JPH08264308A - Rare earth magnet and its manufacture - Google Patents

Rare earth magnet and its manufacture

Info

Publication number
JPH08264308A
JPH08264308A JP7063065A JP6306595A JPH08264308A JP H08264308 A JPH08264308 A JP H08264308A JP 7063065 A JP7063065 A JP 7063065A JP 6306595 A JP6306595 A JP 6306595A JP H08264308 A JPH08264308 A JP H08264308A
Authority
JP
Japan
Prior art keywords
phase
magnet
rare earth
amount
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7063065A
Other languages
Japanese (ja)
Inventor
Sei Arai
聖 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7063065A priority Critical patent/JPH08264308A/en
Publication of JPH08264308A publication Critical patent/JPH08264308A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE: To provide a manufacturing method of a highly efficient R-Fe-B rare earth magnet, which is in specific compositional region and has the R-Fe- Ga-Al phase as a constituent phase, and a rare earth magnet which is formed by conducting hot rolling a cast ingot and also by conducting a heat treatment. CONSTITUTION: The subject manufacturing method contains the method for manufacture of rare earth magnet consisting of Pr, Fe, B, Ca and Al, containing Pr of 15.0 to 17.5atom%, Ga of 0.1 to 0.8atom%, B of 4.8atom% or more, and the remaining Fe quantity of positive value and having a Pr-Fe-Ga-Al phase, a rare earth magnet on which Nd and Dy are partially substituted, and a magnet formed by conducting a hot rolling method. In the magnet having the above- mentioned composition and compositional phase, high magnetic characteristics, especially high coercive force, can be obtained. Accordingly, the advantages of the rare earth magnet formed by a hot rolling method, in which excellent mechanical strength can be obtained, can be promoted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は希土類−Fe−B−G
a−Al系希土類磁石と、合金インゴットを熱間圧延後
熱処理する該希土類磁石の製造方法に関する。
TECHNICAL FIELD The present invention relates to rare earth-Fe-B-G.
The present invention relates to an a-Al rare earth magnet and a method for producing the rare earth magnet, in which an alloy ingot is subjected to hot rolling and then heat treatment.

【0002】[0002]

【従来の技術】R−Fe−B系(ただしRは希土類元素
を表す)に於てGaを添加した高性能磁石としては、ま
ず特開平6-104108号公報の3頁3欄2行目〜3頁4欄3
9行目で記載されている組成範囲に於て保磁力iHcが2
0kOe以上、最大磁気エネルギー積(BH)maxが
30MGOe以上の焼結磁石が得られることが開示され
ている。また特開平6-231921号公報の2頁2欄33〜4
1行目に記載されているような組成範囲に於て、保磁力
iHcが12kOe以上、最大エネルギー積(BH)ma
xが42MGOe以上の焼結磁石が開示されている。
2. Description of the Related Art As a high-performance magnet containing Ga in the R-Fe-B system (where R represents a rare earth element), first, page 3, column 3, line 2 of JP-A-6-104108. Page 3, column 4 3
The coercive force iHc is 2 in the composition range described in the 9th line.
It is disclosed that a sintered magnet having a maximum magnetic energy product (BH) max of 0 kOe or more and 30 MGOe or more can be obtained. Also, page 2, column 2, 33-4 of JP-A-6-231921.
In the composition range as described in the first line, coercive force
iHc is 12 kOe or more, maximum energy product (BH) ma
A sintered magnet in which x is 42 MGOe or more is disclosed.

【0003】鋳造インゴットを熱間加工する方法(鋳造
・熱間加工法)によって製造される磁石に於いても、G
a添加による磁気特性の向上が図られている。特開平4-
105305号公報の3頁右下欄2〜15行目に示されている
ように、Pr及びNdから選ばれる1種以上の希土類元
素:総量で29〜34重量%、B:0.8〜1.0重量
%、Ga、In、Snからなる群から選択される1種以
上の元素:総量で0.2〜0.8重量%、残部:Feと
不可避不純物からなると共に、希土類−Fe−B系の第
1相と該第1相を包む希土類元素−(Ga、In、S
n)系の低融点相とからなる組織を有することを特徴と
する希土類磁石が開示されており、8頁左下第4表に示
されているように、iHcがほぼ16kOe、(BH)m
axがほぼ32MGOeの磁気特性が得られている。ま
た特開平6-251917号公報では3頁27〜40行目に示さ
れているように、合金組成が原子比でRxFeyzGa
100-x-y-zと表わされるとき、x≧15、y−14z>
0、z≧4、100−x−y−z<2なる組成域にあ
り、かつ磁石組織中にR6Fe11Ga3相を有することを
特徴とする希土類磁石が開示されている。
Even in a magnet manufactured by a method of hot working a cast ingot (casting / hot working method), G
The magnetic characteristics are improved by adding a. Japanese Patent Laid-Open No. 4-
As shown in page 3, right lower column, lines 2 to 15 of Japanese Patent No. 105305, one or more rare earth elements selected from Pr and Nd: 29 to 34% by weight in total, B: 0.8 to 1 0.0 wt%, one or more elements selected from the group consisting of Ga, In, and Sn: 0.2 to 0.8 wt% in total, balance: Fe and inevitable impurities, and rare earth-Fe-B First phase of the system and rare earth element- (Ga, In, S
A rare earth magnet characterized in that it has a structure composed of a n) type low melting point phase is disclosed. As shown in Table 4 on the lower left of page 8, iHc is approximately 16 kOe, (BH) m.
The magnetic characteristics of ax of approximately 32 MGOe are obtained. Further, as disclosed in JP-A-6-251917, page 3, lines 27-40, the alloy composition has an atomic ratio of R x Fe y B z Ga.
When expressed as 100-xyz , x ≧ 15, y-14z>
Disclosed is a rare earth magnet having a composition range of 0, z ≧ 4, 100−x−y−z <2 and having an R 6 Fe 11 Ga 3 phase in the magnet structure.

【0004】[0004]

【発明が解決しようとする課題】Gaを添加した焼結磁
石においては上述したように高い磁気特性を達成するこ
とができる。しかし焼結磁石は文献1(A.Arai et.al J
ournal of Applied Physics vol.75 No.10 p6631)に示
されているように一般的に機械的強度が低いという欠点
がある。特に主相である2-14-1相の体積率を極力増やし
て磁気特性を高くしている磁石においては低強度という
特徴が顕著となり、割れ欠けの発生が著しい。さらに焼
結法という製法上の制約から、大型磁石の製造が困難で
あるという欠点を有している。
In the sintered magnet containing Ga, high magnetic characteristics can be achieved as described above. However, the sintered magnet is described in Reference 1 (A. Arai et.al J
As shown in ournal of Applied Physics vol.75 No.10 p6631), it generally has a drawback of low mechanical strength. In particular, in a magnet in which the volume ratio of the main phase 2-14-1 phase is increased as much as possible to improve the magnetic characteristics, the feature of low strength becomes remarkable, and cracks are significantly generated. Further, it has a drawback that it is difficult to manufacture a large-sized magnet due to a manufacturing limitation such as a sintering method.

