JPS5983708A - Method and apparatus for measuring material to be charged in shaft furnace - Google Patents
Method and apparatus for measuring material to be charged in shaft furnaceInfo
- Publication number
- JPS5983708A JPS5983708A JP19386482A JP19386482A JPS5983708A JP S5983708 A JPS5983708 A JP S5983708A JP 19386482 A JP19386482 A JP 19386482A JP 19386482 A JP19386482 A JP 19386482A JP S5983708 A JPS5983708 A JP S5983708A
- Authority
- JP
- Japan
- Prior art keywords
- opening
- blast furnace
- charge
- charged
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/008—Composition or distribution of the charge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/284—Electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/284—Electromagnetic waves
- G01F23/2845—Electromagnetic waves for discrete levels
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Blast Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、高炉装入物の降下速度9層厚9粒度等を測定
する装入物の測定方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring a blast furnace charge, such as a descending rate, a layer thickness, and a grain size.
高炉操業技術の改善において、装入物の降下速度、装入
層厚2粒度などを知ることは重要である。In improving blast furnace operating technology, it is important to know the rate of descent of the charge, the thickness of the charge layer, the grain size, etc.
最近の高炉操業法においては、鉱石とコークスの層厚や
、炉半径方向の層厚分布や、粒度分布さらに鉱石とコー
クスの混合状態がガス流分布を支配していることが明ら
かになり、この知見に基すいた装入分布制御技術改善が
なされ、高炉操業効率すなわち燃料比低減技術の開発が
望まれるよになった。この技術改善には、装入物の直接
検知可能な検出端の開発が必要である。In recent blast furnace operation methods, it has become clear that the gas flow distribution is controlled by the layer thickness of ore and coke, the layer thickness distribution in the radial direction of the furnace, the particle size distribution, and the mixing state of ore and coke. The charging distribution control technology has been improved based on knowledge, and the development of technology to reduce blast furnace operating efficiency, that is, fuel ratio, has become desirable. This technology improvement requires the development of a sensing tip that can directly detect the charge.
本発明者は、このような目的に対して高炉内の装入物に
電波を放射し、透過波と反射波を組合せて装入物の状態
を測定することが可能であることを確認した。すなわち
本発明は高炉装入物の電波伝播特性に着目して、装入物
の降下速度2層厚。The present inventor has confirmed that it is possible to radiate radio waves to the charge in the blast furnace and measure the state of the charge by combining transmitted waves and reflected waves for such purposes. That is, the present invention focuses on the radio wave propagation characteristics of the blast furnace charge, and the rate of descent of the charge is determined by the two-layer thickness.
粒度等を測定する方法と装置に関するものであり、炉内
装入物の状態を検出することを目的とする。It relates to a method and device for measuring particle size, etc., and its purpose is to detect the condition of the contents in the furnace.
電波の波長を装入物の粒度と比較的近くなるように選び
、この電波を装入物の表面に放射し、透過した電波を表
面で直接反射した電波と別々に測定すると、透過電波の
電力はコークス層内では比較的減衰が少なく、鉱石内で
は減衰が大きいことが判った。従って透過電力を測定す
ることにより、コークスと鉱石の識別が可能である。ま
た装入物表面から反射する電波の強度は主として電波の
波長オーダの幾何学的形状、すなわち凹凸によって変化
する。従って電波の波長を装入物の平均粒度に近い値に
選び、電波を走査するか、あるいは装入物を一定速度で
動かせば粒度に対応した電波の強度変化が得られること
になる。そこで装入物の降下速度2層厚2粒度なでを測
定するには、上記の原理を利用し、電波の送受信機能を
備えたプローブを、炉内に高さを変えて2個設置し、該
プローブによって前記のような透過信号を検出し、該信
号によって降下速度を測定すれば、この値を用いて層厚
9粒度を求めることができる。If the wavelength of the radio wave is chosen to be relatively close to the particle size of the charge, and this radio wave is emitted onto the surface of the charge, and the transmitted radio waves are measured separately from the radio waves directly reflected from the surface, the power of the transmitted radio wave can be calculated. It was found that the attenuation is relatively small within the coke layer, and the attenuation is large within the ore. Therefore, by measuring the transmitted power, it is possible to distinguish between coke and ore. Further, the intensity of the radio waves reflected from the surface of the charge mainly changes depending on the geometrical shape on the order of the wavelength of the radio waves, that is, the unevenness. Therefore, by selecting the wavelength of the radio waves to be close to the average particle size of the charge and scanning the radio waves, or by moving the charge at a constant speed, changes in the intensity of the radio waves corresponding to the particle size can be obtained. Therefore, in order to measure the descending speed, layer thickness, and grain size of the charge, two probes equipped with radio wave transmitting and receiving functions are installed at different heights in the furnace using the above principle. If the above-mentioned transmission signal is detected by the probe and the falling speed is measured based on the signal, the layer thickness 9 grain size can be determined using this value.
