JPH08264913A - Metal base printed board - Google Patents

Metal base printed board

Info

Publication number
JPH08264913A
JPH08264913A JP6918095A JP6918095A JPH08264913A JP H08264913 A JPH08264913 A JP H08264913A JP 6918095 A JP6918095 A JP 6918095A JP 6918095 A JP6918095 A JP 6918095A JP H08264913 A JPH08264913 A JP H08264913A
Authority
JP
Japan
Prior art keywords
metal
inorganic filler
weight
resin
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6918095A
Other languages
Japanese (ja)
Inventor
Fumiha Oosawa
文葉 大澤
Toshiaki Asada
敏明 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6918095A priority Critical patent/JPH08264913A/en
Publication of JPH08264913A publication Critical patent/JPH08264913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a metal base printed board which can maintain a high metallic foil peeling strength, voltage resistance, etc., even in a high-temperature high-humidity environment while its heat radiating property is effectively utilized to the utmost and improved and has an extremely excellent high-temperature characteristic. CONSTITUTION: In a metal base printed board which is formed by sticking metallic foil to at least one surface of a metallic plate with an insulating adhesive layer in between, the adhesive layer is formed by hardening a resin composition which is composed of a thermosetting resin prepared by mixing a triazine resin and novolak type epoxy resin with each other at a mixing ratio of 75:25 to 45:55 and contains a granulated inorganic filler having an average particle diameter of 1-25μm. The mixing ratio of the inorganic filler is adjusted to 60-90wt.% of the hardened resin composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器分野で使用さ
れる金属ベースプリント基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-based printed circuit board used in the field of electronic equipment.

【0002】[0002]

【従来の技術】金属ベースプリント基板は、熱伝導性の
良い銅、鉄、鉄−ニッケル合金、アルミニウム、あるい
は表面をアルマイト処理したアルミニウムなどの金属板
をベース基材とし、これに銅箔などの金属箔を絶縁性の
接着剤層(以下絶縁接着層という)を介して張り合わせ
たものである。絶縁接着層は、高耐熱性エポキシ樹脂等
の熱硬化性樹脂をベース樹脂として、高い放熱性をもた
せるため微細粒子の無機充填剤を配合したものである。
このように、放熱性に優れる金属ベースプリント基板を
用いたプリント配線板は、パワーエレクトロニクス分野
のインテリジェントパワーモジュール等に使用されてい
る。
2. Description of the Related Art A metal-based printed circuit board uses a metal plate such as copper, iron, iron-nickel alloy, aluminum, or aluminum whose surface is alumite-treated, which has good thermal conductivity, as a base material. A metal foil is laminated with an insulating adhesive layer (hereinafter referred to as an insulating adhesive layer). The insulating adhesive layer is composed of a thermosetting resin such as a high heat resistant epoxy resin as a base resin, and an inorganic filler of fine particles is blended in order to have high heat dissipation.
As described above, the printed wiring board using the metal-based printed circuit board having excellent heat dissipation is used for intelligent power modules and the like in the field of power electronics.

【0003】[0003]

【発明が解決しようとする課題】また近年の大容量パワ
ー素子搭載や高密度実装化、高速実装化にともなうリフ
ロー炉温度の高温化、さらに、厳しい環境条件下(高
温、多湿)での用途発展に伴い、金属ベースプリント基
板に対し従来よりも更に優れた放熱性、耐熱性、耐湿性
の要求がなされるようになってきた。とりわけ自動車分
野においては、高温環境のエンジンルーム内での使用を
目的として、高レベルの機械的、電気的耐熱性が要求さ
れている。
[Problems to be Solved by the Invention] In recent years, the high temperature of the reflow furnace has been accompanied by the mounting of large capacity power devices, high density mounting, and high speed mounting, and further the application development under severe environmental conditions (high temperature, high humidity). Along with this, demands for heat dissipation, heat resistance, and moisture resistance that are even better than in the past have come to be demanded of metal-based printed circuit boards. Particularly in the automobile field, a high level of mechanical and electrical heat resistance is required for the purpose of use in an engine room in a high temperature environment.

【0004】しかしながら、従来どおり高耐熱性エポキ
シ樹脂をベース樹脂とし、放熱性を高めるために無機充
填剤を高配合した組成物を絶縁接着層として金属ベース
プリント基板を作製すると、高温環境下にさらされるこ
とにより熱劣化が起こり、金属箔と絶縁接着層との接着
強度や絶縁接着層の絶縁信頼性の低下が顕著に現れる。
同様に、高湿度条件下においても、加湿による機械的特
性、電気的特性の低下が現れ、この傾向は無機充填剤の
含有量が多いものほど著しい。これらを解決するため、
無機充填剤の配合量を少なくした組成物を絶縁接着層と
して使用した場合、放熱性の向上を犠牲にすることにな
り、発熱素子搭載が不可能になるという欠点がある。
However, when a metal-based printed circuit board is manufactured by using a composition having a high heat-resistant epoxy resin as a base resin and a high content of an inorganic filler in order to improve heat dissipation as an insulating adhesive layer, the metal-based printed circuit board is exposed to a high temperature environment. As a result, heat deterioration occurs, and the adhesive strength between the metal foil and the insulating adhesive layer and the insulation reliability of the insulating adhesive layer significantly decrease.
Similarly, even under high humidity conditions, mechanical properties and electrical properties deteriorate due to humidification, and this tendency becomes more remarkable as the content of the inorganic filler increases. To solve these,
When a composition containing a small amount of the inorganic filler is used as the insulating adhesive layer, the improvement of heat dissipation is sacrificed, which makes it impossible to mount the heating element.