【0005】これに対し、鋳造インゴットを熱間圧延す
ることにより作製される希土類磁石においては、先の文
献1に記されているように、焼結磁石と比較して引っ張
り強度では約3倍の強度を持つ。また熱間圧延法で作製
されるため、特開平5-315118号公報の請求項1および2
に記載されているように大型磁石の製造に優れ、製造プ
ロセスも大幅に簡略化できる。鋳造・熱間加工法により
製造される磁石においては、鋳造インゴットを最終工程
まで粉末プロセスを経ることなく磁石を作製することが
出来るため、焼結磁石中に見られるような空孔を実質的
に含まない。また比較的延性に富むRリッチ相の量が焼
結磁石よりも多いため高い強度が得られる。
On the other hand, in the rare earth magnet produced by hot-rolling a cast ingot, the tensile strength is about three times that of the sintered magnet, as described in the above document 1. Have strength. Further, since it is produced by the hot rolling method, the first and second aspects of JP-A-5-315118 are claimed.
As described in 1), it is excellent in manufacturing large magnets, and the manufacturing process can be greatly simplified. In the case of magnets manufactured by the casting / hot working method, the magnets can be manufactured without passing through the powder process until the final step of the cast ingot, so that the voids found in sintered magnets are virtually eliminated. Not included. Further, since the amount of the R-rich phase, which is relatively ductile, is larger than that of the sintered magnet, high strength can be obtained.

【0006】上述の特開平4-105305号公報のように、鋳
造・熱間圧延法により作製されてGaを添加した組成に
おいては高い保磁力と最大エネルギー積を両立させるこ
とができる。しかし、我々がさらにGa添加合金の組成
について詳細な検討を行なった結果、該公報の明細書に
よって指定される組成範囲においても各元素の添加量お
よび組成のバランスによっては、保磁力が劣化してしま
うことが明らかとなった。またその場合、保磁力向上に
必要な組織として、特開平4-105305号公報では第1相の
存在とともに、第2相として希土類−Ga系の低融点相
が存在する場合に得られるとしているが、このような第
2相が存在する場合でも磁気特性、特に保磁力に関して
は大幅に保磁力が低下してしまう場合があることが判明
した。
As in the above-mentioned Japanese Patent Laid-Open No. 4-105305, it is possible to achieve both high coercive force and maximum energy product in a composition prepared by casting and hot rolling and added with Ga. However, as a result of further detailed studies on the composition of the Ga-added alloy, the coercive force deteriorates depending on the addition amount of each element and the balance of the composition even in the composition range specified by the specification of the publication. It became clear that it would happen. Further, in that case, as a structure necessary for improving the coercive force, Japanese Patent Laid-Open No. 4-105305 discloses that the structure is obtained when a rare-earth-Ga low melting point phase is present as the second phase in addition to the first phase. It has been found that even when such a second phase is present, the magnetic properties, particularly the coercive force, may be significantly reduced.

【0007】特開平6-251917号公報で規定される組成域
においても、高い特性が得られない場合がある。まず第
一に希土類元素量が15原子%以上となっているが、希
土類元素の量が多くなりすぎる場合には、主相量の低下
によるエネルギー積の劣化やRリッチ相の増加による耐
食性の低下などの問題が生じる。またB量については、
規定されている組成範囲内(4原子%以上)においても
B量が少ない場合には粒界相として軟磁性相であるR2
Fe17相が出現することとなり、磁気特性の劣化を招
く。
Even in the composition range defined in JP-A-6-251917, high characteristics may not be obtained in some cases. First, the amount of rare earth elements is 15 atomic% or more, but if the amount of rare earth elements is too large, the energy product deteriorates due to a decrease in the main phase amount and the corrosion resistance decreases due to an increase in the R-rich phase. Such problems occur. Regarding the amount of B,
If the B content is small even within the specified composition range (4 atom% or more), R 2 which is a soft magnetic phase as a grain boundary phase
The Fe 17 phase appears, which causes deterioration of magnetic characteristics.

【0008】本発明は、このような従来の問題点を解決
し、機械的強度に優れ大型磁石も作製できるという長所
を有する鋳造・熱間圧延法によるR−Fe−B系希土類
磁石に於て、高い磁気特性、特に高保磁力を得ることを
第1の目的としている。また本発明は、Prの一部をD
yで置換することによりさらなる保磁力の増大を図るこ
とを第2の目的とするものである。さらに本発明は、熱
処理温度を最適化する事により、高特性磁石の製造方法
を提供することを第3の目的とするものである。
The present invention provides an R-Fe-B rare earth magnet by a casting / hot rolling method, which has the advantages of solving the above-mentioned conventional problems and being excellent in mechanical strength and capable of producing a large magnet. The first purpose is to obtain high magnetic characteristics, especially high coercive force. The present invention also uses a part of Pr as D
The second purpose is to further increase the coercive force by substituting with y. A third object of the present invention is to provide a method for manufacturing a high-performance magnet by optimizing the heat treatment temperature.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の希土類磁石は、Pr、Fe、B、Ga、A
l及び製造上不可避な不純物からなり、Prが15.0
〜17.5原子%、Gaが0.1〜0.8原子%、B量
が4.8原子%以上で、かつ残Fe量(Feの原子%値
からBの原子%値を14倍した値を引いた数値)が正の
値であって、磁石組織中にPr−Fe−Ga−Al相を
有することを特徴とするものである。
In order to achieve the above object, the rare earth magnet of the present invention comprises Pr, Fe, B, Ga and A.
1 and impurities unavoidable in production, Pr is 15.0
˜17.5 atomic%, Ga 0.1 to 0.8 atomic%, B content 4.8 atomic% or more, and residual Fe content (A atomic% value of Fe multiplied by 14 atomic% value) The numerical value obtained by subtracting the value is a positive value, and the magnet structure has a Pr—Fe—Ga—Al phase.

【0010】また本発明の希土類磁石は、前記Prの一
部をNdで置換し、磁石組織中に(Pr,Nd)−Fe
−Ga−Al相を有することを特徴とするものである。
In the rare earth magnet of the present invention, a part of Pr is replaced with Nd, and (Pr, Nd) -Fe is contained in the magnet structure.
It has a -Ga-Al phase.

【0011】また本発明の希土類磁石は、前記Pr量の
10%以下をDyにより置換し、磁石組織中に(Pr,
Dy)−Fe−Ga−Al相を有することを特徴とする
ものである。またより良くは、前記Dyの置換量を、P
r量の4〜10%としたことを特徴とするものである。
Further, in the rare earth magnet of the present invention, 10% or less of the Pr amount is replaced by Dy, and (Pr,
It has a Dy) -Fe-Ga-Al phase. More preferably, the Dy substitution amount is set to P
The amount of r is 4 to 10%.

【0012】さらに、本発明の希土類磁石の製造方法
は、合金を溶解・鋳造してインゴットを作製し、該イン
ゴットを金属カプセル中に封入してから800〜1100℃の
温度で熱間圧延を施し、その後900〜1050℃の温度で熱
処理することを特徴とするものである。
Further, in the method for producing a rare earth magnet of the present invention, an alloy is melted and cast to produce an ingot, and the ingot is encapsulated in a metal capsule and hot-rolled at a temperature of 800 to 1100 ° C. The heat treatment is then performed at a temperature of 900 to 1050 ° C.

