、圧力を
30気圧、滞留時間を60分にしたこと以外は、実施例
2と同じ条件で石炭の液化反応を行った。実験条件およ
び結果は表2に示す。
【0054】この実験では、製品としての軽油が9kg
/時の割合で得られ、液化触媒や灰分および未溶解の有
機質分を含むSRCが86kg/時の割合で得られた。
【0055】SRCに含まれていた未溶解の有機質分は
12.8wt%、灰分は14.0wt%であり、このSR
Cの品質は実施例1で得られたものよりも未溶解の有機
質分の含有量が少なく、高品質コークス製造用粘結炭と
してはより好ましいものであった。
【0056】この実験においても、反応塔3の内壁にお
ける石炭スラリーのコーキングは認められなかった。
【0057】(実施例4)反応温度を400℃、圧力を
70気圧、滞留時間は60分にし、また、石炭を138
kg/時(このうち、灰分11.1kg/時、水分3.
7kg/時)、溶剤を123kg/時、すなわち、石炭
(無水無灰基準)/溶剤の重量比を1/1で原料供給を
し、石炭の液化反応を行わせた。液化触媒としては天然
パイライトを4kg/時で供給した。実験条件および結
果は表2に示す。
【0058】この実験では、製品としての軽油が3kg
/時の割合で得られ、液化触媒や灰分および未溶解の有
機質分を含むSRCが117kg/時の割合で得られ
た。
【0059】SRCに含まれていた未溶解の有機質分は
17.9wt%、灰分は12.9wt%であり、このSR
Cは高品質コークス製造用粘結炭として問題のないもの
であった。
【0060】そして、石炭/溶剤の比が比較例3の場合
よりも大きかったにもかかわらず、反応塔3の内壁にお
ける石炭スラリーのコーキングは認められなかった。
【0061】(実施例5)反応温度を390℃にした実
験を行った。実験条件および結果は表2に示す。この実
験では、製品としての軽油が9kg/時の割合で得ら
れ、液化触媒や灰分および未溶解の有機質分を含むSR
Cが88kg/時の割合で得られた。
【0062】SRCに含まれていた未溶解の有機質分は
10.5wt%、灰分は13.9wt%であり、このSR
Cは高品質コークス製造用粘結炭として好ましいもので
あった。
【0063】この実験においても、反応塔3の内壁にお
ける石炭スラリーのコーキングは認められなかった。
【0064】(実施例6)反応温度を420℃、圧力5
0気圧、滞留時間60分にし、実施例5の場合と同様に
して実験を行った。実験条件および結果は表2に示す。
【0065】この実験では、製品としての軽油が11k
g/時の割合で得られ、液化触媒や灰分および未溶解の
有機質分を含むSRCが83kg/時の割合で得られ
た。
【0066】SRCに含まれていた未溶解の有機質分は
9.3wt%、灰分は14.8wt%であった。このS
RCは実施例2で得られたものとほぼ同等の品質のもの
であり、高品質コークス製造用粘結炭として非常に好ま
しいものであった。
【0067】この実験においても、反応塔3の内壁にお
ける石炭スラリーのコーキングは認められなかった。
【0068】
【表2】
【0069】なお、表2において、SRCの品質判定の
欄の、○は高品質コークス製造用粘結炭として使用でき
るものであることを示し、×は高品質コークス製造用粘
結炭として使用できないものであることを示す。
【0070】(比較例1〜4)実施例1〜6の実験で使
用した装置を使用し、コークス炉ガスおよび石炭も同じ
ものを供給して、溶媒抽出液化を行った。このうち、比
較例1〜3では触媒を添加しない条件で行い、比較例4
では反応温度を485℃まで上げて実施した。実験条件
および結果は表3に示す。
【0071】触媒を添加しなかった比較例1〜3および
比較例4においては、液化油の生成量が石炭スラリー調
製用の溶剤として循環しなければならない量よりも少な
く、溶剤の循環運転ができなかった。このため、製品と
しての軽油は得られなかった。また、得られたSRC
は、20wt%以上の未溶解有機質分を含んでおり、高
品質コークス製造用粘結炭としては不適なものであっ
た。また、反応塔3の内壁にコーキング物が析出し、運
転日数の経過とともに、反応温度の維持が困難になっ
た。
【0072】これらの実験のうち、特に、比較例1につ
いて、その結果を実施例1の結果と比べてみると、この
両者の実験条件の差は触媒添加の有無だけであり、他の
条件が同じであるにもかかわらず、その結果は実施例1
では良好であったが、比較例1では不良であった。この
結果の差は触媒添加の有無によるものであろうと考えら
れる。
【0073】また、反応温度を485℃まで上げた比較
例4について、その結果を実施例1の結果と比較してみ
ると、この両者の実験条件の差は反応温度だけである
が、実施例1の結果は良好であったが、比較例1の結果
は不良であった。このように、比較例1の実験において
は、反応温度の高過ぎによって石炭液化の逆反応が起こ
ったものと想定される。
【0074】
【表3】
【0075】(実施例7)実施例1で使用したものと同
じ実験装置を使用し、実施例1のものと同じ石炭および
コークス炉ガス(組成は表1に示す)を供給し、高カロ
リー材を混合した場合の液化実験を行った。
【0076】石炭を101kg/時(この内、灰分が無
水基準で8.1kg/時、水分2.7kg/時)、循環溶
剤は135kg/時、重質油として石油精製における流
動接触分解の残油を27kg/時、液化触媒として天然
パイライトを3kg/時、すなわち、石炭(無水無灰基
準)/循環溶剤/重質油=100/150/30(重量
比)で、反応塔3へ供給し、実施例2と同じ反応条件
(反応温度410℃、圧力100気圧、滞留時間60
分)で石炭の液化反応を行った。この結果は表4に示
す。
【0077】表4に記載のように、蒸留塔から、液化油
が164kg/時で得られ、このうち、製品としての軽