本発明は、このような原理に基ずくもので、高炉装入物
の降下方向に接近して2つの電波開口を高炉内に取付け
、装入物の降下速度より早い連座で前記開口の一方から
、あるいは2つの開口から交互に、電波を炉内に送信し
、直接開口部から反射する電波および装入物を介し、で
受信した電波から高炉装入物の降下速度2層厚2粒度等
を測定することを特徴とする高炉装入物の測定方法およ
びその装置に関するものである。以下図面により本発明
について説明する。The present invention is based on such a principle, in which two radio wave openings are installed in the blast furnace close to each other in the descending direction of the blast furnace charge, and radio waves are transmitted from one of the openings in tandem at a rate faster than the descending speed of the charge. Alternatively, radio waves are transmitted into the furnace alternately from two openings, and the falling speed, layer thickness, particle size, etc. of the blast furnace charge can be determined from the radio waves directly reflected from the opening and the radio waves received through the charge. The present invention relates to a method for measuring blast furnace charge and an apparatus therefor. The present invention will be explained below with reference to the drawings.
第1図は、本発明に使用するプローブの縦断側面図、第
2図はその正面図である。1は高炉炉壁18に取付けた
プローブ、21+22は該プローブの先端に、上下二段
に設けたスリン1へ状の開口である。なおこのスリン1
〜状の開口21+”2は、第2図に示すように、その長
辺が装入物の降下方向に対して直角になるようにしてお
く。またこの開口の寸法は、例えば5X22.9mm、
開口31と32の間隔は100mmとする。31,3□
は各々開口21+22と接続した導波管、4++ 42
は該導波管31+32にパージ用ガスを吹込むための吹
込口、5は導波管2..2.の外周を冷却するための冷
却媒体供給D、6はその排出口、7は導波管31+32
の外端に接続した電波送受信回路である。FIG. 1 is a longitudinal sectional side view of a probe used in the present invention, and FIG. 2 is a front view thereof. Reference numeral 1 denotes a probe attached to the blast furnace wall 18, and 21+22 denotes an opening into the sulin 1 provided in two stages, upper and lower, at the tip of the probe. Furthermore, this Surin 1
As shown in FIG. 2, the ~-shaped opening 21+''2 is made such that its long side is perpendicular to the direction of descent of the charge.The dimensions of this opening are, for example, 5 x 22.9 mm,
The distance between the openings 31 and 32 is 100 mm. 31,3□
are waveguides connected to apertures 21 + 22, respectively, 4++ 42
5 is a blowing port for blowing purge gas into the waveguides 31+32, and 5 is a waveguide 2. .. 2. A cooling medium supply D for cooling the outer periphery of the
This is a radio wave transmitting/receiving circuit connected to the outer end of the
第3図はこの電波送受信回路を示すもので、方向性結合
器81182−ヘテロダイン検波器91゜92、IFア
ンプ1.01,102.スイッチ]Ij+112−出力
端121,122.切換信号発生器13、発振器14、
同軸スイッチ15、同軸導波管変換器1.6.,1.6
2、アイソレータ171+172等で構成されている。FIG. 3 shows this radio wave transmitting/receiving circuit, which includes a directional coupler 81182, a heterodyne detector 91°92, IF amplifiers 1.01, 102, . switch] Ij+112-output end 121, 122. switching signal generator 13, oscillator 14,
Coaxial switch 15, coaxial waveguide converter 1.6. ,1.6
2. It is composed of isolators 171+172, etc.
なお、それらの動作については、後述する。Note that these operations will be described later.