【0013】また本発明の希土類磁石の製造方法は、合
金を溶解・鋳造してインゴットを作製し、該インゴット
を金属カプセル中に封入してから800〜1100℃の温度で
熱間圧延を施し、その後900〜1050℃の温度で熱処理を
行い、さらに450から600℃の温度範囲で熱処理する事を
特徴とするものである。
Further, the method for producing a rare earth magnet of the present invention comprises melting and casting an alloy to produce an ingot, encapsulating the ingot in a metal capsule, and then hot rolling at a temperature of 800 to 1100 ° C., After that, heat treatment is performed at a temperature of 900 to 1050 ° C, and further heat treatment is performed at a temperature range of 450 to 600 ° C.

【0014】[0014]

【作用】先ず、本発明の合金組成域の限定理由について
述べる。主たる希土類元素としては、主相である2-14-1
相のポテンシャルから、PrおよびNdが好ましいが、
鋳造・熱間圧延を行なう場合には、熱間加工性を確保し
つつ、高保磁力を得るためにPrを主として使用するこ
とが好ましい。このような希土類元素の最適組成領域と
しては15原子%〜17.5原子%の範囲がよい。これ
は15原子%未満の組成域では熱間加工時に発生する割
れが激しく、磁石製品歩留りが劣化するため大幅なコス
トアップを招く。また17.5原子%より添加量が多く
なると、主相体積率の減少や角型性の劣化による磁気特
性の大幅な低下を招くと共に、後述するR−Fe−Ga
−Al相(ただしこの場合のRは本発明中のPr、N
d、Dyを便宜上総括して表すものである)を粒界相中
に安定して生成することが困難となる。
First, the reasons for limiting the alloy composition range of the present invention will be described. As the main rare earth element, the main phase is 2-14-1
From the phase potential, Pr and Nd are preferable,
When casting and hot rolling, it is preferable to mainly use Pr in order to obtain high coercive force while ensuring hot workability. The optimum composition range of such rare earth elements is preferably in the range of 15 atom% to 17.5 atom%. This is because in the composition range of less than 15 atomic%, cracks that occur during hot working are severe and the yield of magnet products deteriorates, resulting in a significant increase in cost. Further, when the addition amount is more than 17.5 at%, the volume ratio of the main phase is decreased and the magnetic properties are significantly deteriorated due to the deterioration of squareness, and R-Fe-Ga described later is produced.
-Al phase (where R is Pr, N in the present invention)
It is difficult to stably generate (d and Dy, which are collectively represented for convenience) in the grain boundary phase.

【0015】B量については、まず4.8原子%未満の
添加量においては磁石組織中に軟磁性相であるR2Fe
17相の存在が顕著となり、保磁力および角型性の劣化を
招く。B量の上限については、その原子%の14倍の数
値が磁石中のFe原子%の数値よりも低いことが条件と
なる。ここで請求項1中に残Fe量という記述をした
が、この量は以下の式により表されるものである。
Regarding the amount of B, first, when the addition amount is less than 4.8 atomic%, R 2 Fe which is a soft magnetic phase in the magnet structure is present.
The presence of 17 phases becomes noticeable, resulting in deterioration of coercive force and squareness. Regarding the upper limit of the amount of B, the condition is that the numerical value of 14 times the atomic% is lower than the numerical value of Fe atomic% in the magnet. Here, the description of the amount of residual Fe is given in claim 1, and this amount is represented by the following formula.

【0016】[残Fe量]=[合金中のFeの原子%
値]−14×[合金中のBの原子%値] すなわち、B量が多くなり、上記の式で表される残Fe
量が負となるような磁石においては、磁石組織中にR−
Fe−Ga−Al相が存在しなくなり、結果的に低保磁
力となる。
[Remaining Fe content] = [atomic% of Fe in alloy]
Value] −14 × [atomic% value of B in alloy] That is, the amount of B increases and the residual Fe represented by the above formula
In the case of a magnet with a negative amount, R-
The Fe-Ga-Al phase does not exist, resulting in a low coercive force.

【0017】Ga添加量に関しては、0.1原子%の添
加で3元系よりは明らかに高保磁力化の効果がみられ
る。しかし添加量が0.8原子%を越えた場合には、保
磁力は漸減するとともに、Ga添加量の増大による磁性
ポテンシャルの低下が顕著となるため、Ga添加による
効果はなくなる。
With respect to the amount of Ga added, the effect of increasing the coercive force is clearly seen as compared with the ternary system by adding 0.1 atom%. However, when the added amount exceeds 0.8 atomic%, the coercive force gradually decreases, and the magnetic potential decreases remarkably due to the increased Ga added amount, so that the effect of Ga added disappears.

【0018】AlはR−Fe−Ga−Al相を構成する
ために必須の元素である。Alの添加量については本発
明の請求項中においては限定しないが、添加量が多くな
ると磁化の低下を招くため、0.5原子%以下とするこ
とが好ましい。また合金の原料としてAlを含むフェロ
ボロンを使用すると、フェロボロン中に含まれるAlが
合金元素として事実上添加されることになる。このよう
にして作製された合金中のAl量は上述の0.5原子%
以下という好ましい範囲に入ることになる。
Al is an essential element for forming the R-Fe-Ga-Al phase. The amount of Al added is not limited in the claims of the present invention, but if the amount added is large, the magnetization is lowered. Therefore, it is preferably 0.5 atomic% or less. When ferroboron containing Al is used as a raw material for the alloy, Al contained in ferroboron is effectively added as an alloying element. The amount of Al in the alloy thus produced is 0.5 atom% as described above.
It will fall within the following preferable range.

【0019】次に、請求項1に記載の、磁石組織中のR
−Fe−Ga−Al相とその効果について説明する。前
出の特開平6-251917号公報においては磁石組織中にR6
Fe11Ga3相を有する場合に高い磁石特性が得られる
と記述されているが、その後の詳細な組成最適化実験の
結果、必ずしもR6Fe11Ga3相を有する磁石組織では
なく、R−Fe−Ga−Alの4元系からなる相が主相
粒子間に存在する場合に高い特性が得られることが判明
した。この4元系の相の結晶構造および組成式は未だ明
らかではないが、実施例1中に示したように高保磁力が
得られる磁石中の組織をEPMAにより分析した例で
は、Pr:34.5原子%、Fe:59.8原子%、G
a:5.2原子%、Al:0.5原子%という組成から
なる相であった。R−Fe−Ga3元系の相に関する状
態図的な研究としては文献2(F.Weitzer el al; J. Le
ss-Common Met. 167(1990) 135)があり、その中で正方
晶化合物のR6Fe11Ga3相が存在するとされている。
しかし、本発明中で発見された上述のような組成を持つ
相に関する記述は全く見られず、この相の結晶構造およ
び磁性などは未だ明らかではない。
Next, R in the magnet structure according to claim 1
The -Fe-Ga-Al phase and its effect will be described. In the above-mentioned Japanese Patent Laid-Open No. 6-251917, R 6 is contained in the magnet structure.
It is described that high magnet characteristics can be obtained when the Fe 11 Ga 3 phase is included, but as a result of detailed composition optimization experiments performed thereafter, it was found that a magnet structure not necessarily including the R 6 Fe 11 Ga 3 phase was R- It was found that high characteristics can be obtained when the phase composed of the Fe-Ga-Al quaternary system exists between the main phase particles. Although the crystal structure and composition formula of this quaternary phase are not clear yet, in the example of analyzing the structure of the magnet in which high coercive force is obtained by EPMA as shown in Example 1, Pr: 34.5 Atomic%, Fe: 59.8 atomic%, G
The phase had a composition of a: 5.2 atomic% and Al: 0.5 atomic%. As a phase diagram study on the phase of the R-Fe-Ga ternary system, reference 2 (F. Weitzer el al; J. Le.
ss-Common Met. 167 (1990) 135), in which the R 6 Fe 11 Ga 3 phase of a tetragonal compound is said to exist.
However, there is no description about the phase having the above-mentioned composition discovered in the present invention, and the crystal structure and magnetism of this phase are not yet clear.