【0005】また、絶縁接着層として従来の高耐熱性エ
ポキシ樹脂をベース樹脂としたものを用いると、高温環
境下では常温下に比べ、耐電圧が顕著に低下すること、
また金属板がアルミニウムである場合(アルミベースプ
リント基板と呼ぶ)高温環境下での長期間の使用によ
り、ベース金属であるアルミニウムと絶縁接着層の線膨
張率の違いから、基板に反りが発生するという問題があ
った。このため、自動車分野等における用途で要求され
る高温特性、耐久性の水準を満足することができず、こ
れらの分野への参入を実現できなかった。また、基板に
反りが発生するという問題は、高温リフロー炉での実装
工程中においても生じ、実装不可能となるケースがあっ
た。
Further, when a conventional high heat resistant epoxy resin as a base resin is used as the insulating adhesive layer, the withstand voltage is remarkably lowered in a high temperature environment as compared with a room temperature.
When the metal plate is aluminum (called an aluminum base printed circuit board), warpage occurs in the substrate due to the difference in linear expansion coefficient between the base metal aluminum and the insulating adhesive layer when used for a long time in a high temperature environment. There was a problem. For this reason, it was not possible to satisfy the high temperature characteristics and the level of durability required for applications in the automobile field and the like, and it was not possible to realize entry into these fields. Further, the problem that the substrate warps occurs during the mounting process in the high temperature reflow furnace, and there are cases where mounting becomes impossible.

【0006】本発明は金属ベースプリント基板における
上記のような問題に鑑み、放熱性を犠牲とすることな
く、良好な高温特性および高温、多湿下での耐久性(耐
熱性、耐湿性)を有する金属ベースプリント基板を提供
することを目的とする。
In view of the above problems in the metal-based printed circuit board, the present invention has good high temperature characteristics and durability under high temperature and high humidity (heat resistance, humidity resistance) without sacrificing heat dissipation. An object is to provide a metal-based printed circuit board.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
鋭意検討の結果、金属ベースプリント基板の絶縁接着層
として、トリアジン樹脂を主体とする樹脂に、変性作用
をもつエポキシ樹脂を配合し、さらに無機充填剤を添加
した樹脂組成物を用いると、高放熱性とともに、良好な
高温特性、耐熱性、耐湿性を示すことを見い出し、さら
に配合するエポキシ樹脂の種類、配合比や無機充填剤の
粒径、含有量の及ぼす、ベース金属と絶縁接着層との接
着性、基板としての放熱性など諸特性への効果について
検討し、本発明に至った。
Means for Solving the Problems As a result of earnest studies to achieve the above object, as an insulating adhesive layer of a metal-based printed circuit board, a resin mainly composed of a triazine resin is mixed with an epoxy resin having a modifying action, and further, It was found that when a resin composition containing an inorganic filler is used, it exhibits high heat dissipation as well as good high-temperature characteristics, heat resistance, and moisture resistance. Furthermore, the type of epoxy resin to be compounded, the compounding ratio, and the particles of the inorganic filler are found. The effect of diameter and content on various properties such as adhesiveness between the base metal and the insulating adhesive layer and heat dissipation as a substrate was examined, and the present invention was accomplished.

【0008】すなわち、本発明の金属ベースプリント基
板は金属板の少なくとも一面に絶縁性の接着剤層を介し
て金属箔が貼り合わされてなる金属ベースプリント基板
において、前記接着剤層が、トリアジン樹脂とノボラッ
ク型エポキシ樹脂とを重量比にして75/25〜45/
55となるよう配合した熱硬化性樹脂に、平均粒径1〜
25μmの無機充填剤を添加した樹脂組成物の硬化物か
らなり、かつ前記無機充填剤の含有量が硬化物の60〜
90重量%であることを特徴とする。
That is, the metal base printed circuit board of the present invention is a metal base printed circuit board in which a metal foil is bonded to at least one surface of a metal plate via an insulating adhesive layer, and the adhesive layer is a triazine resin. 75 / 25-45 / weight ratio of novolac type epoxy resin
A thermosetting resin blended to give an average particle size of 1 to 55
It is composed of a cured product of a resin composition to which an inorganic filler of 25 μm is added, and the content of the inorganic filler is 60 to 60
It is characterized by being 90% by weight.

【0009】以下、本発明の金属ベースプリント基板に
ついて詳細に説明する。図1は本発明の金属ベースプリ
ント基板の断面図である。本発明において用いられる絶
縁接着層は、トリアジン樹脂にノボラック型エポキシ樹
脂を配合した熱硬化性樹脂に無機充填剤を添加した組成
物の硬化物からなる。トリアジン樹脂とノボラック型エ
ポキシ樹脂との配合比は重量比にして75/25〜45
/55とする。重量比が45/55より小さいと耐熱
性、耐湿性、高温特性の低下が著しく、また重量比が7
5/25より大きいと、絶縁接着層と金属箔との接着強
度の耐久性が低下してしまい好ましくない。トリアジン
樹脂とノボラック型エポキシ樹脂との重量比の特に好ま
しい範囲は65/35〜55/45である。
The metal-based printed circuit board of the present invention will be described in detail below. FIG. 1 is a sectional view of a metal-based printed circuit board of the present invention. The insulating adhesive layer used in the present invention comprises a cured product of a composition obtained by adding an inorganic filler to a thermosetting resin in which a triazine resin is mixed with a novolac type epoxy resin. The compounding ratio of the triazine resin and the novolac type epoxy resin is 75/25 to 45 in weight ratio.
/ 55. If the weight ratio is less than 45/55, the heat resistance, moisture resistance and high temperature characteristics are significantly deteriorated.
If it is larger than 5/25, the durability of the adhesive strength between the insulating adhesive layer and the metal foil decreases, which is not preferable. A particularly preferable range of the weight ratio of the triazine resin to the novolac type epoxy resin is 65/35 to 55/45.