また、第4図は高炉の縦断面を示す説明図であり、19
は装入されたコークス層、20は鉱石(焼結)層、21
は融着帯、22は羽口、23は出銑口、24は炉底部で
ある。Moreover, FIG. 4 is an explanatory diagram showing a longitudinal section of the blast furnace, and 19
20 is the charged coke layer, 20 is the ore (sintered) layer, 21
2 is a cohesive zone, 22 is a tuyere, 23 is a taphole, and 24 is a furnace bottom.
本発明により、高炉装入物の降下速度、層厚、粒度等を
測定するには、第1図及至第3図に示すようなプローブ
1を高炉炉壁18に取付ける。そこで発振器14からX
バンドのマイクロ波を出力させると、その出力は、同軸
スイッチ15、同軸導波管変換器161,162を経て
開口21,22に導かれる。そこで例えば同軸スイッチ
15を、発振器14の出力(例えは+20dBm)が同
軸導波管変換器16に結合するように切換えると、発振
器】4の出力は前記経路を経て、開に121から炉内に
放射される。炉内に放射された電波は装入物表面で反射
し、開口21から導波管31内に入り、方向性結合器8
1、ヘテロダイン検波器91、IFアンプ101.スイ
ッチ111を経て、出力端121から検出される。また
装入物内に放射して透過した電波は開口22から導波管
32に至り、方向性結合器82、ヘテロダイン検波器9
2、IFアンプ102、スイッチ112を経て出力端1
22から検出される。According to the present invention, in order to measure the descending rate, layer thickness, particle size, etc. of the blast furnace charge, a probe 1 as shown in FIGS. 1 to 3 is attached to the blast furnace wall 18. Therefore, from the oscillator 14
When the band microwave is output, the output is guided to the openings 21 and 22 via the coaxial switch 15 and the coaxial waveguide converters 161 and 162. Therefore, for example, when the coaxial switch 15 is switched so that the output of the oscillator 14 (for example, +20 dBm) is coupled to the coaxial waveguide converter 16, the output of the oscillator 4 passes through the above path and is transmitted from the opening 121 into the furnace. radiated. The radio waves radiated into the furnace are reflected on the surface of the charge, enter the waveguide 31 through the opening 21, and enter the directional coupler 8.
1, heterodyne detector 91, IF amplifier 101. It is detected from the output end 121 via the switch 111. In addition, the radio waves radiated and transmitted into the charged material reach the waveguide 32 from the opening 22, and are passed through the directional coupler 82 and the heterodyne detector 9.
2. Output terminal 1 via IF amplifier 102 and switch 112
Detected from 22.
また、同軸スイッチ15を発振器14の出力が同軸導波
管変換器162に結合するように切換えると、開口22
から電波が炉内に放射され、上記の場合とは逆の動作が
行なわれ、直接反射波は出力端122から、透過波は1
21から検出される。Furthermore, when the coaxial switch 15 is switched so that the output of the oscillator 14 is coupled to the coaxial waveguide converter 162, the aperture 22
Radio waves are radiated into the furnace from
Detected from 21.
そこで第3図の回路構成において切換信号発生器13か
ら測定信号の変動周期より十分に速い周期で切換信号を
発生させ、同軸スイッチ15を切換えると電波は開口2
1および22から交互に放射され受信される。その結果
、出力端12.には切換周期に同期して直接反射波と透
過波が交互に現われ、また出力端I22にはこれと対を
なす形で透過波と直接反射波が交互に現われる。なお出
力信号はスイッチ11.、.112で直接反射波と透過
波に分離される。Therefore, in the circuit configuration shown in FIG. 3, when the switching signal generator 13 generates a switching signal at a cycle sufficiently faster than the variation cycle of the measurement signal and the coaxial switch 15 is switched, the radio waves are transmitted to the aperture 2.
