JPH0826376B2 - Blast furnace core measuring method and device - Google Patents

Blast furnace core measuring method and device

Info

Publication number
JPH0826376B2
JPH0826376B2 JP2040764A JP4076490A JPH0826376B2 JP H0826376 B2 JPH0826376 B2 JP H0826376B2 JP 2040764 A JP2040764 A JP 2040764A JP 4076490 A JP4076490 A JP 4076490A JP H0826376 B2 JPH0826376 B2 JP H0826376B2
Authority
JP
Japan
Prior art keywords
furnace
shock wave
core
blast furnace
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2040764A
Other languages
Japanese (ja)
Other versions
JPH03243708A (en
Inventor
衛 井上
秀美 渡辺
信彦 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2040764A priority Critical patent/JPH0826376B2/en
Publication of JPH03243708A publication Critical patent/JPH03243708A/en
Publication of JPH0826376B2 publication Critical patent/JPH0826376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高炉の炉床部に形成されている、主として
コークス粒子の堆積物からなる炉芯部の温度、通気性等
の物理特性を間接的に測定する方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides physical properties such as temperature and air permeability of a furnace core formed mainly in a coke particle deposit formed in a hearth of a blast furnace. The present invention relates to an indirect measurement method and device.

[従来の技術] 高炉操業をいかにうまく制御して安定させるかは製鉄
業における重要課題であり、高炉炉体には種々の検出端
が配備されている。しかしながら、高炉の炉床部の湯溜
まりから上方、融着帯より下方に、主としてコークス粒
子が堆積して形成する炉芯部の検出端はその重要さにも
かかわらず、シャフト部ゾンデほど広く利用されていな
いのが現状である。
[Prior Art] How to control and stabilize the blast furnace operation is an important issue in the steelmaking industry, and various detecting ends are provided in the blast furnace body. However, despite the importance of the detection end of the furnace core, which is mainly formed by the deposition of coke particles above the pool and below the cohesive zone in the hearth of the blast furnace, it is as widely used as a shaft sonde. The current situation is that it has not been done.

例えば、特開昭61-257405号、特開昭63-210208号で提
案されているように、高炉羽口部から、画像処理と連結
したグラスファイバーを内蔵した、冷却機構付のプロー
ブを炉芯部に直接挿入し測温する方法、あるいは、炉芯
へのゾンデ挿入抵抗を検知する方法等の直接測定法があ
る。また、特開昭55-104412号で提案されているよう
に、高炉の外周に放射線の走査器と検出群を配置し炉内
状況を連続的に監視する方法、間接測定法が知られてい
る。
For example, as proposed in JP-A-61-257405 and JP-A-63-210208, a probe with a cooling mechanism, which incorporates a glass fiber connected to image processing from the tuyere of the blast furnace, is installed in the furnace core. There is a direct measurement method such as a method of directly inserting the temperature into the furnace and measuring the temperature, or a method of detecting resistance to inserting the sonde into the furnace core. Further, as proposed in Japanese Patent Laid-Open No. 55-104412, a method of arranging a radiation scanner and a detection group on the outer periphery of the blast furnace to continuously monitor the inside of the furnace and an indirect measurement method are known. .

[発明が解決しようとする課題] 従来の直接測定法に係わる炉芯ゾンデは羽口部より、
炉内高温部であるレースウエイを通過させて炉芯部へゾ
ンデを直接挿入する方法であるため、装置、装備特に、
シール機構が大ががりとなり、また、測定作業自体にも
危険が伴うことから、炉円周方向に数十個配置されてい
る任意の羽口から簡易に測定することは不可能であっ
た。
[Problems to be Solved by the Invention] The core lead sonde related to the conventional direct measurement method is
Since it is a method of inserting the sonde directly into the furnace core by passing through the raceway which is the high temperature part in the furnace, equipment, equipment, especially,
Since the sealing mechanism becomes large and the measurement work itself is dangerous, it is impossible to measure easily from arbitrary tuyeres arranged in the circumferential direction of the furnace.