【0020】R−Fe−Ga−Al相が存在することに
よる保磁力の向上は、この相が主相粒子間に存在し、主
相粒同士の磁性的なセパレーションを促進するためと考
えられる。また、本発明のR−Fe−Ga−Al相が存
在するために必要なGa添加量は、R6Fe11Ga3相が
存在する場合よりも少なくてすむ。つまりR6Fe11
3相中のGaの原子比率は、本発明におけるR−Fe
−Ga−Al相中のGaの原子比率のほぼ3倍である。
このため合金組成としてはGaの添加量が同じでも、R
6Fe11Ga3相よりも本発明のR−Fe−Ga−Al相
の方が存在体積率が多くなり、主相粒同士のセパレーシ
ョンを促進し、保磁力向上の効果が増す。さらにGa添
加量を低く抑えることができるため、磁化の低下も少な
くて済み高いエネルギー積が得られる。また高価なGa
の添加量を低減することで低コスト化も可能となる。
The improvement of the coercive force due to the existence of the R-Fe-Ga-Al phase is considered to be because this phase exists between the main phase grains and promotes the magnetic separation between the main phase grains. Further, the amount of Ga added necessary for the existence of the R—Fe—Ga—Al phase of the present invention is smaller than that for the case where the R 6 Fe 11 Ga 3 phase is present. In other words, R 6 Fe 11 G
atomic ratio of Ga in a 3 phase is, R-Fe in the present invention
It is almost three times the atomic ratio of Ga in the -Ga-Al phase.
Therefore, even if the addition amount of Ga is the same as the alloy composition, R
6 Fe 11 Ga 3-phase also increases the R-Fe-Ga-Al phase it is present volume ratio of the present invention than to promote separation of the main phase grains, increasing the effect of improving the coercive force. Furthermore, since the amount of Ga added can be suppressed to a low level, the decrease in magnetization is small and a high energy product can be obtained. Also expensive Ga
By reducing the addition amount of, it is possible to reduce the cost.

【0021】高温での磁石の使用を考えた場合には、D
y置換による高保磁力化が有効な手段である。しかし、
Dyの置換量をPr量の10%以上とした場合、鋳造組
織における主相結晶粒の粗大化が顕緒となる。このため
熱間圧延による主相粒の配向が不十分となり、磁石特性
は劣化してしまい、実際の使用に適さなくなってしま
う。また置換量をPr量の4〜10%とすれば、iHc
≧20kOe以上となり、高温での使用に優れた磁石を
得ることが出来る。
Considering the use of magnets at high temperatures, D
A high coercive force by y substitution is an effective means. But,
When the Dy substitution amount is 10% or more of the Pr amount, coarsening of the main phase crystal grains in the cast structure becomes noticeable. For this reason, the orientation of the main phase grains due to hot rolling becomes insufficient, the magnet characteristics deteriorate, and it becomes unsuitable for actual use. If the substitution amount is 4 to 10% of the Pr amount, iHc
Since ≧ 20 kOe or more, a magnet excellent in use at high temperature can be obtained.

【0022】つぎに本発明のような磁石を得るための製
造方法について言及する。まず所望の組成からなる合金
を溶解・鋳造しインゴットを作製する。このインゴット
を特開平6-244012号公報3頁4欄28〜33行目などに
示されているように800〜1100℃の温度範囲に於て熱間
圧延を施す。その後熱処理は900〜1050℃の温度範囲で
行なうことにより、高い磁気特性、特に高保磁力が得ら
れる。900℃より低い温度で熱処理を行なった場合に
は、主相粒内に存在するα−Feが残存するため低保磁
力となると考えられる。また1050℃より高い温度で熱処
理を行なった場合は、主相結晶粒の粗大化が顕緒とな
り、これも低保磁力となってしまう。900〜1050℃で熱
処理を行ない、冷却した後では、磁石組織中には既にR
−Fe−Ga−Al相が形成されており、主相粒同士の
セパレーションを促進し、高保磁力が得られる。さらに
上述の熱処理の後、450〜600℃の温度範囲での熱処理を
加えることにより、保磁力はさらに向上する。
Next, a manufacturing method for obtaining the magnet according to the present invention will be described. First, an alloy having a desired composition is melted and cast to produce an ingot. This ingot is hot-rolled in the temperature range of 800 to 1100 ° C. as shown in JP-A-6-244012, page 3, column 4, lines 28-33. After that, heat treatment is performed in a temperature range of 900 to 1050 ° C. to obtain high magnetic characteristics, especially high coercive force. When the heat treatment is performed at a temperature lower than 900 ° C., α-Fe existing in the main phase grains remains, and it is considered that the coercive force becomes low. Further, when the heat treatment is performed at a temperature higher than 1050 ° C., the coarsening of the main phase crystal grains becomes obvious, which also results in a low coercive force. After heat treatment at 900 to 1050 ° C and cooling, R is already present in the magnet structure.
Since the -Fe-Ga-Al phase is formed, the separation of the main phase grains is promoted and a high coercive force is obtained. After the above heat treatment, a coercive force is further improved by applying heat treatment in the temperature range of 450 to 600 ° C.

【0023】[0023]

【実施例】【Example】

(実施例1) 純度99.9%のPr、Fe、Gaと、20
重量%のBと2重量%のAlとを含むフェロボロンを原
料として、所定の重量を秤量し、高周波溶解炉にてAr
雰囲気中で溶解し、銅製金型中に鋳造して5kgのイン
ゴットを得た。各合金について成分分析を行なった結果
を表1に示す。また不可避不純物元素の量は便宜上Fe
の原子%の値に入れて表した。また表中には残Fe量
(Feの原子%値からBの原子%値を14倍した値を引
いた数値)を併せて示した。
(Example 1) Pr, Fe and Ga having a purity of 99.9%, 20
Using ferroboron containing B of 2 wt% and Al of 2 wt% as a raw material, a predetermined weight is weighed and Ar is placed in a high frequency melting furnace.
It was melted in the atmosphere and cast in a copper mold to obtain a 5 kg ingot. Table 1 shows the results of component analysis of each alloy. For the sake of convenience, the amount of the unavoidable impurity element is Fe.
It was expressed by including it in the atomic% value. Further, in the table, the amount of residual Fe (numerical value obtained by subtracting 14 times the atomic% value of B from the atomic% value of Fe) is also shown.

【0024】[0024]

【表1】 [Table 1]

【0025】このうち番号2、3、5、6の合金につい
ては、前述した特開平4-105305号公報の請求項にて規定
される範囲内にある組成であるが、残Fe量が負の値と
なっているものである。
Of these alloys, the alloys of Nos. 2, 3, 5 and 6 have a composition within the range defined by the above-mentioned Japanese Patent Application Laid-Open No. 4-105305, but the residual Fe content is negative. It is a value.