1 and 22 alternately. As a result, the output end 12. A directly reflected wave and a transmitted wave appear alternately in synchronization with the switching period, and a transmitted wave and a directly reflected wave alternately appear at the output terminal I22 in the form of a pair. Note that the output signal is output from switch 11. ,.. At step 112, the signal is separated into a directly reflected wave and a transmitted wave.
開口21は開口22より上方(例えば前記のように10
0mm)にあるため、両者の測定信号は直接反射波につ
いては開口22の信号が間L121の信号より遅れて現
われるが、透過波には目立った差異はない。その理由は
直接反射波は開口直前の装入物情報を測定しているが、
透過波は開口21゜22間の装入物の平均的情報を測定
しているためである。従って開口2..22の直接反射
波の遅れ時間がわかれば、装入物の降下速度がわかるこ
とになる。The opening 21 is located above the opening 22 (for example, 10° as described above).
0 mm), in the two measurement signals, the signal of the aperture 22 appears later than the signal of the gap L121 in terms of directly reflected waves, but there is no noticeable difference in the transmitted waves. The reason is that the directly reflected wave measures charge information just before the opening, but
This is because the transmitted wave measures the average information of the charge between the openings 21 and 22. Therefore, opening 2. .. If the delay time of the directly reflected wave 22 is known, the descending speed of the charge can be found.
ここで本発明における直接反射波と透過波について説明
する。高炉内装入物は第4図に示すようにコークスと鉱
石が層構造をなしている。層の厚さは20〜5.0cm
で、コークスの平均粒径は50mm、鉱石の平均粒径は
焼結鉱で10〜15mmである。前述のように、測定に
使用する電波の波長は装入物の平均粒径に近い方が感度
の良い測定が出来るので、Xバンド(波長3cm)のマ
イクロ波を使用し、またプローブは高炉の炉腹部に取付
け、プローブ先端を炉壁より炉内に50cm突出させた
。Here, the directly reflected wave and transmitted wave in the present invention will be explained. The contents in the blast furnace have a layered structure of coke and ore, as shown in Figure 4. Layer thickness is 20-5.0cm
The average particle size of coke is 50 mm, and the average particle size of sintered ore is 10 to 15 mm. As mentioned above, the wavelength of the radio waves used for measurement is closer to the average grain size of the charge, since the measurement can be made with better sensitivity, so we used microwaves in the X band (3 cm wavelength) and the probe It was attached to the furnace belly, and the tip of the probe protruded 50 cm into the furnace from the furnace wall.
第5図は本発明方法によって測定した直接反射波と透過
波を示すものであるが、先ず透過波についてa察すると
、コークス層では一40dBm程度のゲインがあるのに
対し、鉱石層では一85dI]mに低下していることが
わかる。そこでこのゲインの差からコークス層と鉱石層
とを明瞭に識別することができる。また直接反射波は−
10〜−20dB+nのレベルを細かく変動している。Figure 5 shows the directly reflected wave and transmitted wave measured by the method of the present invention. First, when looking at the transmitted wave, we find that the coke layer has a gain of about -40 dBm, while the ore layer has a gain of -85 dBm. ]m. Therefore, the coke layer and the ore layer can be clearly distinguished from this gain difference. Also, the directly reflected wave is −
The level is finely varied from 10 to -20 dB+n.
而してこの変動は装入物の粒径に対応しており、極大ピ
ークは開口の前面に鉱石あるいはコークスが存在する場
合に現われ、また極小ピークは開口の前面に鉱石あるい
はコークスの粒子の間隙が位置する場合に現われ。This variation corresponds to the grain size of the charge; the maximum peak appears when ore or coke is present in front of the opening, and the minimum peak appears when there is a gap between ore or coke particles in front of the opening. Appears when the is located.