また、間接測定法に係わる放射線走査法は鋳床まわり
に対する放射線の遮蔽に装備を要する。
Further, the radiation scanning method related to the indirect measurement method requires equipment to shield the radiation around the casting floor.

高炉炉況は刻々と変化するものであり、リアルタイム
に炉芯部を検出すると同時に円周方向のバランスも検出
することが望まれている。
The state of the blast furnace varies from moment to moment, and it is desired to detect the furnace core in real time and at the same time to detect the circumferential balance.

本発明はかかる問題点に鑑み、上記炉芯部へゾンデ等
の検出端を直接挿入することなく、かつ、高炉周囲に外
乱を与えることなく、炉芯の全体あるいは局部の物理特
性を間接的に測定する方法、装置を提供するものであ
る。
In view of such problems, the present invention does not directly insert a detection end such as a sonde into the core, and without giving disturbance to the blast furnace periphery, indirectly or indirectly with respect to the physical characteristics of the entire core. The present invention provides a measuring method and device.

[課題を解決するための手段] 本発明における第1の発明は、 (1)高炉の炉床部で、主としてコークス粒子が堆積し
て形成される炉芯部の温度、通気性等の物理特性を計測
するに際して、炉床部に配置されている羽口部に挿入し
た導波管を介して炉外で発生させた衝撃波を炉壁部から
炉内に導くと共に該衝撃波発射時刻を測定し、炉芯部を
伝播した衝撃波を炉床炉壁部に設けた複数の受信センサ
ーで受信し、これらの衝撃波の減衰率、伝播速度から炉
芯部の物理特性を演算、推定することを特徴とする高炉
炉芯部の計測方法であり、第2の発明は、 (2)衝撃波の送受信操作を、炉周方向の複数の羽口部
で巡回して行うことを特徴とする前記(1)項記載の高
炉炉芯部の計測方法、第3の発明は、 (3)瞬間的な爆発燃焼で発生させた衝撃波を用いるこ
とを特徴とする前記(1)項又は(2)項記載の高炉炉
芯部の計測方法、第4の発明は、 (4)炉外に設けた衝撃波発生装置、該発生装置に一端
を接続し、他端を炉内に指向させ、発生した衝撃波を羽
口部より炉内に供給する導波管、炉床炉壁部に設けた複
数の受信センサー、該各受信センサーからの受信波形及
び各衝撃波発射時刻を記録する記録計及び受信波形から
炉芯部の物理特性を演算・表示する演算表示器で構成し
たことを特徴とする高炉炉芯部の計測装置、第5の発明
は、 (5)一つの衝撃波発生装置に長さの異なる複数本の導
波管を接続したことを特徴とする前記(4)記載の高炉
炉芯部の計測装置である。
[Means for Solving the Problems] The first aspect of the present invention is: (1) Physical characteristics such as temperature and air permeability of a furnace core formed mainly by depositing coke particles in a hearth of a blast furnace. In measuring, the shock wave generated outside the furnace through the waveguide inserted into the tuyere arranged in the hearth is guided from the furnace wall to the inside of the furnace, and the shock wave emission time is measured, The characteristic is that the shock wave propagating through the furnace core is received by a plurality of receiving sensors provided on the hearth hearth wall, and the physical characteristics of the furnace core are calculated and estimated from the attenuation rate and propagation velocity of these shock waves. A method for measuring a blast furnace core part, the second invention is (2) wherein the shock wave transmission / reception operation is performed by circulating a plurality of tuyere parts in the furnace circumferential direction. The measurement method of the blast furnace core part of the third invention is (3) the impact generated by instantaneous explosive combustion. A shock wave is used to measure the blast furnace core part according to the above (1) or (2), and a fourth invention is (4) a shock wave generator provided outside the furnace, and the generator. One end is connected to, the other end is directed into the furnace, a waveguide for supplying the generated shock wave into the furnace from the tuyere, a plurality of receiving sensors provided on the hearth furnace wall, from each receiving sensor The measuring device for the blast furnace core, which comprises a recorder for recording the reception waveform of each of the shock waves and the time at which each shock wave is emitted, and a calculation display for calculating and displaying the physical characteristics of the core from the reception waveform, The present invention is (5) the apparatus for measuring a blast furnace core as set forth in (4), characterized in that a plurality of waveguides having different lengths are connected to one shock wave generator.