【0026】表1の各合金インゴットを所定の大きさに
切断した後、ss41製のカプセル中に封入し、975℃
において熱間圧延を行なった。圧延時の総加工度は75%
とした。圧延後冷却してから、カプセル中より磁石圧延
材を取り出し、Ar雰囲気中にて1025℃×20h+500℃×
2hの2段階の熱処理を行なった。熱処理後サンプルを切
り出し、直流自記磁束計により磁石特性の測定を行なっ
た。得られた保磁力(iHc)と表1中に表した残Fe
量との関係を図1に示す。図1から明らかなように残F
e量が負となる組成の磁石においては8kOe程度の低い保
磁力しか得られないのに対し、残Fe量が正となる磁石
においては16kOe以上の高い保磁力が得られる。
Each alloy ingot shown in Table 1 was cut into a predetermined size and then enclosed in a ss41 capsule at 975 ° C.
Was hot-rolled. The total processing rate during rolling is 75%
And After rolling and cooling, take out the rolled magnet material from the capsule and put it in an Ar atmosphere at 1025 ° C × 20h + 500 ° C ×
A two-step heat treatment of 2 hours was performed. After the heat treatment, the sample was cut out and the magnet characteristics were measured with a DC self-recording magnetometer. The obtained coercive force (iHc) and the residual Fe shown in Table 1.
The relationship with the amount is shown in FIG. As is clear from FIG. 1, the residual F
A magnet having a negative e content has a low coercive force of about 8 kOe, whereas a magnet having a positive residual Fe content has a high coercive force of 16 kOe or more.

【0027】残Fe量が正となり、高保磁力が得られる
サンプルの磁石組織の観察を行なった結果、粒界相中に
Prリッチ相の他に、Pr,Fe,Ga,Alからなる
相が存在しており、逆に残Fe量が負となる低保磁力の
磁石組織中にはこの相が存在しないことが確認された。
合金10から作製された磁石組織をEPMAにより分析
した結果、この相の定量分析値はPr:34.5at%、F
e:59.8at%、Ga:5.2at%、Al:0.5at%であった。
As a result of observing the magnet structure of the sample in which the residual Fe content is positive and a high coercive force is obtained, the grain boundary phase contains a Pr-rich phase and a phase composed of Pr, Fe, Ga, and Al. On the contrary, it was confirmed that this phase does not exist in the low coercive force magnet structure in which the residual Fe content is negative.
As a result of the EPMA analysis of the magnet structure produced from the alloy 10, the quantitative analysis value of this phase is Pr: 34.5at%, F
e: 59.8 at%, Ga: 5.2 at%, Al: 0.5 at%.

【0028】(実施例2) Pr16.0Fe83.3-aa
0.5Al0.2(4.4≦a≦5.8)なる組成のインゴットを
高周波溶解炉にて溶解・鋳造し5kgのインゴットを得
た。得られたインゴットを所定の大きさに切断し、ss
41製カプセル中に封入後、975℃において総加工度7
5%の熱間圧延を施した。圧延後冷却してから、カプセ
ル中より磁石圧延材を取り出し、Ar雰囲気中にて1025
℃×20h+500℃×2hの2段熱処理を施した。得られた
iHc、Hk(減磁曲線に於て磁化が0.9Brに相当
する時の磁界の強さ)、(BH)max(最大エネルギ
ー積)の値とB量(a)との関係を図2に示す。なお図
中には、この合金系において残Fe量が0となるB量の
値(5.55原子%)をX軸上に示した。図から明らかなよ
うに、B量が4.8原子%未満の場合は、軟磁性相であ
るPr2Fe17相が現れるため角形性が劣化すると共
に、(BH)maxも低い値しか得られない。よって本
発明に示されているようにB量が4.8原子%以上で残
Fe量が正となる領域で高い磁気特性を得ることが出来
る。
Example 2 Pr 16.0 Fe 83.3-a B a G
An ingot having a composition of a 0.5 Al 0.2 (4.4 ≦ a ≦ 5.8) was melted and cast in a high frequency melting furnace to obtain a 5 kg ingot. The obtained ingot is cut into a predetermined size and ss
After being encapsulated in 41-made capsules, the total processing rate is 7 at 975 ° C.
5% hot rolling was performed. After rolling and cooling, take out the rolled magnet material from the capsule and put it in an atmosphere of 1025
A two-stage heat treatment of ℃ × 20h + 500 ℃ × 2h was applied. The relationship between the obtained iHc, Hk (the strength of the magnetic field when the magnetization corresponds to 0.9Br in the demagnetization curve), (BH) max (maximum energy product), and the B amount (a) As shown in FIG. In the figure, the value of B content (5.55 atomic%) at which the residual Fe content becomes 0 in this alloy system is shown on the X axis. As is clear from the figure, when the amount of B is less than 4.8 atomic%, Pr 2 Fe 17 phase, which is a soft magnetic phase, appears so that the squareness is deteriorated and (BH) max is also a low value. Absent. Therefore, as shown in the present invention, high magnetic characteristics can be obtained in the region where the amount of B is 4.8 atom% or more and the amount of residual Fe is positive.

【0029】(実施例3) PrbFe94.1-b5.2Ga
0.5Al0.2(13.5≦b≦18.5)なる組成の合金を高周波
溶解炉にて溶解・鋳造し5kgのインゴットを得た。得
られたインゴットを所定の大きさに切断し、ss41製
カプセル中に封入後、975℃において総加工度75%の
熱間圧延を施した。圧延後冷却してから、カプセル中よ
り磁石圧延材を取り出し、Ar雰囲気中にて1025℃×20
h+500℃×2hの2段熱処理を施した。得られたiH
c、Hk、(BH)maxの値とPr量(b)との関係
を図3に示す。なお、この組成域では残Fe量はすべて
正である。
(Example 3) Pr b Fe 94.1-b B 5.2 Ga
An alloy having a composition of 0.5 Al 0.2 (13.5 ≦ b ≦ 18.5) was melted and cast in a high frequency melting furnace to obtain a 5 kg ingot. The obtained ingot was cut into a predetermined size, enclosed in a capsule made of ss41, and hot-rolled at 975 ° C. with a total working rate of 75%. After rolling and cooling, take out the rolled magnet material from the capsule and put it in an Ar atmosphere at 1025 ° C x 20
A two-step heat treatment of h + 500 ° C. × 2 h was performed. IH obtained
FIG. 3 shows the relationship between the values of c, Hk, (BH) max and the Pr amount (b). In this composition range, the residual Fe amount is all positive.

【0030】図から明らかなようにPrが17.5原子
%以上の場合には、角型性(Hk)、(BH)maxが
劣化する。
As is clear from the figure, when Pr is 17.5 atomic% or more, the squareness (Hk) and (BH) max deteriorate.