油が29kg/時の割合で得られた。残りの液化油は循
環溶剤として135kg/時の割合で石炭スラリー調製
槽1へ循環した。また、蒸留塔5の塔底からは、76k
g/時の割合で未溶解の有機質分および灰分を含むSR
Cが得られた。SRC中の未溶解の有機質分は14.1
wt%、灰分は10.7wt%であった。
【0078】製品として得られた軽油とSRCの量を、
反応条件が同じ実施例2で得られた量と比較すると、次
の如くである。供給した石炭量(無水無灰基準)に対
し、実施例2では軽油が重量比で15%、SRC(灰分
および未溶解の有機質分を除いたもの)が重量比で6
3.1%であったが、実施例5では軽油が32.2%、
SRCが63.4%であり、重質油を添加しなかった実
施例2に比べて、重質油を添加した実施例7の方が軽油
の収率が高く、従って、循環溶剤量の確保が容易である
ことが確認された。
【0079】(実施例8)表4に示す条件で実施した。
石炭を90kg/時(この内、灰分が無水基準で7.2
kg/時、水分2.4kg/時)、循環溶剤を150k
g/時、廃プラスチック(ポリエチレン/ポリプロピレ
ン/ポリスチレン=1/1/1の割合で混ぜたもの)を
20kg/時、液化触媒として天然パイライトを3kg
/時、すなわち、石炭(無水無灰基準)/廃プラスチッ
ク/循環溶剤(重量比)=80/20/150/15で、
反応塔へ供給し、実施例2と同じ条件で、石炭と、廃プ
ラスチックの同時処理を行った。この結果は表4に示
す。
【0080】蒸留塔から、液化油が176kg/時で得
られ、このうち、製品としての軽油が26kg/時の割
合で得られた。また、蒸留塔塔底からは、72kg/時
の割合で、未溶解の有機質分および灰分を含むSRCが
得られた。SRC中の未溶解の有機質分は12.6wt
%、灰分は10.0wt%であった。
【0081】製品として得られた軽油とSRCの量を、
実施例7の場合と同様に、反応条件が同じ実施例2で得
られた量と比較してみると、供給した石炭量(無水無灰
基準)に対し、実施例2では軽油が15%、SRC6
3.1%であったのに対し、実施例8では軽油が32.
3%、SRCが69.3%であり、廃プラスチックを添
加した実施例8の方が軽油の収率が高く、循環溶剤量の
確保も容易であることが確認された。
【0082】(実施例9)石炭を90kg/時(この
内、灰分が無水基準で7.2kg/時、水分2.4kg
/時)、循環溶剤を150kg/時、廃プラスチック
(ポリエチレン/ポリプロピレン/ポリスチレン=1/
1/1)を10kg/時、重質油を15kg/時、液化
触媒として天然パイライトを3kg/時、すなわち、石
炭(無水無灰基準)/廃プラスチック/循環溶剤/重質
油(重量比)=80/10/150/15の割合で、原料
を反応塔へ供給したこと以外は、実施例2と同じ条件
で、石炭と廃プラスチックと重質油の同時処理を行っ
た。この結果は表4に示す。
【0083】液化油が183kg/時で得られ、このう
ち、製品として33kg/時の軽油が得られた。また、
71kg/時の割合で未溶解の有機質分および灰分を含
むSRCが得られた。SRC中の未溶解有機質分は1
2.8wt%、灰分は14.4wt%であった。
【0084】そして、供給した石炭量(無水無灰基準)に
対する、得られた軽油およびSRCの比率は、実施例2
では軽油15%、SRC(灰分、未溶解の有機質分を除
く)が63.1%であったのに対し、本実施例では軽油が
41.0%、SRCが64.3%であり、重質油、廃プ
ラスチックを添加しない実施例2に比べて、軽油および
SRCの収率が上昇した。この結果、循環させる溶剤量
の確保も容易であることが確認された。
【0085】
【表4】
【0086】
【発明の効果】本発明によれば、液化反応用の水素源と
して、極めて安価なコークス炉ガスを使用するので、液
化生成物の製造コストが大幅に下がる。
【0087】さらに、液化反応は、液化反応の条件とし
ては、低温側および低圧側の領域を含む範囲である反応
温度350〜480℃、反応圧力20〜200気圧で行
うことができるので、設備費および運転費が減少し、液
化生成物の製造コストは一層下がる。
【0088】さらに、重質油やプラスチック類を混ぜ
て、これらを石炭と同時に液化すれば、その熱分解によ
る炭化水素類の生成や、石炭転化率の上昇などによって
液化生成物の収率が向上し、液化生成物の製造コストが
低減する。
【図面の簡単な説明】
【図1】 請求項1の発明に係る一実施例で用いた製造
のフローシートである。
【図2】 請求項2の発明に係る一実施例で用いた装置
のフローシートである。
【図3】 従来の石炭液化方法で使用されていた装置の
フローシートである。
【符号の説明】
1 石炭スラリー調製槽 2 予熱器 3 反応塔 4 ガス分離器 5 蒸留塔 6 ガス精製装置 7 圧縮器 8 ガスエキスパンダー 20 高カロリー化材を導入するライン
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 芳樹 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 (72)発明者 山口 宏 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 奥山 泰男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 板垣 省三 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 持田 典秋 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 松原 健次 神奈川県川崎市川崎区南渡田町1番1号 日本鋼管テクノサービス株式会社内