[作用及び実施例) 以下、本発明の実施例装置を示す図面を参照しながら
具体的に説明する。
[Operation and Example] Hereinafter, a specific description will be given with reference to the drawings showing an example apparatus of the present invention.

操業中の高炉においては種々の振動が発生し、伝播し
ており、しかも10mを超す炉床径の内部を伝播させるに
は通常の超音波では減衰が大きすぎてうまく測定できな
い。そこで本発明は実験の結果、衝撃波に着目した。
Various vibrations are generated and propagated in the blast furnace during operation, and the attenuation is too large with ordinary ultrasonic waves to propagate inside the hearth diameter of more than 10 m, and it cannot be measured well. Therefore, the present invention focused on shock waves as a result of experiments.

本発明でいう衝撃波とは一般に言われている、縮む媒
質中を伝播する強い圧縮波であって、具体的には例え
ば、ガス状燃料等の瞬間的な燃焼、あるいは火薬等の瞬
間的な燃焼を利用して発生させる衝撃波が採用できる。
The shock wave in the present invention is generally called a strong compression wave propagating in a shrinking medium, and specifically, for example, instantaneous combustion of gaseous fuel or instantaneous combustion of explosive powder or the like. The shock wave generated by using can be adopted.

第1図及び第2図に示すように、上記衝撃波は高炉3
の炉外に設けた衝撃波発生装置1で発生させる。この衝
撃波発生装置1は特定間隔で断続的に衝撃波を発生する
ことができる。この衝撃波は該発生装置1に連結した導
波管2を通して高炉3の炉床部に、主としてコークス粒
子の堆積物で形成されている炉芯部に指向して炉壁4か
ら炉内に供給する。上記衝撃波発生装置1と導波管2の
接続態様としては、第1図に示すように一つの導波管2
に一つの上記衝撃波発生装置1を接続する方式、あるい
は第2図に示すように、間欠的に衝撃波を発生するパル
スジェネレータ12に複数、例えば、4本の導波管2を接
続する方式がある。後者の複数の導波管2を接続する方
式であると、各導波管2の長さに差異を設けることがで
き、炉内への衝撃波の供給タイミングをづらすことがで
きる。上記導波管2の先端は上記したように炉芯部に指
向させて炉壁4に設ける。この導波管2の特徴的な設置
態様としては、羽口5に設置されている例えば、微粉炭
吹き込み用バーナ6の一部を流用することができる。こ
の方式によって発生させた衝撃波を炉内に供給させる場
合は、微粉炭吹き込みを中断し、微粉炭流路の遮断弁7
を閉じておくことにより衝撃波が羽口5前方へ伝播する
のを促進する。尚、微粉炭吹き込み用バーナ等流用手段
を設置していない羽口5の場合は、専用の衝撃波導波管
2を微粉炭吹き込み用バーナと同様の設置態様で配置す
るものである。
As shown in FIGS. 1 and 2, the shock wave is generated in the blast furnace 3
It is generated by the shock wave generator 1 provided outside the furnace. The shock wave generator 1 can generate shock waves intermittently at specific intervals. This shock wave is directed to the hearth of the blast furnace 3 through the waveguide 2 connected to the generator 1 and to the core of the blast furnace 3, which is mainly formed of a deposit of coke particles, and is supplied from the furnace wall 4 into the furnace. . As a connection mode between the shock wave generator 1 and the waveguide 2, as shown in FIG.
There is a method of connecting one of the above shock wave generators 1 or a method of connecting a plurality of, for example, four waveguides 2 to a pulse generator 12 for intermittently generating shock waves as shown in FIG. . With the latter method of connecting a plurality of waveguides 2, it is possible to provide a difference in the length of each waveguide 2, and it is possible to delay the supply timing of the shock wave into the furnace. The tip of the waveguide 2 is provided on the furnace wall 4 so as to face the furnace core as described above. As a characteristic installation mode of the waveguide 2, for example, a part of the pulverized coal blowing burner 6 installed in the tuyere 5 can be diverted. When supplying the shock wave generated by this method into the furnace, the pulverized coal blowing is interrupted and the shutoff valve 7 in the pulverized coal flow path is stopped.
By closing, the shock wave is promoted to propagate to the front of the tuyere 5. In the case of the tuyere 5 in which no diverting means such as a burner for blowing pulverized coal is installed, the dedicated shock wave waveguide 2 is arranged in the same manner as the burner for blowing pulverized coal.