【0031】さらに、同様な組成からなる50mm×10
0mm×200mmの圧延磁石ブロックから、4mm×10mm
×20mmの板状サンプルを切り出した。切りだした板状
磁石の中で割れ、クラックが発生しているものを目視に
より判断し不良とした際の、全製品中の不良率とPr量
との関係を図4に示す。図から明らかなように、Pr量
が15原子%未満の場合には、製品不良率が大幅に増大
する。
Furthermore, 50 mm × 10 having the same composition
From 0 mm x 200 mm rolled magnet block to 4 mm x 10 mm
A × 20 mm plate sample was cut out. FIG. 4 shows the relationship between the defect rate and the Pr amount in all the products when the cut-out plate magnets having cracks or cracks are visually judged to be defective. As is clear from the figure, when the Pr content is less than 15 atomic%, the product defect rate is significantly increased.

【0032】以上のことから、機械的強度を損ねること
なく、かつ高い磁気特性を得るためには、Pr量を15
原子%から17.5原子%までの範囲とすることが好ま
しい。
From the above, in order to obtain high magnetic characteristics without impairing the mechanical strength, the Pr amount should be 15
It is preferably in the range of atomic% to 17.5 atomic%.

【0033】(実施例4) Pr16Fe78.6-c5.2
cAl0.2(0≦c≦1.5)なる組成の合金を高周波溶解
炉にて溶解・鋳造し5kgのインゴットを得た。得られ
たインゴットを所定の大きさに切断し、ss41製カプ
セル中に封入後、975℃において総加工度75%の熱間
圧延を施した。圧延後冷却してから、カプセル中より磁
石圧延材を取り出し、Ar雰囲気中にて1025℃×20h+5
00℃×2hの2段熱処理を施した。得られたiHc、H
k、(BH)maxの値とGa量(c)との関係を図5
に示す。
(Example 4) Pr 16 Fe 78.6-c B 5.2 G
An alloy having a composition of a c Al 0.2 (0 ≦ c ≦ 1.5) was melted and cast in a high frequency melting furnace to obtain a 5 kg ingot. The obtained ingot was cut into a predetermined size, enclosed in a capsule made of ss41, and hot-rolled at 975 ° C. with a total working rate of 75%. After rolling and cooling, take out the rolled magnet material from the capsule and put it in an Ar atmosphere at 1025 ° C x 20h + 5
A two-stage heat treatment of 00 ° C x 2h was performed. Obtained iHc, H
FIG. 5 shows the relationship between the values of k and (BH) max and the Ga amount (c).
Shown in

【0034】図から明らかなように、保磁力に関しては
Gaを0.1原子%以上添加することにより大幅な増大
が見られる。また0.8原子%以上の添加を行なっても
保磁力の伸びは飽和してしまい、逆に磁化の低下による
エネルギー積の低下が顕著となる。
As is clear from the figure, the coercive force is significantly increased by adding Ga in an amount of 0.1 atomic% or more. Further, even if 0.8 atomic% or more is added, the elongation of coercive force is saturated, and conversely, the decrease in energy product due to the decrease in magnetization becomes remarkable.

【0035】(実施例5) (Pr0.8Nd0.216Fe
83.3-ddGa0.5Al0.2(4.4≦d≦5.8)なる組成の
合金を高周波溶解炉にて溶解、鋳造し5kgのインゴッ
トを得た。得られたインゴットを所定の大きさに切断
し、ss41製カプセル中に封入後、975℃において総
加工度75%の熱間圧延を施した。圧延後冷却してか
ら、カプセル中より磁石圧延材を取り出し、Ar雰囲気
中にて1025℃×20h+500℃×2hの2段熱処理を施し
た。得られたiHc、Hk、(BH)maxの値とB量
(d)との関係を図6に示す。
Example 5 (Pr 0.8 Nd 0.2 ) 16 Fe
Dissolving 83.3-d B d Ga 0.5 Al 0.2 (4.4 ≦ d ≦ 5.8) comprising the alloy composition at a high frequency melting furnace to obtain ingots cast 5 kg. The obtained ingot was cut into a predetermined size, enclosed in a capsule made of ss41, and hot-rolled at 975 ° C. with a total working rate of 75%. After rolling and cooling, the rolled magnet material was taken out from the capsule and subjected to a two-step heat treatment of 1025 ° C. × 20 h + 500 ° C. × 2 h in an Ar atmosphere. FIG. 6 shows the relationship between the obtained iHc, Hk, (BH) max values and the B amount (d).

【0036】Prのみの場合と同様、Ndを一部置換し
た磁石についても本発明で規定される組成域において高
い磁気特性が得られる。またd=5.2の磁石組織を観
察した結果、粒界相としてPr,Nd,Fe,Ga,A
lからなる相が存在しており、この相をEPMAにより
分析した結果、Pr:28.4原子%、Nd:7.1原
子%、Fe:58.2原子%、Ga:5.8原子%、A
l:0.5原子%であった。
Similar to the case of only Pr, a magnet partially substituted with Nd can obtain high magnetic characteristics in the composition range defined by the present invention. As a result of observing the magnet structure with d = 5.2, Pr, Nd, Fe, Ga, A as grain boundary phases were observed.
The phase consisting of 1 exists, and as a result of analyzing this phase by EPMA, Pr: 28.4 atom%, Nd: 7.1 atom%, Fe: 58.2 atom%, Ga: 5.8 atom% , A
1: It was 0.5 atomic%.

【0037】(実施例6) (Pr1-xDyx16Fe
78.15.2Ga0.5Al0.2(0≦x≦0.15)なる組
成の合金を高周波溶解炉にて溶解、鋳造し5kgのイン
ゴットを得た。得られたインゴットを所定の大きさに切
断し、ss41製カプセル中に封入後、975℃において
総加工度75%の熱間圧延を施した。圧延後冷却してか
ら、カプセル中より磁石圧延材を取り出し、Ar雰囲気
中にて1025℃×20h+500℃×2hの2段熱処理を施し
た。得られたiHc、Hk、(BH)maxの値とDy
置換量(x)との関係を図7に示す。
Example 6 (Pr 1-x Dy x ) 16 Fe
An alloy having a composition of 78.1 B 5.2 Ga 0.5 Al 0.2 (0 ≦ x ≦ 0.15) was melted and cast in a high frequency melting furnace to obtain a 5 kg ingot. The obtained ingot was cut into a predetermined size, enclosed in a capsule made of ss41, and hot-rolled at 975 ° C. with a total working rate of 75%. After rolling and cooling, the rolled magnet material was taken out from the capsule and subjected to a two-step heat treatment of 1025 ° C. × 20 h + 500 ° C. × 2 h in an Ar atmosphere. Obtained iHc, Hk, (BH) max values and Dy
FIG. 7 shows the relationship with the substitution amount (x).

【0038】図から明らかなように、Dyを添加するこ
とにより、さらなるiHcの向上が達成される。しかし
xの値が0.10を越えると、鋳造組織の粗大化が顕緒
となり、主相粒子の配向度の低下と角形性の低下が起き
るため(BH)maxおよびHkの劣化を招く。
As is apparent from the figure, by adding Dy, further improvement in iHc is achieved. However, when the value of x exceeds 0.10, coarsening of the cast structure becomes obvious, and the degree of orientation of the main phase grains and the squareness of the grains decrease, causing deterioration of (BH) max and Hk.