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 (A)粉砕した石炭に溶剤を加えて石炭
    スラリーを調製する工程、(B)この石炭スラリーを高
    温高圧かつ水素の存在下で液化反応させて液化生成物を
    得る工程、(C)この液化生成物を液化スラリーとガス
    類に分離する工程、(D)液化スラリーを蒸留して液化
    油と溶剤精製炭に分離し、分離した液化油を溶剤として
    (A)の石炭スラリー調製工程へ所要量をリサイクルす
    る工程からなる石炭の液化方法において、(A)の工程
    では石炭および溶剤とともに触媒を添加するとともに、
    石炭/溶剤/触媒の重量混合比を100/100〜23
    3/0.5〜10の範囲にし、(B)の工程では水素源
    としてコークス炉ガスを反応塔へ供給し、温度350〜
    480℃、圧力20〜200気圧で液化反応を行わせる
    ことを特徴とする石炭の液化方法。
  2. 【請求項2】 (B)の工程へ供給する石炭スラリーに
    重質油、プラスチック類等の高カロリー化材を混合する
    ことを特徴とする請求項1に記載の石炭の液化方法。
JP7074743A 1995-03-31 1995-03-31 石炭の液化方法 Pending JPH08269459A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7074743A JPH08269459A (ja) 1995-03-31 1995-03-31 石炭の液化方法
AU50351/96A AU697855B2 (en) 1995-03-31 1996-03-27 Method of coal liquefaction
KR1019960009271A KR0176002B1 (en) 1995-03-31 1996-03-29 Coal liquefaction method
CN96102808A CN1054392C (zh) 1995-03-31 1996-03-29 煤液化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7074743A JPH08269459A (ja) 1995-03-31 1995-03-31 石炭の液化方法