この導波管2設置個数は炉円周方向、等間隔に少なく
とも3個設あるいは炉内円周方向十字状位置4点a,b,c,
dにそれぞれ設置すればよい。導波管2の設置個数が増
加すると後述する測定精度が高まるものである。
The number of the waveguides 2 installed is at least three at equal intervals in the circumferential direction of the furnace, or four cross-shaped positions a, b, c, in the circumferential direction of the furnace.
It should be installed in each d. When the number of the installed waveguides 2 increases, the measurement accuracy described later increases.

上記導波管2の設置レベルとほぼ同レベルの炉壁4に
は、炉内円周方向に複数の受信センサー8を配置する。
この受信センサー8は音波を検知する手段で構成されて
おり、例えば、感圧素子が使用できる。該受信センサー
8の設置位置としては種々の態様を適用することがで
き、例えば、炉床炉壁4の炉内側に設置する場合は、耐
熱対策を考慮して、炉周方向に等間隔に複数設置されて
いる羽口5の水冷ジャケット部の先端部に内蔵する方
式、あるいは、受信センサー8を内蔵した水冷ブローブ
(図示せず)を羽口5あるいは炉壁4に設置する方式が
採用できる。上記受信センサー8を炉床炉壁4の炉外側
に設置する場合は、羽口5の後端に配置してあるブロー
パイプ部あるいは最後端の覗き窓部に受信センサー8を
臨ませる方式が採用でき、この場合は羽口5とかブロー
パイプが受信用導波管として機能する。
A plurality of receiving sensors 8 are arranged in the furnace circumferential direction on the furnace wall 4 at a level substantially equal to the level at which the waveguide 2 is installed.
The reception sensor 8 is composed of means for detecting sound waves, and for example, a pressure sensitive element can be used. Various modes can be applied to the installation position of the reception sensor 8. For example, when the reception sensor 8 is installed inside the furnace of the hearth furnace wall 4, a plurality of them are arranged at equal intervals in the furnace circumferential direction in consideration of heat resistance. It is possible to adopt a system in which the tuyere 5 is installed at the tip of the water-cooling jacket portion, or a system in which a water-cooled probe (not shown) incorporating the receiving sensor 8 is installed in the tuyere 5 or the furnace wall 4. When the receiving sensor 8 is installed outside the hearth hearth wall 4, the method of exposing the receiving sensor 8 to the blow pipe part located at the rear end of the tuyere 5 or the peep window part at the rear end is adopted. In this case, the tuyere 5 or the blow pipe functions as a receiving waveguide.

上記受信センサー8の設置個数は前記導波管2に対向
する炉壁部に少なくとも8個設置してあれば測定精度と
して許容できる。
The number of receiving sensors 8 to be installed is acceptable as the measurement accuracy as long as at least eight receiving sensors 8 are installed on the furnace wall portion facing the waveguide 2.