【0010】無機充填剤は、放熱性を高めるために、平
均粒径1〜25μmのものを硬化物の60〜90重量%
となるよう配合する。含有量が60重量%より小さいと
放熱性が良好でなくなり、また含有量が90重量%より
も大きいと絶縁接着層と金属箔との接着強度や絶縁接着
層の絶縁信頼性に影響を及ぼし好ましくない。また粒径
は、小さすぎると無機充填剤の全表面積が大きくなっ
て、接着力が低下してしまい、一方、絶縁接着層の膜厚
に対し大きすぎても都合が悪い。
The inorganic filler having an average particle size of 1 to 25 μm is added to the cured product in an amount of 60 to 90% by weight in order to enhance heat dissipation.
Blend so that When the content is less than 60% by weight, the heat dissipation is not good, and when the content is more than 90% by weight, the adhesive strength between the insulating adhesive layer and the metal foil and the insulating reliability of the insulating adhesive layer are affected, which is preferable. Absent. On the other hand, if the particle size is too small, the total surface area of the inorganic filler becomes large and the adhesive strength is reduced, while if it is too large relative to the film thickness of the insulating adhesive layer, it is not convenient.

【0011】無機充填剤の種類としてはアルミナが好ま
しく、またこのときアルミナの含有量は硬化物の78〜
88重量%の範囲とするのが特に好ましい。さらにアル
ミナは、表面をエポキシ基末端シランカップリング剤処
理、あるいはメタクリロキシ基末端シランカップリング
剤処理したものが好ましい。
Alumina is preferred as the type of the inorganic filler, and the content of alumina at this time is 78 to
The range of 88% by weight is particularly preferable. Further, the alumina is preferably one whose surface is treated with an epoxy group-terminated silane coupling agent or a methacryloxy group-terminated silane coupling agent.

【0012】本発明の金属ベースプリント基板は、金属
板の少なくとも一面に上記の硬化物からなる絶縁接着層
を介して金属箔が貼り合わされてなるものである。
The metal-based printed circuit board of the present invention is one in which a metal foil is bonded to at least one surface of a metal plate via an insulating adhesive layer made of the above-mentioned cured product.

【0013】[0013]

【作用】本発明において用いられる絶縁接着層は、それ
を構成する硬化物のガラス転移点が145〜165℃
と、従来の高耐熱性エポキシ樹脂をベース樹脂とする硬
化物が105〜130℃であるのに比べ高いため、これ
を金属ベースプリント基板に用いても、熱劣化による機
械的、電気的特性の低下が小さい。加えて、加湿による
機械的、電気的特性の劣化が少ない。また、絶縁接着層
の線膨張率は2.0〜3.0×10-5-1であり、従来の
絶縁接着層が4.5〜5.5×10-5-1であるのに比べ
小さく、アルミニウムの線膨張率(2.3×10
-5-1)に近いことから、アルミニウムをベース金属と
するアルミベースプリント基板においても、加熱による
歪みが生じ難く反り発生が少ない。
The insulating adhesive layer used in the present invention has a glass transition point of 145 to 165 ° C. of a cured product constituting the insulating adhesive layer.
Since the cured product using a conventional high heat resistant epoxy resin as a base resin has a high temperature of 105 to 130 ° C., even if this is used for a metal base printed circuit board, the mechanical and electrical characteristics due to thermal deterioration are The drop is small. In addition, there is little deterioration of mechanical and electrical characteristics due to humidification. The coefficient of linear expansion of the insulating adhesive layer is 2.0 to 3.0 × 10 -5 K -1 , and that of the conventional insulating adhesive layer is 4.5 to 5.5 × 10 -5 K -1 . Is smaller than that of aluminum and has a linear expansion coefficient of aluminum (2.3 × 10
Since it is close to -5 K -1 ), even in an aluminum base printed circuit board using aluminum as a base metal, distortion due to heating is unlikely to occur and warpage is small.

【0014】[0014]