次に出力端1.211122の直接反射波から開r12
1+22での装入物の降下による遅れ時間の割算と、降
下速度、装入物層厚7粒径の計算をする回路のブロック
図を第7図に示す。出力端121からの直接反射波信号
r 1(1;)と出力端122からの直接反射波信号r
2(t)は波形は類似でr2(t:)がやや遅れている
。そこで次式で示゛roは装入物が開口21と22の間
を通過するに要する時間に比べ十分に大きくとる。一般
に15・〜20分程度になる。Next, open r12 from the direct reflected wave of output end 1.211122.
FIG. 7 shows a block diagram of a circuit that calculates the division of the delay time due to the descent of the charge by 1+22, the descent speed, and the grain size of the charge layer thickness. Direct reflected wave signal r 1 (1;) from output end 121 and direct reflected wave signal r from output end 122
2(t) has a similar waveform, and r2(t:) is slightly delayed. Therefore, in the following equation, ro is set to be sufficiently larger than the time required for the charge to pass between the openings 21 and 22. Generally, it will take about 15-20 minutes.
ρ(τ)を計算すると、第8図に示すようにピークが現
われ、この時間が開口21と22との間の通過時間Tと
なる。従って開口21+27の間隔をLとすると、降下
速度Vは
v=L/T −−−(2)とな
る。r 1(t)ないしr2(t)の極大値は開口2+
+22の直前に装入物粒塊があることを示すものである
。従ってr 1(t) (またはr2(し))の極大値
を検出し、パルス信号列tp(t、)に変換する。When ρ(τ) is calculated, a peak appears as shown in FIG. 8, and this time becomes the transit time T between the openings 21 and 22. Therefore, if the interval between the openings 21+27 is L, then the descending speed V is v=L/T---(2). The maximum value of r1(t) or r2(t) is the aperture 2+
This indicates that there is a charge agglomerate just before +22. Therefore, the maximum value of r1(t) (or r2(t)) is detected and converted into a pulse signal train tp(t,).
このパルス間隔へtpと降下速度Vの積が粒径dになる
。而してこの粒径dは
d−ΔtpXv (3)となる
。The product of this pulse interval tp and the falling speed V becomes the particle size d. Therefore, this particle size d becomes d-ΔtpXv (3).
また出力端121あるいは122の透過信号m(t)は
第5図に示すように鉱石層とコークス層でレベルに差が
あるために、パルス幅t。、 tcを容易に求めるこ
とができる。そこでこれを用いて鉱石層厚Qoとコーク
ス層厚(lcを次式から求めることができる。Furthermore, the transmitted signal m(t) at the output end 121 or 122 has a pulse width t because there is a difference in level between the ore layer and the coke layer as shown in FIG. , tc can be easily determined. Therefore, using this, the ore layer thickness Qo and the coke layer thickness (lc) can be determined from the following equations.
Qo=t+)Xv、 12c==tcXv −
−(4)このようにr 1 (tL r 2 (t、)
、m (t)から降下速度V。Qo=t+)Xv, 12c==tcXv −
−(4) Thus r 1 (tL r 2 (t,)
, m (t) to the rate of descent V.
粒径d9層厚Q。、Qcが計算できる。Particle size d9 Layer thickness Q. , Qc can be calculated.
第9図は本発明によって降下速度V9粒径d。FIG. 9 shows the drop rate V9 particle size d according to the present invention.
鉱石層厚Q。、コークス層厚Q’cを測定した実例を示
すものである。この図から明らかなように、正確な測定
を行なうことができる。なお測定は常時行なっているが
、V、 d、Qor QCは10分毎に剖算している。Ore layer thickness Q. , which shows an example in which the coke layer thickness Q'c was measured. As is clear from this figure, accurate measurements can be made. Although measurements are performed constantly, V, d, and Qor QC are calculated every 10 minutes.