上記衝撃波発生装置1で発生させた衝撃波を導波管2
を介して炉壁部から炉内に供給すると、衝撃波を発射し
た導波管2に直近の受信センサー8は発射と同時に衝撃
波を受信する、また炉周方向に配置されている他の受信
センサー8はその部位に対応した遅れ時間後の衝撃波を
受信する。第2図に示すように、各羽口5に設けた導波
管2及び受信センサー8を用い、衝撃波発射から発信ま
での間の最大遅れ時間後に他の部位にある導波管2を介
して衝撃波を炉内に供給し、受信するという操作を巡回
して行なうことにより、特定の導波管2から方向性を持
って発射された衝撃波の波及効果の比較的弱い帯域(衝
撃波発射導波管の両側部域)を次回の操作で補完するの
で、炉芯部の円周方向の複数点を測定することができ
る。
The shock wave generated by the shock wave generator 1 is applied to the waveguide 2
When it is supplied from the furnace wall to the inside of the furnace via, the receiving sensor 8 closest to the waveguide 2 that has emitted the shock wave receives the shock wave at the same time as the emission, and another receiving sensor 8 arranged in the furnace circumferential direction. Receives a shock wave after a delay time corresponding to that part. As shown in FIG. 2, the waveguide 2 and the receiving sensor 8 provided in each tuyere 5 are used, and after the maximum delay time from the shock wave emission to the transmission, the waveguide 2 in another part is used. By repeating the operation of supplying and receiving the shock wave into the furnace, the shock wave directionally emitted from the specific waveguide 2 has a relatively weak ripple effect (shock wave emission waveguide Since both side regions of the core are complemented by the next operation, it is possible to measure a plurality of points in the circumferential direction of the furnace core.

上記操作によって受信された衝撃波は増幅器9で増幅
され、受信波形として記録計10に記録され、後述する求
めんとする物理特性に合致した演算をする演算表示器11
に印加される。
The shock wave received by the above operation is amplified by the amplifier 9 and recorded as a received waveform in the recorder 10, and the operation display 11 performs an operation in accordance with the desired physical characteristics to be described later.
Is applied to

演算表示器11に印加された各受信波はCTスキャニング
手法でデータ処理する。具体的には総和法、コンボリュ
ーション法、最小二乗法等があるが、円周方向に得られ
るデータ数があまり多くないので最小二乗法が適してい
る。
Each received wave applied to the arithmetic display unit 11 is subjected to data processing by the CT scanning method. Specifically, there are a summation method, a convolution method, a least square method, and the like, but the least square method is suitable because the number of data obtained in the circumferential direction is not so large.

例えば、炉芯部の物理特性として、温度分布を求める
場合、一般に気体中の音速vは次式で与えられる。
For example, when obtaining the temperature distribution as the physical characteristics of the furnace core, the sound velocity v in the gas is generally given by the following equation.

ここで、κは比熱比、Rはガス定数、Tはガス温度であ
る。伝播距離が既知であれば伝播時間よりガス温度を知
ることができる。
Here, κ is the specific heat ratio, R is the gas constant, and T is the gas temperature. If the propagation distance is known, the gas temperature can be known from the propagation time.

CTにおける各投影データは、送信点Aから受信点Bを
区間nに分割し、その区間内では伝播速度が一定である
と仮定すると、送信から受信までの伝播時間τABは次式
で表される。
For each projection data in CT, the transmission point A to the reception point B is divided into sections n, and assuming that the propagation velocity is constant within that section, the propagation time τ AB from transmission to reception is expressed by the following equation. It

ここで、li:区間iの伝播距離、Ti:区間iの温度、v
(Ti):区間iの伝播速度ui:区間iの気体速度であ
る。
Here, l i : propagation distance of section i, T i : temperature of section i, v
(T i ): Propagation velocity u i of section i: Gas velocity of section i.