【実施例】以下、本発明を実施例、比較例を挙げて詳細
に説明する。実施例および比較例において用いた各材料
は下記の通りである。 トリアジン樹脂 : 三菱ガス化学(株)製 BTA2
060 フェノールノボラック型エポキシ樹脂 : 日本化薬
(株)製 EPPN−201 ο−クレゾールノボラック型エポキシ樹脂 : 日本化
薬(株)製 EOCN−1027 DDPノボラック型エポキシ樹脂 : 油化シェル
(株)製 エピコート157S65 ビスフェノールA型エポキシ樹脂 : 大日本インキ
(株)製 830 不定形アルミナ(平均粒径15μm) : 昭和電工
(株)製 FA4 球形アルミナ(平均粒径1.1μm) : 昭和電工
(株)製 AL45A 〃 (平均粒径21μm) : 昭和電工(株)製
AS20 偏平形アルミナ(平均粒径4μm) : 昭和電工
(株)製 AL43PC 結晶性シリカ(平均粒径2.8μm) : 龍森(株)
製 VX−SR エポキシ基末端シランカップリング剤 : チッソ
(株)製 S510 ビニル基末端シランカップリング剤 : チッソ(株)
製 S230 メルカプト基末端シランカップリング剤 : チッソ
(株)製 S810 クロル基末端シランカップリング剤 : チッソ(株)
製 S620 メタクリロキシ基末端シランカップリング剤 : チッ
ソ(株)製 S710
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. The materials used in the examples and comparative examples are as follows. Triazine resin: BTA2 manufactured by Mitsubishi Gas Chemical Co., Inc.
060 Phenol novolac type epoxy resin: Nippon Kayaku Co., Ltd. EPPN-201 o-cresol novolac type epoxy resin: Nippon Kayaku Co., Ltd. EOCN-1027 DDP novolac type epoxy resin: Yuka Shell Co., Ltd. Epicoat 157S65 Bisphenol A-type epoxy resin: Dainippon Ink and Chemicals, Inc. 830 Amorphous alumina (average particle size: 15 μm): Showa Denko KK FA4 Spherical alumina (average particle size: 1.1 μm): Showa Denko KK AL45A 〃 (Average particle size 21 μm): Showa Denko KK AS20 flat alumina (average particle size 4 μm): Showa Denko KK AL43PC crystalline silica (average particle size 2.8 μm): Tatsumori Co., Ltd.
VX-SR epoxy group terminal silane coupling agent: Chisso Corporation S510 vinyl group terminal silane coupling agent: Chisso Corporation
Product S230 Mercapto group terminal silane coupling agent: Chisso Corporation S810 Chlorine group terminal silane coupling agent: Chisso Corporation
S620 manufactured by Methacryloxy group-terminated silane coupling agent: S710 manufactured by Chisso Corporation

【0015】(実施例1)トリアジン樹脂75重量部と
フェノールノボラック型エポキシ樹脂25重量部とをメ
チルエチルケトンを介して混合した。この熱硬化性樹脂
混合物中に、無機充填剤として平均粒径15μmの不定
形アルミナをエポキシ基末端シランカップリング剤で表
面処理したものを、接着剤硬化後の含有量が83重量%
となるように配合した。さらに溶剤としてメチルエチル
ケトンを加え、ミキサーで均一に混合して絶縁接着剤を
調整した。
Example 1 75 parts by weight of a triazine resin and 25 parts by weight of a phenol novolac type epoxy resin were mixed via methyl ethyl ketone. In this thermosetting resin mixture, amorphous alumina having an average particle size of 15 μm as an inorganic filler was surface-treated with an epoxy group-terminated silane coupling agent, and the content after curing the adhesive was 83% by weight.
It was blended so that Further, methyl ethyl ketone was added as a solvent and uniformly mixed with a mixer to prepare an insulating adhesive.

【0016】調整した絶縁接着剤を厚さ105μmの銅
箔上に120μmの膜厚になるように塗布し加熱して接
着剤つき銅箔を作製した。次に、この接着剤つき銅箔を
厚さ2.0mmのアルミ板上に、接着剤層を挟むように
して重ね、これを真空プレスにより加熱加圧(40kg
f/cm2、180℃、2時間)し接着させて図1に示
すようなアルミベースプリント基板を作製した。
The adjusted insulating adhesive was applied onto a copper foil having a thickness of 105 μm so as to have a film thickness of 120 μm, and heated to produce a copper foil with an adhesive. Next, this copper foil with adhesive was laminated on a 2.0 mm-thick aluminum plate so that the adhesive layer was sandwiched, and this was heated and pressed by a vacuum press (40 kg
f / cm 2 , 180 ° C., 2 hours) and adhered to produce an aluminum base printed circuit board as shown in FIG.

【0017】(実施例2)トリアジン樹脂65重量部と
フェノールノボラック型エポキシ樹脂35重量部とをメ
チルエチルケトンを介して混合した。この混合物中に、
平均粒径2.8μmの結晶性シリカを含有量70重量%
となるように配合し、実施例1と同様にして絶縁接着剤
を調整し、アルミベース基板を作製した。
Example 2 65 parts by weight of a triazine resin and 35 parts by weight of a phenol novolac type epoxy resin were mixed via methyl ethyl ketone. In this mixture,
70% by weight of crystalline silica having an average particle size of 2.8 μm
And an insulating adhesive were prepared in the same manner as in Example 1 to prepare an aluminum base substrate.

【0018】(実施例3)無機充填剤として平均粒径
1.1μmの球形アルミナをエポキシ基末端シランカッ
プリング剤で表面処理したものを含有量60重量%とな
るように配合した以外は、実施例2と同様にして絶縁接
着剤を調整し、アルミベース基板を作製した。
(Example 3) Except that spherical alumina having an average particle size of 1.1 μm was surface-treated with an epoxy group-terminated silane coupling agent as an inorganic filler, and the content was 60% by weight. An insulating adhesive was prepared in the same manner as in Example 2 to prepare an aluminum base substrate.

【0019】(実施例4)無機充填剤として平均粒径4
μmの偏平形アルミナをエポキシ基末端シランカップリ
ング剤で表面処理したものを含有量70重量%となるよ
うに配合した以外は実施例2と同様にして絶縁接着剤を
調整し、アルミベース基板を作製した。
(Example 4) Average particle size of 4 as an inorganic filler
An insulating adhesive was prepared in the same manner as in Example 2 except that a flat type alumina having a surface area of μm was treated with an epoxy group-terminated silane coupling agent so that the content was 70% by weight. It was made.