Publications (1)

Publication Number Publication Date
JPH08269459A true JPH08269459A (ja) 1996-10-15

Family

ID=13556041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7074743A Pending JPH08269459A (ja) 1995-03-31 1995-03-31 石炭の液化方法

Country Status (4)

Country Link
JP (1) JPH08269459A (ja)
KR (1) KR0176002B1 (ja)
CN (1) CN1054392C (ja)
AU (1) AU697855B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717656A (zh) * 2008-10-09 2010-06-02 中科合成油技术有限公司 含碳固体燃料的分级液化方法和用于该方法的三相悬浮床反应器
KR101456451B1 (ko) * 2012-12-12 2014-10-31 주식회사 포스코 첨가제 제조 방법 및 이를 이용한 코크스 제조 방법
KR20170034267A (ko) * 2015-09-18 2017-03-28 주식회사 포스코 반응기 내부 부유 촉매층의 높이 검출 장치를 구비한 코크스용 첨가제 제조 장치 및 제조 방법
WO2017111301A1 (ko) * 2015-12-21 2017-06-29 주식회사 포스코 코크스용 첨가제 제조 방법 및 제조 장치
JP2018501346A (ja) * 2014-12-05 2018-01-18 ポスコPosco コークス用添加剤の製造方法と製造装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072703C (zh) * 1998-07-20 2001-10-10 中国科学院山西煤炭化学研究所 一种以FeSO4作为催化剂前驱体的煤直接液化方法
CN1080756C (zh) * 1998-08-27 2002-03-13 中国科学院山西煤炭化学研究所 一种煤的直接加氢液化的方法
ITMI20032207A1 (it) * 2003-11-14 2005-05-15 Enitecnologie Spa Procedimento integrato per la conversione di cariche contenenti carbone in prodotti liquidi.
CN102344823B (zh) * 2011-09-06 2014-01-01 六盘水师范学院 一种温和条件下使煤与废塑料共液化的方法
CN103555357B (zh) * 2013-11-04 2015-08-19 华东理工大学 一种煤温和液化的工艺方法
KR101597711B1 (ko) * 2014-11-20 2016-02-25 주식회사 포스코 재료 처리 방법
CN109054903B (zh) * 2018-08-24 2021-04-16 新奥科技发展有限公司 一种煤加氢气化方法及装置
CN111188594B (zh) * 2020-02-22 2021-11-19 太原理工大学 一种老空区煤泥水气液流态化开采的装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049536A (en) * 1976-05-17 1977-09-20 Exxon Research & Engineering Co. Coal liquefaction process
US4049537A (en) * 1976-05-17 1977-09-20 Exxon Research & Engineering Co. Coal liquefaction process
FR2486536A1 (fr) * 1980-07-09 1982-01-15 Inst Francais Du Petrole Procede de liquefaction de charbon en presence d'un catalyseur comprenant un complexe organo-soluble du fer
US5120429A (en) * 1987-07-10 1992-06-09 Lummus Crest Inc. Co-processing of carbonaceous solids and petroleum oil
JPH06100868A (ja) * 1992-09-18 1994-04-12 Nippon Koole Oil Kk 石炭の水添液化方法
JPH06287570A (ja) * 1993-04-06 1994-10-11 Nippon Steel Corp 石炭液化方法
JPH0753965A (ja) * 1993-08-09 1995-02-28 Nkk Corp 石炭の液化方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717656A (zh) * 2008-10-09 2010-06-02 中科合成油技术有限公司 含碳固体燃料的分级液化方法和用于该方法的三相悬浮床反应器
KR101456451B1 (ko) * 2012-12-12 2014-10-31 주식회사 포스코 첨가제 제조 방법 및 이를 이용한 코크스 제조 방법
JP2018501346A (ja) * 2014-12-05 2018-01-18 ポスコPosco コークス用添加剤の製造方法と製造装置
KR20170034267A (ko) * 2015-09-18 2017-03-28 주식회사 포스코 반응기 내부 부유 촉매층의 높이 검출 장치를 구비한 코크스용 첨가제 제조 장치 및 제조 방법
WO2017111301A1 (ko) * 2015-12-21 2017-06-29 주식회사 포스코 코크스용 첨가제 제조 방법 및 제조 장치