逆に、送信点Bから受信点Aへの伝播時間をZBA
し、羽口先端部は別として、高炉の炉芯部でのuiはvi
比べて十分小さいと仮定すれば(2)式より、 で表される。
On the contrary, assuming that the propagation time from the transmission point B to the reception point A is Z BA and the tuyere tip is aside, u i at the core of the blast furnace is sufficiently smaller than v i (2 From the expression) It is represented by.

(3)式より炉芯部の温度分布を表す方程式は次のよ
うな多次元連立方程式となる。
From equation (3), the equation expressing the temperature distribution of the furnace core is the following multidimensional simultaneous equation.

は伝播時間の計測値、 は区間iにおける距離、 は区間iのViの逆数で温度Tiと(1)式の関係がある。 Is the measured transit time, Is the distance in section i, Is the reciprocal of V i in section i and has a relationship with temperature T i according to equation (1).

n個以上のデータ数があれば(5)式に基づくと、最
小二乗法では が最小になる を求め、これより温度分布Tiを求めることができる。
If there are n or more data items, based on equation (5), the least squares method Is minimized And the temperature distribution T i can be obtained from this.

尚、前記したように高炉内には種々の雑音が発生して
おり、受信波形にノズルが混入するが、炉芯部の温度変
化の周期は長いので前記した測定操作を周期的に繰り返
し、得られた受信波形を加算することでS/N比を上げる
ことができる。パルスゼネレータ12によって、周期的か
つ順番に衝撃波を発生させるのが好ましい。
As mentioned above, various noises are generated in the blast furnace, and the nozzles are mixed in the received waveform.However, since the cycle of temperature change of the furnace core is long, the above measurement operation is repeated periodically to obtain The S / N ratio can be increased by adding the received waveforms. A shock wave is preferably generated by the pulse generator 12 periodically and in sequence.

物理特性として温度の演算事例に基づいて説明した
が、通気性に対応した衝撃波の減衰率等、他の物理特性
をもとめる場合は特性値に対応した理論式を展開するこ
とは言うまでもない。
Although the description has been made based on the case of calculating the temperature as the physical characteristic, it goes without saying that the theoretical formula corresponding to the characteristic value is developed when other physical characteristics such as the shock wave attenuation rate corresponding to the air permeability are obtained.

本発明方法を用いて実験用高炉の炉芯温度分布を測定
した結果を第3図に示す。ガス燃料を瞬間的に燃焼する
方式で発生した衝撃波は高炉円周方向の十字状位置4点
の羽口5から順次3秒間隔で炉内に供給すると共に15個
の羽口5に内蔵した受信センサー8で受信する操作を10
回繰り返した。得られた受信波形を演算処理して炉芯内
部温度を求めた結果である。
The results of measuring the core temperature distribution of the experimental blast furnace using the method of the present invention are shown in FIG. The shock waves generated by the method of instantaneously burning gas fuel are sequentially supplied into the furnace from the tuyere 5 at the four cross-shaped positions in the circumferential direction of the blast furnace at intervals of 3 seconds and received by 15 tuyere 5 10 operations to be received by the sensor 8
Repeated times. It is the result of calculating the received core waveform by calculating the received waveform.