【0020】(実施例5)無機充填剤として不定形アル
ミナをビニル基末端シランカップリング剤で表面処理し
たものを含有量83重量%となるように配合した以外
は、実施例2と同様にして絶縁接着剤を調整し、アルミ
ベース基板を作製した。
(Example 5) In the same manner as in Example 2 except that the amorphous filler was surface-treated with a vinyl group-terminated silane coupling agent as an inorganic filler, and the content was 83% by weight. The insulating adhesive was adjusted to produce an aluminum base substrate.

【0021】(実施例6)アルミナの表面処理剤として
メルカプト基末端シランカップリング剤を用いた以外
は、実施例5と同様にして絶縁接着剤を調整し、アルミ
ベース基板を作製した。
(Example 6) An insulating base was prepared in the same manner as in Example 5 except that a mercapto group-terminated silane coupling agent was used as a surface treatment agent for alumina to prepare an aluminum base substrate.

【0022】(実施例7)アルミナの表面処理剤として
クロル基末端シランカップリング剤を用いた以外は実施
例5と同様にして絶縁接着剤を調整し、アルミベース基
板を作製した。
(Example 7) An insulating adhesive was prepared in the same manner as in Example 5 except that a chloro group-terminated silane coupling agent was used as a surface treatment agent for alumina to prepare an aluminum base substrate.

【0023】(実施例8)無機充填剤として偏平形アル
ミナをメタクリロキシ基末端シランカップリング剤で表
面処理したものを含有量78重量%となるように配合し
た以外は、実施例2と同様にして絶縁接着剤を調整し、
アルミベース基板を作製した。
(Example 8) The same procedure as in Example 2 was carried out except that a flat type alumina as an inorganic filler was surface-treated with a methacryloxy group-terminated silane coupling agent so that the content was 78% by weight. Adjust the insulation glue,
An aluminum base substrate was produced.

【0024】(実施例9)アルミナの表面処理剤として
メタクリロキシ基末端シランカップリング剤を用いた以
外は、実施例5と同様にして絶縁接着剤を調整し、アル
ミベース基板を作製した。
Example 9 An aluminum base substrate was prepared by adjusting an insulating adhesive in the same manner as in Example 5 except that a methacryloxy group-terminated silane coupling agent was used as a surface treatment agent for alumina.

【0025】(実施例10)アルミナの表面処理剤とし
てエポキシ基末端シランカップリング剤を用いた以外
は、実施例5と同様にして絶縁接着剤を調整し、アルミ
ベース基板を作製した。
(Example 10) An insulating base was prepared in the same manner as in Example 5 except that an epoxy group-terminated silane coupling agent was used as the surface treatment agent for alumina to prepare an aluminum base substrate.

【0026】(実施例11)熱硬化性樹脂としてトリア
ジン樹脂65重量部にο−クレゾールノボラック型エポ
キシ樹脂35重量部を配合したものを用いた以外は、実
施例10と同様にして絶縁接着剤を調整し、アルミベー
ス基板を作製した。
Example 11 An insulating adhesive was prepared in the same manner as in Example 10 except that the thermosetting resin used was a mixture of 65 parts by weight of a triazine resin and 35 parts by weight of an o-cresol novolac type epoxy resin. It adjusted and produced the aluminum base substrate.

【0027】(実施例12)熱硬化性樹脂としてトリア
ジン樹脂65重量部にDDPノボラック型エポキシ樹脂
35重量部を配合したものを用いた以外は、実施例10
と同様にして絶縁接着剤を調整し、アルミベース基板を
作製した。
(Example 12) Example 10 was repeated, except that 65 parts by weight of a triazine resin and 35 parts by weight of a DDP novolac type epoxy resin were used as the thermosetting resin.
An insulating adhesive was prepared in the same manner as in 1. to produce an aluminum base substrate.

【0028】(実施例13)熱硬化性樹脂としてトリア
ジン樹脂55重量部にフェノールノボラック型エポキシ
樹脂45重量部を配合したものを用いた以外は、実施例
10と同様にして絶縁接着剤を調整し、アルミベース基
板を作製した。
(Example 13) An insulating adhesive was prepared in the same manner as in Example 10 except that 55 parts by weight of a triazine resin and 45 parts by weight of a phenol novolac type epoxy resin were used as a thermosetting resin. , An aluminum base substrate was manufactured.

【0029】(実施例14)無機充填剤として平均粒径
21μmの球形アルミナをエポキシ基末端シランカップ
リング剤で表面処理したものを含有量88重量%となる
ように配合した以外は、実施例13と同様にして絶縁接
着剤を調整し、アルミベース基板を作製した。
(Example 14) Example 13 was repeated except that spherical alumina having an average particle size of 21 µm was surface-treated with an epoxy group-terminated silane coupling agent as an inorganic filler so that the content was 88% by weight. An insulating adhesive was prepared in the same manner as in 1. to produce an aluminum base substrate.

【0030】(実施例15)アルミナの含有量を90重
量%とする以外は実施例14と同様にして、アルミベー
ス基板を作製した。
Example 15 An aluminum base substrate was produced in the same manner as in Example 14 except that the content of alumina was 90% by weight.