また本発明はプローブを2本組合せて測定を行なうこと
もてきる。第10図は2木のプローブを高炉炉腹部に取
付けた場合を示すもので、それぞれのプローブは直接反
射波と透過波を測定する。Furthermore, in the present invention, measurements can be performed using a combination of two probes. Figure 10 shows the case where two wooden probes are attached to the belly of the blast furnace, and each probe measures directly reflected waves and transmitted waves.
このとき各プローブから得られる信号は第5図と同様な
波形になる。なお両プローブの間隔は30cmとした。At this time, the signals obtained from each probe have waveforms similar to those shown in FIG. Note that the distance between both probes was 30 cm.
降下速度は2本のプローブの透過信号の遅れから言1算
し、層厚2粒径は前と同様な方法で計算して求める。こ
の場合に使用するプローブを第11図に示す。この図に
おいて1はプローブ、21+22はその先端に設けた開
口、31+32は導波管、8は方向性結合器、9はヘテ
ロダイン検波器、101はIFアンプ、lO2は検波器
であり、これらによって透過波を検出する。J4は発振
器、25はクリスタル検波器で、これによす直接反射波
の検出を行なう。発振器14を動作させて開口21から
装入物に電波を放射する。而して直接反射波は方向性結
合器8で分岐した後クリスタル検波器25で検出される
。また透過波はヘテロダイン検波器9、IFアンプを介
して検出器102で検出される。降下速度、層厚、粒径
の計算回路は第7図と同じ構成となるが、降下速度は2
つの透過信号から計算することになる。The rate of descent is calculated from the delay in the transmission signals of the two probes, and the layer thickness and grain size are calculated in the same manner as before. The probe used in this case is shown in FIG. In this figure, 1 is a probe, 21+22 is an opening provided at its tip, 31+32 is a waveguide, 8 is a directional coupler, 9 is a heterodyne detector, 101 is an IF amplifier, and 1O2 is a detector. Detect waves. J4 is an oscillator, and 25 is a crystal detector, which detects directly reflected waves. The oscillator 14 is operated to radiate radio waves from the opening 21 to the charged material. The directly reflected wave is branched by the directional coupler 8 and then detected by the crystal detector 25. Further, the transmitted wave is detected by a detector 102 via a heterodyne detector 9 and an IF amplifier. The calculation circuit for the descending speed, layer thickness, and particle size has the same configuration as in Figure 7, but the descending speed is 2.
It is calculated from two transmitted signals.
以上説明したように本発明によれば、電波を利用して高
炉内装入物の諸量を精度よく検出することができ、従っ
て高炉操業の改善に寄与するところが大きい。As explained above, according to the present invention, various amounts of materials contained in a blast furnace can be detected with high precision using radio waves, and therefore greatly contribute to improvement of blast furnace operation.
第1図は本発明に使用するプローブの縦断側面図、第2
図は正面図、第3図は電波送受信回路の説明図、第4図
は高炉の炉内を示す説明図、第5図は測定信号の実例を
示す説明図、第6図はスイッチからの出力信号を示す説
明図、第7図は計算回路のブロック図、第8図は相互相
関々数を示す説明図、第9図は本発明による装入物の降
下速度。
粒径2層厚等の測定例を示すグラフ、第10図は本発明
の他の実例を示す説明図、第11図は該実例の場合に使
用するプローブの説明図である。
1ニブローブ 21,2.、:開口31 r
32 :導波管 41,4.、:ガス吹込ロ5:冷却
媒体供給口 6:排出ロ
ア:電波送受信回路 81,82 :方向性結合器9+
192:ヘテロダイン検波器
10+、+02 : TFアンプ
11、.112 :スイッチ
1.21,122.:出力端
13:切換信号発生器 14:発振器15:同軸スイ
ッチ
1−61,162:同軸導波管変換器
17ty172ニアイソレータ
18:炉壁 19:コークス層20:鉱石
層 21:融着帯22:羽口
23:出銑口24:炉底 25:クリスタ
ル検波器A:装入面 B:シャツ1〜部C
:炉腹部 D=朝顔部
E:炉床部
特許出願人 新日本製鐵株式會社
黒2゛図
力4ワ
経通時開t(min)
兎8v
騎r4を
力9司
講
ff11o’ff1
児11vFig. 1 is a longitudinal cross-sectional side view of the probe used in the present invention, Fig.