Also Published As

Publication number Publication date
CN1054392C (zh) 2000-07-12
KR960034371A (ko) 1996-10-22
AU697855B2 (en) 1998-10-22
KR0176002B1 (en) 1999-04-01
AU5035196A (en) 1996-10-10
CN1139149A (zh) 1997-01-01

Similar Documents

Publication Publication Date Title
US4324643A (en) Pyrolysis process for producing condensed stabilized hydrocarbons
US4322222A (en) Process for the gasification of carbonaceous materials
US4166786A (en) Pyrolysis and hydrogenation process
JP3385025B2 (ja) 使用済みまたは廃プラスチックの加工方法
US4229185A (en) Process for the gasification of carbonaceous materials
US3748254A (en) Conversion of coal by solvent extraction
US4162959A (en) Production of hydrogenated hydrocarbons
US20040007507A1 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
US3698882A (en) Continuous process for the conversion of carbonaceous solids into pipeline gas
US3817723A (en) Two-stage gasification of pretreated coal
US3846096A (en) Gasification of carbonaceous solids
US4485003A (en) Supercritical extraction and simultaneous catalytic hydrogenation of coal
US4324642A (en) Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas
US4324644A (en) Pyrolysis process for stabilizing volatile hydrocarbons utilizing a beneficially reactive gas
JPH08269459A (ja) 石炭の液化方法
US4217112A (en) Production of fuel gas by liquid phase hydrogenation of coal
AU668483B2 (en) Method of coal liquefaction
US20060076275A1 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
US4337142A (en) Continuous process for conversion of coal
US4125452A (en) Integrated coal liquefaction process
USRE29312E (en) Gasification of carbonaceous solids
US4448665A (en) Use of ammonia to reduce the viscosity of bottoms streams produced in hydroconversion processes
US4523986A (en) Liquefaction of coal
US4324638A (en) Pyrolysis process for stabilizing volatile hydrocarbons
US4226698A (en) Ash removal and synthesis gas generation from heavy oils produced by coal hydrogenation