【0031】(実施例16)熱硬化性樹脂としてトリア
ジン樹脂45重量部にフェノールノボラック型エポキシ
樹脂55重量部を配合したものを用いた以外は、実施例
10と同様にして絶縁接着剤を調整し、アルミベース基
板を作製した。
Example 16 An insulating adhesive was prepared in the same manner as in Example 10 except that the thermosetting resin used was a mixture of 45 parts by weight of a triazine resin and 55 parts by weight of a phenol novolac type epoxy resin. , An aluminum base substrate was manufactured.

【0032】(比較例1)フェノールノボラック型エポ
キシ樹脂100重量部に、硬化剤としてジアミノジフェ
ニルサルフォン35重量部を加え、溶剤エチルセロソル
ブを介して混合した。この混合物中に、結晶性シリカを
硬化後の含有量が55重量%となるように配合した。さ
らに溶剤を加えミキサーで均一に混合して絶縁接着剤を
調整した。この接着剤を用い、以下、実施例1と同様に
してアルミベース基板を作製した。
Comparative Example 1 35 parts by weight of diaminodiphenyl sulfone as a curing agent was added to 100 parts by weight of a phenol novolac type epoxy resin, and mixed with the solvent ethyl cellosolve. Crystalline silica was added to this mixture so that the content after curing was 55% by weight. Further, a solvent was added and the mixture was uniformly mixed with a mixer to prepare an insulating adhesive. Using this adhesive, an aluminum base substrate was manufactured in the same manner as in Example 1 below.

【0033】(比較例2)結晶性シリカの含有量を70
重量%とした以外は比較例1と同様にして絶縁接着剤を
調整し、アルミベース基板を作製した。
(Comparative Example 2) The content of crystalline silica was 70
An insulating adhesive was prepared in the same manner as in Comparative Example 1 except that the weight percentage was changed to prepare an aluminum base substrate.

【0034】(比較例3)エポキシ樹脂の種類をビスフ
ェノールA型エポキシ樹脂とした以外は比較例2と同様
にして絶縁接着剤を調整し、アルミベース基板を作製し
た。
(Comparative Example 3) An insulating base was prepared in the same manner as in Comparative Example 2 except that the epoxy resin was changed to the bisphenol A type epoxy resin to prepare an aluminum base substrate.

【0035】(比較例4)無機充填剤として不定形アル
ミナをエポキシ基末端シランカップリング剤処理したも
のを含有量83重量%となるように配合した以外は、比
較例1と同様にして絶縁接着剤を調整し、アルミベース
基板を作製した。
Comparative Example 4 Insulation adhesion was carried out in the same manner as in Comparative Example 1 except that amorphous alumina treated as an inorganic filler was treated with an epoxy group-terminated silane coupling agent so that the content was 83% by weight. The agent was adjusted to produce an aluminum base substrate.

【0036】(比較例5)熱硬化性樹脂としてトリアジ
ン樹脂35重量部にフェノールノボラック型エポキシ樹
脂65重量部を配合したものを用いた以外は、実施例1
と同様にして絶縁接着剤を調整し、アルミベース基板を
作製した。
Comparative Example 5 Example 1 was repeated except that 35 parts by weight of a triazine resin and 65 parts by weight of a phenol novolac type epoxy resin were blended as a thermosetting resin.
An insulating adhesive was prepared in the same manner as in 1. to produce an aluminum base substrate.

【0037】(比較例6)熱硬化性樹脂としてトリアジ
ン樹脂65重量部にビスフェノールA型エポキシ樹脂3
5重量部を配合したものを用いた以外は、実施例10と
同様にして絶縁接着剤を調整し、アルミベース基板を作
製した。
(Comparative Example 6) Bisphenol A type epoxy resin 3 was added to triazine resin 65 parts by weight as a thermosetting resin.
An insulating base was prepared in the same manner as in Example 10 except that 5 parts by weight was used, and an aluminum base substrate was produced.

【0038】(比較例7)アルミナの含有量を55重量
%とした以外は実施例3と同様にして絶縁接着剤を調整
し、アルミベース基板を作製した。
(Comparative Example 7) An insulating base was prepared in the same manner as in Example 3 except that the content of alumina was changed to 55% by weight to prepare an aluminum base substrate.

【0039】(比較例8)熱硬化性樹脂としてトリアジ
ン樹脂85重量部にフェノールノボラック型エポキシ樹
脂15重量部を配合したものを用いた以外は、実施例1
と同様にして絶縁接着剤を調整し、アルミベース基板を
作製した。
Comparative Example 8 Example 1 was repeated, except that 85 parts by weight of a triazine resin and 15 parts by weight of a phenol novolac type epoxy resin were used as the thermosetting resin.
An insulating adhesive was prepared in the same manner as in 1. to produce an aluminum base substrate.

【0040】(比較例9)熱硬化性樹脂としてトリアジ
ン樹脂のみを用いて、それ以外は実施例1と同様にして
絶縁接着剤を調整し、アルミベース基板を作製した。
Comparative Example 9 An aluminum base substrate was manufactured by using only a triazine resin as a thermosetting resin and adjusting an insulating adhesive in the same manner as in Example 1 except for the above.