[発明の効果] 本発明によると、高炉操業中に短時間に炉芯部の温度
分布等物理特性を間接的に測定できるので、測定した物
理特性情報を操業に直ちに反映させ、その結果を再度測
定することでモニタリングできるので、安定した操業維
持が可能となる。
[Advantage of the Invention] According to the present invention, since the physical characteristics such as the temperature distribution of the furnace core can be indirectly measured in a short time during the operation of the blast furnace, the measured physical characteristic information is immediately reflected in the operation, and the result is again measured. Since it can be monitored by measuring, stable operation can be maintained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係わる装置例の縦断面説明図、第2図
は本発明の概要を示す水平断面説明図、第3図は実験炉
における炉芯部の温度分布を示したモデル図である。 1……衝撃波発生装置、2……導波管 3……高炉、4……炉壁 5……羽口 6……微粉炭吹き込みバーナ 7……遮断弁、8……受信センサー 9……増幅器、10……記録器 11……演算表示器、12……パルスゼネレータ
FIG. 1 is a vertical cross-sectional explanatory view of an apparatus example according to the present invention, FIG. 2 is a horizontal cross-sectional explanatory view showing an outline of the present invention, and FIG. 3 is a model diagram showing a temperature distribution of a core portion in an experimental furnace. is there. 1 ... Shock wave generator, 2 ... Waveguide 3 ... Blast furnace, 4 ... furnace wall 5 ... tuyer 6 ... pulverized coal blowing burner 7 ... shut-off valve, 8 ... reception sensor 9 ... amplifier , 10 …… Recorder 11 …… Computation display, 12 …… Pulse generator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】高炉の炉床部で、主としてコークス粒子が
堆積して形成される炉芯部の温度、通気性等の物理特性
を計測するに際して、炉床部に配置されている羽口部に
挿入した導波管を介して炉外で発生させた衝撃波を炉壁
部から炉内に導くと共に該衝撃波発射時刻を測定し、炉
芯部を伝播した衝撃波を炉床炉壁部に設けた複数の受信
センサーで受信し、これらの衝撃波の減衰率、伝播速度
から炉芯部の上記物理特性を演算、推定することを特徴
とする高炉炉芯部の計測方法。
1. A tuyere located in the hearth of a blast furnace when the physical properties such as temperature and air permeability of a core formed mainly of coke particles are measured in the hearth of the blast furnace. The shock wave generated outside the furnace was guided from the furnace wall to the inside of the furnace through the waveguide inserted in the furnace, and the shock wave emission time was measured, and the shock wave propagating through the furnace core was provided on the hearth furnace wall. A method for measuring the core of a blast furnace, which comprises receiving and receiving a plurality of reception sensors and calculating and estimating the physical characteristics of the core from the attenuation rate and propagation velocity of these shock waves.
【請求項2】衝撃波の送受信操作を、炉周方向の複数の
羽口部で巡回して行うことを特徴とする請求項1記載の
高炉炉芯部の計測方法。
2. The method for measuring a blast furnace core as claimed in claim 1, wherein the shock wave transmission / reception operation is performed by circulating the tuyere in a plurality of directions in the furnace circumferential direction.
【請求項3】瞬間的な爆発燃焼で発生させた衝撃波を用
いることを特徴とする請求項1又は2記載の高炉炉芯部
の計測方法。
3. The method for measuring the core portion of a blast furnace according to claim 1, wherein a shock wave generated by momentary explosive combustion is used.
【請求項4】炉外に設けた衝撃波発生装置、該発生装置
に一端を接続し、他端を炉内に指向させ、発生した衝撃
波を羽口部より炉内に供給する導波管、炉床炉壁部に設
けた複数の受信センサー、該各受信センサーからの受信
波形及び各衝撃波発射時刻を記録する記録計及び受信波
形から炉芯部の物理特性を演算・表示する演算表示器で
構成したことを特徴とする高炉炉芯部の計測装置。
4. A shock wave generator provided outside the furnace, a waveguide which connects one end to the generator and directs the other end into the furnace, and supplies the generated shock wave from the tuyere into the furnace, the furnace Consists of a plurality of reception sensors provided on the hearth wall, a recorder for recording the waveforms received from each of the reception sensors and the time at which each shock wave is emitted, and a calculation display for calculating and displaying the physical characteristics of the core from the reception waveforms A measuring device for the core of a blast furnace characterized by the above.
【請求項5】上記一つの衝撃波発生装置に長さの異なる
複数本の導波管を接続したことをとを特徴とする請求項
4記載の高炉炉芯部の計測装置。
5. The apparatus for measuring the core portion of a blast furnace according to claim 4, wherein a plurality of waveguides having different lengths are connected to said one shock wave generator.
JP2040764A 1990-02-21 1990-02-21 Blast furnace core measuring method and device Expired - Lifetime JPH0826376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040764A JPH0826376B2 (en) 1990-02-21 1990-02-21 Blast furnace core measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040764A JPH0826376B2 (en) 1990-02-21 1990-02-21 Blast furnace core measuring method and device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10352328A Division JP3129706B2 (en) 1998-12-11 1998-12-11 How to introduce shock waves into the blast furnace core