The figure is a front view, Figure 3 is an explanatory diagram of the radio wave transmitting and receiving circuit, Figure 4 is an explanatory diagram showing the inside of the blast furnace, Figure 5 is an explanatory diagram showing an example of the measurement signal, and Figure 6 is the output from the switch. FIG. 7 is an explanatory diagram showing signals, FIG. 7 is a block diagram of a calculation circuit, FIG. 8 is an explanatory diagram showing cross-correlation coefficients, and FIG. 9 is a descending speed of a charge according to the present invention. FIG. 10 is an explanatory diagram showing another example of the present invention, and FIG. 11 is an explanatory diagram of a probe used in this example. 1 nib lobe 21,2. , : opening 31 r
32: Waveguide 41, 4. , :Gas injection lower 5:Cooling medium supply port 6:Discharge lower: Radio wave transmission/reception circuit 81, 82:Directional coupler 9+
192: Heterodyne detector 10+, +02: TF amplifier 11, . 112: Switch 1.21, 122. : Output end 13: Switching signal generator 14: Oscillator 15: Coaxial switch 1-61, 162: Coaxial waveguide converter 17ty172 Near isolator 18: Furnace wall 19: Coke layer 20: Ore layer 21: Cohesive zone 22: tuyere
23: Taphole 24: Hearth bottom 25: Crystal detector A: Charging surface B: Shirt 1 to part C
: Hearth part D=Morning glory part E: Hearth part Patent applicant Nippon Steel Corporation Black 2゛Draw force 4W time opening t (min) Rabbit 8v Horseman r4 Force 9 lecture ff11o'ff1 Child 11v
Claims (4)
を高炉内に取付け、装入物の降下速度より十分早い速度
で前記2つの開口から交互に電波を炉内に送信し、直接
開口部から反射する電波、および一方の開]」から送信
し、他方の開口で受jHシた電波から高炉装入物の降下
速度、層厚、粒度等を測定することを特徴とする高炉装
入物の測定方法。(1) Install one radio wave opening in the blast furnace close to the descending direction of the blast furnace charge, and alternately transmit radio waves into the furnace from the two openings at a speed sufficiently faster than the descending speed of the charge, A blast furnace characterized by measuring the descending speed, layer thickness, particle size, etc. of blast furnace charge from radio waves directly reflected from an opening and radio waves transmitted from one opening and received at the other opening. How to measure the charge.
信する特許請求の範囲第(1)項記載の高炉装入物の測
定方法。(2) The method for measuring blast furnace charge according to claim (1), wherein radio waves are transmitted from one opening and received from the other opening.
徴とする特許請求の範囲第(1)項記載の高炉装入物の
測定方法。(3) The method for measuring blast furnace charge according to claim (1), characterized in that radio waves are transmitted and received alternately from two openings.