【0041】以上、作製した実施例1〜16および比較
例1〜9のアルミベースプリント基板それぞれについ
て、熱抵抗、反り、銅箔剥離強度、耐電圧の測定を行な
った。試験方法の詳細を表1に記載する。熱抵抗は、基
板作製後に水冷による理想放熱状態で測定した。反り
は、作製後のものについて常温で測定するとともに、耐
熱性試験のため、150℃1000時間の条件での熱処
理後のものについて常温で測定した。また、銅箔剥離強
度と耐電圧は、作製後および熱処理後に常温で測定する
とともに、耐湿性試験のため、85℃85%RH100
0時間の条件で処理し特性を常態で測定した。さらに、
高温特性を調べるため、150℃の高温下で銅箔剥離強
度と耐電圧の測定を行った。
The thermal resistance, warpage, copper foil peeling strength, and withstand voltage of each of the manufactured aluminum-based printed circuit boards of Examples 1 to 16 and Comparative Examples 1 to 9 were measured. Details of the test method are shown in Table 1. The thermal resistance was measured after the substrate was manufactured in an ideal heat dissipation state by water cooling. The warp was measured at room temperature after being manufactured, and was also measured at room temperature after heat treatment at 150 ° C. for 1000 hours for a heat resistance test. The copper foil peel strength and withstand voltage are measured at room temperature after fabrication and heat treatment, and at 85 ° C 85% RH100 for humidity resistance test.
The treatment was carried out under the condition of 0 hours, and the characteristics were measured in the normal state. further,
In order to investigate the high temperature characteristics, the copper foil peel strength and the withstand voltage were measured at a high temperature of 150 ° C.

【0042】[0042]

【表1】 [Table 1]

【0043】実施例1〜16および比較例1〜9のアル
ミベース基板の絶縁接着層の組成を表2に、測定値と結
果の評価を表3、表4に記載する。評価は表5に記載し
た基準にしたがい、総合的に行った。
The compositions of the insulating adhesive layers of the aluminum base substrates of Examples 1 to 16 and Comparative Examples 1 to 9 are shown in Table 2, and the measured values and the evaluation of the results are shown in Tables 3 and 4. The evaluation was performed comprehensively according to the criteria described in Table 5.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【表5】 [Table 5]

【0048】表3、表4から明かなように、本発明によ
る実施例1〜16のアルミベース基板は、アルミベース
基板の特徴である高いレベルの放熱性を有し、優れた耐
熱性、耐湿性とともに良好な高温特性を兼ね備えてい
る。とりわけ、トリアジン樹脂とノボラック型エポキシ
樹脂とを重量比にして65/35〜55/35となるよ
うに配合し、エポキシ基末端シランカップリング剤、ま
たはメタクリロキシ基末端シランカップリング剤を用い
て表面処理したアルミナを、その含有量が78〜88重
量%となるよう添加した絶縁接着層をもつアルミベース
基板(実施例8〜14)においては、最も良好な特性が
得られていることがわかる。
As is clear from Tables 3 and 4, the aluminum base substrates of Examples 1 to 16 according to the present invention have a high level of heat dissipation characteristic of the aluminum base substrate, and have excellent heat resistance and moisture resistance. It also has good high-temperature characteristics as well as good properties. In particular, a triazine resin and a novolac type epoxy resin are mixed in a weight ratio of 65/35 to 55/35, and a surface treatment is performed using an epoxy group-terminated silane coupling agent or a methacryloxy group-terminated silane coupling agent. It is understood that the aluminum-based substrates (Examples 8 to 14) having the insulating adhesive layer to which the alumina is added so that the content thereof is 78 to 88% by weight have the best characteristics.

【0049】[0049]

【発明の効果】本発明の金属ベースプリント基板は絶縁
接着層を上述のごとく構成したので、放熱性を最大限に
生かし、向上させつつ、同時に高温、多湿の環境下にさ
らされても良好な金属箔剥離強度、耐電圧などを維持す
ることができ、また、高温特性が著しく良好である。特
に、アルミベースプリント基板においては、加熱による
反りが少ないという特徴を有する。よって本発明の金属
ベースプリント基板は、近年の大容量パワー素子搭載や
高密度実装化、リフロー炉温度の高温化による高速実装
化に適用させることができ、さらに、より厳しい環境条
件下での用途発展に伴い要求されてきた優れた放熱性、
耐熱性、耐湿性を備えもつものである。とりわけ、これ
まで不可能であった自動車分野における高温環境のエン
ジンルーム内での使用が可能となる。
Since the metal-based printed circuit board of the present invention has the insulating adhesive layer configured as described above, it maximizes the heat dissipation and improves the heat dissipation, and at the same time, it is excellent even when exposed to a high temperature and high humidity environment. Metal foil peel strength, withstand voltage, etc. can be maintained, and high temperature characteristics are remarkably good. In particular, the aluminum-based printed circuit board has a characteristic that it is less warped by heating. Therefore, the metal-based printed circuit board of the present invention can be applied to the mounting of large-capacity power devices in recent years, high-density mounting, and high-speed mounting by increasing the temperature of the reflow furnace, and further, it can be used under more severe environmental conditions. Excellent heat dissipation that has been required with development,
It has heat resistance and moisture resistance. In particular, it can be used in an engine room in a high temperature environment in the automobile field, which has been impossible in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の金属ベースプリント基板の断面
図である。
FIG. 1 is a sectional view of a metal-based printed circuit board of the present invention.