【0039】より良くは、xが0.04〜0.10の間
であればiHc>20kOeとなり、高温での優れる磁
石を得ることが出来る。またx=0.05の磁石組織を
観察した結果、粒界相としてPr,Dy,Fe,Ga,
Alからなる相が存在しており、この相をEPMAによ
り分析した結果、Pr:33.2原子%、Dy:1.8
原子%、Fe:59.0原子%、Ga:5.5原子%、
Al:0.5原子%であった。
More preferably, if x is between 0.04 and 0.10, iHc> 20 kOe, and an excellent magnet can be obtained at high temperature. Moreover, as a result of observing the magnet structure of x = 0.05, as a grain boundary phase, Pr, Dy, Fe, Ga,
A phase consisting of Al is present, and as a result of analyzing this phase by EPMA, Pr: 33.2 atomic% and Dy: 1.8
Atomic%, Fe: 59.0 atomic%, Ga: 5.5 atomic%,
Al: It was 0.5 atomic%.

【0040】(実施例7) Pr16Fe78.15.2Ga
0.5Al0.2なる組成の合金を高周波溶解炉にて溶解、鋳
造し5kgのインゴットを得た。得られたインゴットを
所定の大きさに切断し、ss41製カプセル中に封入
後、975℃において総加工度75%の熱間圧延を施し
た。徐冷後、カプセル中より磁石圧延材を取り出した。
この圧延材からサンプルを切り出し、磁気特性を測定し
た(as roll)。さらに圧延材に対して、Ar雰囲気中
において800〜1150℃の各温度で20hの熱処理を施
し、磁気特性を測定した。図8に得られたiHc、H
k、(BH)maxの値と熱処理温度との関係を示す。
Example 7 Pr 16 Fe 78.1 B 5.2 Ga
An alloy having a composition of 0.5 Al 0.2 was melted and cast in a high frequency melting furnace to obtain a 5 kg ingot. The obtained ingot was cut into a predetermined size, enclosed in a capsule made of ss41, and hot-rolled at 975 ° C. with a total working rate of 75%. After slow cooling, the rolled magnet material was taken out from the capsule.
Samples were cut from this rolled material and the magnetic properties were measured (as roll). Further, the rolled material was subjected to a heat treatment for 20 hours at each temperature of 800 to 1150 ° C. in Ar atmosphere, and the magnetic characteristics were measured. IHc and H obtained in FIG.
The relationship between the values of k and (BH) max and the heat treatment temperature is shown.

【0041】図から明らかなように、圧延後900〜1050
℃の領域で熱処理を施すことにより、高い磁気特性を得
ることが出来る。
As can be seen from the figure, after rolling, it is 900 to 1050.
High magnetic properties can be obtained by performing heat treatment in the range of ° C.

【0042】(実施例8) 実施例8と同一の磁石圧延
材について1025℃で20hの熱処理を行った後、さらに
350〜800℃の各温度で2hの熱処理を施した。この際に得
られた保磁力(iHc)と2段目の熱処理温度の関係を
図9に示す。
Example 8 The same rolled magnet material as in Example 8 was heat-treated at 1025 ° C. for 20 hours and then further processed.
Heat treatment was performed for 2 hours at each temperature of 350 to 800 ° C. FIG. 9 shows the relationship between the coercive force (iHc) obtained at this time and the second stage heat treatment temperature.

【0043】図から明らかなように高温の熱処理に加え
て450〜600℃の温度範囲で熱処理を加えた場合には、さ
らに保磁力向上の効果が顕緒となる。
As is clear from the figure, when the heat treatment is performed in the temperature range of 450 to 600 ° C. in addition to the high temperature heat treatment, the effect of improving the coercive force becomes more apparent.

【0044】[0044]

【発明の効果】 本発明は、以上説明したように構成さ
れているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0045】焼結磁石よりも機械的強度に優れ、かつ大
型の磁石を作製できるなどの利点を有する鋳造・熱間圧
延法によるR−Fe−B系磁石に於て、各合金元素の組
成を規定し、また粒界相としてR−Fe−Ga−Al相
を存在させることにより、従来よりも高い磁気特性を得
ることが出来る。
The composition of each alloying element in the R-Fe-B based magnet by the casting / hot rolling method, which has advantages such as mechanical strength superior to the sintered magnet and can produce a large magnet. By prescribing and by allowing the R-Fe-Ga-Al phase to exist as the grain boundary phase, it is possible to obtain higher magnetic characteristics than before.

【0046】またDyの置換量を適正な範囲とすること
により、さらなる高保磁力化を実現し、高温での使用に
適する磁石を提供することが出来る。
Further, by setting the substitution amount of Dy within an appropriate range, it is possible to realize a higher coercive force and provide a magnet suitable for use at high temperatures.

【0047】また磁石の製造方法としては、圧延後の熱
処理を最適化することによって安定した磁気特性を確保
することができる。
As a method of manufacturing the magnet, it is possible to secure stable magnetic characteristics by optimizing the heat treatment after rolling.

【図面の簡単な説明】[Brief description of drawings]

【図1】 残Fe量と保磁力(iHc)の関係図。FIG. 1 is a graph showing the relationship between the amount of residual Fe and the coercive force (iHc).

【図2】 Pr16.0Fe83.3-aaGa0.5Al0.2にお
けるB量(a)と磁気特性の関係図。
[Figure 2] B amount of Pr 16.0 Fe 83.3-a B a Ga 0.5 Al 0.2 (a) and relationship diagram of the magnetic properties.

【図3】 PrbFe94.1-b5.2Ga0.5Al0.2におけ
るPr量(b)と磁気特性の関係図。
FIG. 3 is a graph showing the relationship between the Pr amount (b) and the magnetic characteristics in Pr b Fe 94.1-b B 5.2 Ga 0.5 Al 0.2 .

【図4】 PrbFe94.1-b5.2Ga0.5Al0.2におけ
るPr量(b)と製品不良率との関係図。
FIG. 4 is a relational diagram between the Pr content (b) and the product defect rate in Pr b Fe 94.1-b B 5.2 Ga 0.5 Al 0.2 .

【図5】 Pr16Fe78.6-c5.2GacAl0.2におけ
るGa量(c)と磁気特性の関係図。
FIG. 5 is a graph showing the relationship between the amount of Ga (c) and magnetic properties in Pr 16 Fe 78.6-c B 5.2 Ga c Al 0.2 .

【図6】 (Pr0.8Nd0.216Fe83.3-ddGa0.5
Al0.2におけるB量(d)と磁気特性の関係図。
FIG. 6 (Pr 0.8 Nd 0.2 ) 16 Fe 83.3-d B d Ga 0.5
FIG. 4 is a diagram showing the relationship between the amount of B (d) and the magnetic properties of Al 0.2 .

【図7】 (Pr1-xDyx16Fe78.15.2Ga0.5
0.2におけるDy置換量(x)と磁気特性の関係図。
FIG. 7: (Pr 1-x Dy x ) 16 Fe 78.1 B 5.2 Ga 0.5 A
FIG. 4 is a diagram showing the relationship between the Dy substitution amount (x) and the magnetic characteristics at l 0.2 .

【図8】 Pr16Fe78.15.2Ga0.5Al0.2におけ
る熱処理温度と磁気特性の関係図。
FIG. 8 is a diagram showing the relationship between the heat treatment temperature and the magnetic properties of Pr 16 Fe 78.1 B 5.2 Ga 0.5 Al 0.2 .