に発振器、方向性結合器、検波器等を含む電波送受信回
路を接続すると共に該プローブを高炉壁に取付けてなる
高炉装入物の測定装置。(4) A blast furnace charge with two openings provided at the tip of the probe, a radio wave transmission/reception circuit including an oscillator, directional coupler, detector, etc. connected to the openings, and the probe attached to the blast furnace wall. measuring device.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19386482A JPS5983708A (en) | 1982-11-04 | 1982-11-04 | Method and apparatus for measuring material to be charged in shaft furnace |
DE8383304312T DE3363514D1 (en) | 1982-08-03 | 1983-07-26 | Method and apparatus for supervising charges in blast furnace |
EP83304312A EP0101219B1 (en) | 1982-08-03 | 1983-07-26 | Method and apparatus for supervising charges in blast furnace |
CA000433587A CA1200903A (en) | 1982-08-03 | 1983-07-29 | Method and apparatus for supervising charges in blast furnace |
US06/519,245 US4641083A (en) | 1982-08-03 | 1983-08-01 | Method and apparatus for supervising charges in blast furnace using electromagnetic waves |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19386482A JPS5983708A (en) | 1982-11-04 | 1982-11-04 | Method and apparatus for measuring material to be charged in shaft furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5983708A true JPS5983708A (en) | 1984-05-15 |
JPS6136563B2 JPS6136563B2 (en) | 1986-08-19 |
Family
ID=16315016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19386482A Granted JPS5983708A (en) | 1982-08-03 | 1982-11-04 | Method and apparatus for measuring material to be charged in shaft furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5983708A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03243708A (en) * | 1990-02-21 | 1991-10-30 | Nippon Steel Corp | Method and instrument for measuring furnace core part in blast furnace |
WO1995011430A1 (en) * | 1993-10-19 | 1995-04-27 | Wire Automatic Device Co., Ltd. | Level meter |
JP2011021915A (en) * | 2009-07-13 | 2011-02-03 | Nippon Steel Corp | Grain size measurement system, method, and program for coal |
JP2011191073A (en) * | 2010-03-11 | 2011-09-29 | Jfe Steel Corp | Device and method for measuring surface state of granular material deposit |
-
1982
- 1982-11-04 JP JP19386482A patent/JPS5983708A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03243708A (en) * | 1990-02-21 | 1991-10-30 | Nippon Steel Corp | Method and instrument for measuring furnace core part in blast furnace |
WO1995011430A1 (en) * | 1993-10-19 | 1995-04-27 | Wire Automatic Device Co., Ltd. | Level meter |
JP2011021915A (en) * | 2009-07-13 | 2011-02-03 | Nippon Steel Corp | Grain size measurement system, method, and program for coal |
JP2011191073A (en) * | 2010-03-11 | 2011-09-29 | Jfe Steel Corp | Device and method for measuring surface state of granular material deposit |
Also Published As
Publication number | Publication date |
---|---|
JPS6136563B2 (en) | 1986-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4210023A (en) | Method and apparatus for measuring slag foaming using microwave lever meter | |
AU657091B2 (en) | Determination of carbon in fly ash | |
US5177444A (en) | Determination of carbon in fly ash from microwave attenuation and phase shift | |
JP5412947B2 (en) | Apparatus and method for measuring profile of blast furnace interior | |
EP0451987B1 (en) | In-furnace slag level measuring method and apparatus therefor | |
JPH0298685A (en) | Method and device for measuring distance | |
JPS5983708A (en) | Method and apparatus for measuring material to be charged in shaft furnace | |
JP2570886B2 (en) | Furnace level meter | |
US4641083A (en) | Method and apparatus for supervising charges in blast furnace using electromagnetic waves | |
JPS6013009A (en) | Method and device for measuring blast furnace charge | |
JPH0138842B2 (en) | ||
JP2002115008A (en) | Method for measuring profile of surface of charged material in blast furnace and instrument for measuring profile | |
JPH0826387B2 (en) | Method and apparatus for measuring slag level in converter | |
JPS5919814A (en) | Microwave flow meter | |
JPS6055252A (en) | Detection of boundary and grain size of material charged in blast furnace | |
JPH0112216Y2 (en) | ||
JPS6357707A (en) | Measuring instrument for throat of blast furnace | |
KR880000638B1 (en) | Method & apparatus for supervising charges blast furance using electromagnetic waves | |
US7066008B2 (en) | Method for measuring concentration of solid or liquid particulate matter in a gaseous carrier medium | |
JPS6138250B2 (en) | ||
JP2005306976A (en) | Apparatus for measuring coal charging level of coke oven | |
JPS6059007A (en) | Detection of behavior of raw material charged into blast furnace | |
JPS6321584A (en) | Microwave radar level measuring apparatus | |
JPH04167962A (en) | Method for continuously measuring molten iron level for pouring mixer car | |
JPS59126710A (en) | Detection of slag outflow in tapping |