【符号の説明】[Explanation of symbols]

1.金属板 2.絶縁接着層 3.金属箔 1. Metal plate 2. Insulating adhesive layer 3. Metal foil

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属板の少なくとも一面に絶縁性の接着
剤層を介して金属箔が貼り合わされてなる金属ベースプ
リント基板において、前記接着剤層が、トリアジン樹脂
とノボラック型エポキシ樹脂とを重量比にして75/2
5〜45/55となるよう配合した熱硬化性樹脂に、平
均粒径1〜25μmの無機充填剤を添加した樹脂組成物
の硬化物からなり、かつ前記無機充填剤の含有量が硬化
物の60〜90重量%であることを特徴とする金属ベー
スプリント基板。
1. A metal-based printed circuit board comprising a metal plate and a metal foil bonded to at least one surface of the metal plate via an insulating adhesive layer, wherein the adhesive layer comprises a triazine resin and a novolac epoxy resin in a weight ratio. 75/2
A thermosetting resin compounded to give an amount of 5 to 45/55, which is a cured product of a resin composition in which an inorganic filler having an average particle size of 1 to 25 μm is added, and the content of the inorganic filler is a cured product. A metal-based printed circuit board, which is 60 to 90% by weight.
【請求項2】 前記金属板がアルミ板である請求項1記
載の金属ベースプリント基板。
2. The metal-based printed circuit board according to claim 1, wherein the metal plate is an aluminum plate.
【請求項3】 前記無機充填剤がアルミナであり、その
含有量が硬化物の78〜88重量%であることを特徴と
する請求項1もしくは請求項2のいずれかに記載の金属
ベースプリント基板。
3. The metal-based printed circuit board according to claim 1, wherein the inorganic filler is alumina, and the content thereof is 78 to 88% by weight of a cured product. .
【請求項4】 前記無機充填剤が表面をエポキシ基末端
シランカップリング剤処理、あるいはメタクリロキシ基
末端シランカップリング剤処理したアルミナであること
を特徴とする請求項1ないし請求項3に記載の金属ベー
スプリント基板。
4. The metal according to claim 1, wherein the inorganic filler is alumina whose surface is treated with an epoxy group-terminated silane coupling agent or a methacryloxy group-terminated silane coupling agent. Base printed circuit board.
JP6918095A 1995-03-28 1995-03-28 Metal base printed board Pending JPH08264913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6918095A JPH08264913A (en) 1995-03-28 1995-03-28 Metal base printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6918095A JPH08264913A (en) 1995-03-28 1995-03-28 Metal base printed board

Publications (1)

Publication Number Publication Date
JPH08264913A true JPH08264913A (en) 1996-10-11

Family

ID=13395275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6918095A Pending JPH08264913A (en) 1995-03-28 1995-03-28 Metal base printed board

Country Status (1)

Country Link
JP (1) JPH08264913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218509A (en) * 2008-03-12 2009-09-24 Fujifilm Corp Method for forming conductive film and method for manufacturing printed wiring board
JP2015180738A (en) * 2015-05-15 2015-10-15 住友ベークライト株式会社 Composition for forming insulation layer, film for forming insulation layer, and substrate
CN106102323A (en) * 2016-05-31 2016-11-09 王定锋 Aluminum-based circuit board and the manufacture method of PET is pressed from both sides in the middle of a kind of
CN114025472A (en) * 2021-11-12 2022-02-08 百强电子(深圳)有限公司 High-heat-dissipation metal-based printed circuit board and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218509A (en) * 2008-03-12 2009-09-24 Fujifilm Corp Method for forming conductive film and method for manufacturing printed wiring board
JP2015180738A (en) * 2015-05-15 2015-10-15 住友ベークライト株式会社 Composition for forming insulation layer, film for forming insulation layer, and substrate
CN106102323A (en) * 2016-05-31 2016-11-09 王定锋 Aluminum-based circuit board and the manufacture method of PET is pressed from both sides in the middle of a kind of
CN114025472A (en) * 2021-11-12 2022-02-08 百强电子(深圳)有限公司 High-heat-dissipation metal-based printed circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101757227B1 (en) Composite sheet with EMI shield and heat radiation and Manufacturing method thereof
US8007897B2 (en) Insulating sheet and method for producing it, and power module comprising the insulating sheet
WO2018181606A1 (en) Heat-conducting member and heat-dissipating structure including said heat-conducting member
JP4893415B2 (en) Heat dissipation film
TWI801392B (en) Resin material, manufacturing method of resin material, and laminated body
JPH10183086A (en) Heat-conductive adhesive composition and heat-conductive adhesive film using the composition
JP4132703B2 (en) Prepreg for copper-clad laminate and copper-clad laminate using the same
JP2002322372A (en) Resin composition and metal-based circuit board using the same
JP2010163598A (en) Prepreg, method for producing the same, and printed wiring board using the same
JP3821728B2 (en) Prepreg
JP7352173B2 (en) Compositions, cured products, multilayer sheets, heat dissipation parts, and electronic parts
US6770370B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP2017022265A (en) Metal circuit board and method for manufacturing the same
KR20140081327A (en) Resin composition for dissipating heat, and radiating substrate manufactured using the same
JPH08264913A (en) Metal base printed board
JP7176943B2 (en) Laminates, electronic components, and inverters
JP2002299834A (en) Insulating sheet with copper foil for multilayered printed wiring board and printed wiring board using it
JP3415430B2 (en) Filler for printed wiring board and printed wiring board using the same
WO2021149690A1 (en) Thermally conductive sheet, laminate, and semiconductor device
JP2005209489A (en) Insulation sheet
CN112752394A (en) Metal printed circuit board with heat dissipation layer
JP2000022289A (en) Resin composition for circuit board and circuit board using the same
EP4160669A1 (en) Thermally conductive sheet with metal plate and method for poducing thermally conductive sheet
WO2022255450A1 (en) Resin sheet, laminate, and semiconductor device
JP2002080559A (en) Epoxy resin composition for interposer, prepreg and copper-clad laminate using the prepreg

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050218

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050630