Publications (2)

Publication Number Publication Date
JPH03243708A JPH03243708A (en) 1991-10-30
JPH0826376B2 true JPH0826376B2 (en) 1996-03-13

Family

ID=12589692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040764A Expired - Lifetime JPH0826376B2 (en) 1990-02-21 1990-02-21 Blast furnace core measuring method and device

Country Status (1)

Country Link
JP (1) JPH0826376B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91413B1 (en) * 2008-02-01 2009-08-03 Wurth Paul Sa Charge distribution apparatus
CN114410859B (en) * 2021-12-29 2023-05-05 江苏省沙钢钢铁研究院有限公司 Diagnosis and treatment method for stacking furnace cores of medium-sized blast furnaces

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE445389B (en) * 1982-06-28 1986-06-16 Geotronics Ab PROCEDURE AND DEVICE FOR RECEIVING METDATA FROM A CHEMICAL PROCESS
JPS5983708A (en) * 1982-11-04 1984-05-15 Nippon Steel Corp Method and apparatus for measuring material to be charged in shaft furnace

Also Published As

Publication number Publication date
JPH03243708A (en) 1991-10-30

Similar Documents

Publication Publication Date Title
US4848924A (en) Acoustic pyrometer
EP0259428B1 (en) Position measuring apparatus and method
EP0096912B1 (en) A method of monitoring the wear of a refractory lining of a metallurgical furnace wall
US4442706A (en) Probe and a system for detecting wear of refractory wall
US5571974A (en) Method and apparatus for the measurement of particle flow in a pipe
JPH03248006A (en) Signal processing method for electromagnetic ultrasonic-wave-wall-thickness gage
JPH0826376B2 (en) Blast furnace core measuring method and device
JP3129706B2 (en) How to introduce shock waves into the blast furnace core
JPH08145810A (en) Optical-fiber temperature-distribution measuring method
JPH0314121B2 (en)
CN102818251A (en) Power station boiler heat expansion monitoring system and measuring method based on acoustical principle
JP3379386B2 (en) Refractory wear evaluation method and apparatus, and refractory management method and apparatus
JP4363699B2 (en) Method for detecting carburized layer and measuring thickness thereof
JP2003329518A (en) Method and apparatus for measurement of temperature on inner surface of structure
JPH07268428A (en) Structure for side wall part of furnace bottom in blast furnace and method for measuring remaining thickness of furnace bottom brick
JP3252724B2 (en) Refractory thickness measurement method and apparatus
JPH10185654A (en) Method of detecting liquid level of furnace-melted matter
JPS5827002A (en) Method for measuring thickness of refractory material
JPH07174524A (en) Method and equipment for measuring variation of abrasion length of tuyere
JP4632474B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JPH07311186A (en) Internal measuring apparatus for blast furnace
JP2686298B2 (en) Gas temperature measuring device and gas analyzer using the same
CN106706156A (en) Ultrasonic-based boiler furnace smoke temperature measuring device
JPS62192511A (en) Method for estimating falling position of raw material charged into rotary chute type blast furnace
CN117091718A (en) Ring cooler temperature measurement method and device based on data fusion

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

EXPY Cancellation because of completion of term