【図9】 Pr16Fe78.15.2Ga0.5Al0.2におけ
る二段目熱処理温度と磁気特性の関係図。
FIG. 9 is a graph showing the relationship between the second stage heat treatment temperature and the magnetic properties of Pr 16 Fe 78.1 B 5.2 Ga 0.5 Al 0.2 .

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Pr、Fe、B、Ga、Al及び製造上
不可避な不純物からなり、Prが15.0〜17.5原
子%、Gaが0.1〜0.8原子%、B量が4.8原子
%以上で、かつ残Fe量(Feの原子%値からBの原子
%値を14倍した値を引いた数値)が正の値であって、
磁石組織中にPr−Fe−Ga−Al相を有することを
特徴とする希土類磁石。
1. Pr, Fe, B, Ga, Al and impurities inevitable in production, Pr is 15.0 to 17.5 atomic%, Ga is 0.1 to 0.8 atomic%, and B content is 4.8 atom% or more, and the residual Fe amount (a value obtained by subtracting a value obtained by multiplying the atom% value of B by 14% from the atom% value of Fe) is a positive value,
A rare earth magnet having a Pr-Fe-Ga-Al phase in a magnet structure.
【請求項2】 請求項1記載のPrの一部をNdで置換
し、磁石組織中に(Pr,Nd)−Fe−Ga−Al相
を有することを特徴とする希土類磁石。
2. A rare earth magnet having a (Pr, Nd) -Fe-Ga-Al phase in the magnet structure, wherein a part of Pr in claim 1 is replaced with Nd.
【請求項3】 請求項1記載のPr量の10%以下をD
yにより置換し、磁石組織中に(Pr,Dy)−Fe−
Ga−Al相を有することを特徴とする希土類磁石。
3. 10% or less of the Pr amount according to claim 1 is D
by substituting y, and (Pr, Dy) -Fe- in the magnet structure.
A rare earth magnet having a Ga-Al phase.
【請求項4】 Pr量の4〜10%をDyで置換したこ
とを特徴とする請求項3記載の希土類磁石。
4. The rare earth magnet according to claim 3, wherein 4 to 10% of the Pr amount is replaced with Dy.
【請求項5】 合金を溶解・鋳造してインゴットを作製
し、該インゴットを金属カプセル中に封入してから800
〜1100℃の温度で熱間圧延を施し、その後900〜1050℃
の温度で熱処理することを特徴とする請求項1〜4記載
の希土類磁石の製造方法。
5. The alloy is melted and cast to prepare an ingot, and the ingot is enclosed in a metal capsule and then 800
Hot rolled at a temperature of ~ 1100 ℃, then 900 ~ 1050 ℃
The method for producing a rare earth magnet according to claim 1, wherein the heat treatment is performed at the temperature of.
【請求項6】 合金を溶解・鋳造してインゴットを作製
し、該インゴットを金属カプセル中に封入してから800
〜1100℃の温度で熱間圧延を施し、その後900〜1050℃
の温度で熱処理を行い、さらに450から600℃の温度範囲
で熱処理する事を特徴とする請求項1〜4記載の希土類
磁石の製造方法。
6. An alloy is melted and cast to prepare an ingot, and the ingot is enclosed in a metal capsule, and then 800
Hot rolled at a temperature of ~ 1100 ℃, then 900 ~ 1050 ℃
The method for producing a rare earth magnet according to any one of claims 1 to 4, wherein the heat treatment is performed at a temperature of 5 to 60 ° C, and the heat treatment is further performed at a temperature range of 450 to 600 ° C.
JP7063065A 1995-03-22 1995-03-22 Rare earth magnet and its manufacture Pending JPH08264308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7063065A JPH08264308A (en) 1995-03-22 1995-03-22 Rare earth magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7063065A JPH08264308A (en) 1995-03-22 1995-03-22 Rare earth magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH08264308A true JPH08264308A (en) 1996-10-11

Family

ID=13218578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7063065A Pending JPH08264308A (en) 1995-03-22 1995-03-22 Rare earth magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH08264308A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102693812A (en) * 2011-03-18 2012-09-26 Tdk株式会社 R-t-b rare earth sintered magnet
WO2014069181A1 (en) * 2012-11-02 2014-05-08 トヨタ自動車株式会社 Rare earth magnet and method for producing same
CN104051103A (en) * 2013-03-13 2014-09-17 户田工业株式会社 R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet
CN104942244A (en) * 2015-05-25 2015-09-30 内蒙古工业大学 Rapid preparing method for Fe-Ga system giant magnetostrictive metal fiber by using rotary dipping method
CN110957091A (en) * 2019-11-21 2020-04-03 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102693812A (en) * 2011-03-18 2012-09-26 Tdk株式会社 R-t-b rare earth sintered magnet
JP2012199270A (en) * 2011-03-18 2012-10-18 Tdk Corp R-t-b rare earth sintered magnet
WO2014069181A1 (en) * 2012-11-02 2014-05-08 トヨタ自動車株式会社 Rare earth magnet and method for producing same
JP2014093391A (en) * 2012-11-02 2014-05-19 Toyota Motor Corp Rare earth magnet, and manufacturing method thereof
CN104051103A (en) * 2013-03-13 2014-09-17 户田工业株式会社 R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet
JP2014177660A (en) * 2013-03-13 2014-09-25 Toda Kogyo Corp R-t-b type rare earth magnet powder, method of producing r-t-b type rare earth magnet powder and bond magnet
CN104942244A (en) * 2015-05-25 2015-09-30 内蒙古工业大学 Rapid preparing method for Fe-Ga system giant magnetostrictive metal fiber by using rotary dipping method
CN110957091A (en) * 2019-11-21 2020-04-03 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application
EP4016559A4 (en) * 2019-11-21 2022-10-12 Fujian Changting Golden Dragon Rare-Earth Co., Ltd. Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
CN106710766B (en) R- (Fe, Co) -B sintered magnet and method for producing same
JP6489052B2 (en) R-Fe-B sintered magnet and method for producing the same
EP3075874B1 (en) Low-b rare earth magnet
JP6614084B2 (en) Method for producing R-Fe-B sintered magnet
JP6037128B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
JPWO2005123974A1 (en) R-Fe-B rare earth permanent magnet material
JP4605013B2 (en) R-T-B system sintered magnet and rare earth alloy
JPH0521218A (en) Production of rare-earth permanent magnet
US11600413B2 (en) R—Fe—B sintered magnet and production method therefor
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
US20070240790A1 (en) Rare-earth sintered magnet and method for producing the same
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH08264308A (en) Rare earth magnet and its manufacture
JP2022037085A (en) Rare earth-iron-boron based sintered magnet
JPH06302417A (en) Permanent magnet and its manufacture
JPH08273914A (en) Rare-earth magnet and its manufacture
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JPH06302419A (en) Rare earth permanent magnet and its manufacture
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JP4303937B2 (en) Permanent magnet alloy
US20220219228A1 (en) PREPARATION METHOD OF IMPROVED SINTERED NEODYMIUM-IRON-BORON (Nd-Fe-B) CASTING STRIP
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPH05315120A (en) Rare earth sintered magnet and its manufacture
JPH06251917A (en) Rare earth element permanent magnet
JPS61139638A (en) Manufacture of sintered permanent magnet material