JPS6059007A - Detection of behavior of raw material charged into blast furnace - Google Patents

Detection of behavior of raw material charged into blast furnace

Info

Publication number
JPS6059007A
JPS6059007A JP16730583A JP16730583A JPS6059007A JP S6059007 A JPS6059007 A JP S6059007A JP 16730583 A JP16730583 A JP 16730583A JP 16730583 A JP16730583 A JP 16730583A JP S6059007 A JPS6059007 A JP S6059007A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
raw material
wave
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16730583A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Koyama
小山 朝良
Taiji Ikenaga
池永 泰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16730583A priority Critical patent/JPS6059007A/en
Publication of JPS6059007A publication Critical patent/JPS6059007A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To detect the behavior of the raw material charged into a blast furnace and to enable stable operation of the blast furnace by directing and disposing the receiving part of a radiometer to and in the blast furnace and measuring the radiation energy of the microwave band emitted by the raw material. CONSTITUTION:Mounting holes 3, 4, 5 are formed circumferentially at a specified interval to the circumferential wall 2 of a blast furnace 1 in the height direction. Probes 6a, 7a are inserted into the holes 3, 4 in such a way that the top ends thereof do not project into the furnace 1 and antennas 6b, 7b are coupled thereto to apply received mu waves to mu wave radiometers 6, 7. A probe 8a is freely attachable and detachable and loosely inserted into the hole 5 so as to advance into the furnace 1 and the antenna 8a is attached thereto to apply the received mu wave to a mu wave radiometer 8. A calculator 9 detects temp., layer thickness ratio, charge descending speed, temp. distribution and grain size distribution from the signals transmitted thereto from the radiometers 6, 7, 8.

Description

【発明の詳細な説明】 本発明は高炉内での装入原料の挙動を検出する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the behavior of a charge in a blast furnace.

、高炉に装入された原料、即ちコークス5焼結鉱及びそ
の他の鉱石等は炉内で加熱、溶融され°ζ銑鉄を形成す
ると共にこの溶融のためにその上層の装入原料は自重に
て遂次下方へ移行する、荷下り現象を起こす。この荷下
り現象は高炉操業に大きな影響を与える。そのため装入
原料の炉内挙動、つまり装入原料の荷下り速度は勿論の
こと荷下り速度に影響を及ぼすコークスと焼結鉱、鉱石
との層厚比及び混合状況並びに装入原料の粒度、温度等
の高炉周方向、半径方向及び高さ方向の分布等を正確“
に検出する必要がある。
The raw materials charged into the blast furnace, namely coke 5 sintered ore and other ores, are heated and melted in the furnace to form °ζ pig iron, and due to this melting, the charged raw materials in the upper layer are released under their own weight. The load gradually moves downward, causing a phenomenon of unloading. This unloading phenomenon has a major impact on blast furnace operation. Therefore, the behavior of the charged raw material in the furnace, that is, the unloading speed of the charged raw material, the layer thickness ratio and mixing situation of coke, sinter, ore, and the particle size of the charged raw material, which affect the unloading speed, Accurately measure the distribution of temperature, etc. in the blast furnace circumferential direction, radial direction, and height direction.
need to be detected.

この装入原料の荷下り速度の検出には磁気センサ方式、
電気抵抗式及び炉頂装入原料表面のプロフィル測定方式
等が採用されている。しかしながらこれらには次のよう
な公称がある。
A magnetic sensor method is used to detect the unloading speed of this charged material.
The electrical resistance method and the profile measurement method on the surface of the raw material charged at the top of the furnace are used. However, they have the following nominal names:

第1図は磁気センナ方式のセンサ装着部近傍を示す模式
図である。磁気センサ方式ば磁気センサ11を高炉炉壁
2内に装着し、高炉装入原料10中のコークス10a、
焼結鉱、鉱石10bの透磁率の違いを利用して測定する
方法である。一般に物質の透磁率の温度特性は400℃
程度以下では略一定レベルであるが400℃程度を越え
ると物質の磁気変態により特性が変化し始め、更に高温
、つまり700〜800℃程度以上となると透磁率が極
度に小さくなる。
FIG. 1 is a schematic diagram showing the vicinity of a magnetic sensor type sensor mounting section. In the magnetic sensor method, a magnetic sensor 11 is installed in the blast furnace wall 2, and coke 10a in the blast furnace charging material 10,
This is a measurement method that utilizes the difference in magnetic permeability between sintered ore and ore 10b. Generally, the temperature characteristic of magnetic permeability of materials is 400℃
Below this level, the permeability is approximately constant, but when the temperature exceeds about 400°C, the properties begin to change due to magnetic transformation of the material, and at even higher temperatures, that is, above about 700 to 800°C, the magnetic permeability becomes extremely small.

従ってこの方式は高炉炉頂部に近い比較的低温部での検
出は可能であるが高炉操業に直接係るシャフト中部に亘
る高温部では透磁率が低下して検出が困難である。
Therefore, with this method, detection is possible in a relatively low-temperature area near the top of the blast furnace, but detection is difficult in the high-temperature area in the middle of the shaft, which is directly involved in blast furnace operation, due to decreased magnetic permeability.

第2図は電気抵抗式のゾンデ装着部近傍の模式図、第3
図は第2図の■−■線によくゾンデ部の断面図である。
Figure 2 is a schematic diagram of the vicinity of the electrical resistance type sonde attachment part, Figure 3
The figure is a sectional view of the sonde section taken along the line ■-■ in FIG. 2.

電気抵抗式は高炉1に跨設したゾンデ12の上下2段に
、2つの導電体13.13及びそれらを絶縁する絶縁物
14からなる電極15を対に取り付け、コークス10a
、焼結鉱10bの同一境界面での電気抵抗値の測定時間
差により検出する方法であり、装入原料粉の付着或いは
絶縁物14の劣化に伴う絶縁不良により電気抵抗の温度
特性が影響を受けて変化し、雷時正確な測定ができると
は限らず、また測定のためには電極15を装入原料10
側へ突出させる必要があり、このため摩耗が著しいとい
う問題がある。
In the electric resistance type, a pair of electrodes 15 consisting of two conductors 13 and 13 and an insulator 14 insulating them are attached to the top and bottom of the sonde 12 placed astride the blast furnace 1.
This is a method of detection based on the time difference in measuring the electrical resistance value at the same interface of the sintered ore 10b, and the temperature characteristics of the electrical resistance are affected by the adhesion of charging raw material powder or insulation failure due to deterioration of the insulator 14. It is not always possible to make accurate measurements during lightning, and for measurements the electrode 15 must be
It is necessary to protrude to the side, which causes a problem of significant wear.

第4図は炉頂装入原料表面のプロフィル測定方式の模式
図である。炉頂装入原料表面のプロフィル測定方式は錘
り16を炉頂付近より装入原料10上に垂下させて、降
下距離を測り、それ以降に装入した原料層厚を差し引い
た時系列変化により荷量り速度を推定する方法であり、
原料の流れ込み現象等で精度は良くない。なお錘り16
を垂下させる替わりにマイクロ波を炉頂より装入原料上
に向けて発信し、距離を測定する方法もあるが、この方
法も荷下り速度を推定により行う点で同様に精度上の問
題がある。
FIG. 4 is a schematic diagram of a method for measuring the profile of the surface of the raw material charged at the top of the furnace. The method of measuring the profile of the surface of the raw material charged at the top of the furnace is to suspend the weight 16 from near the top of the furnace above the charged raw material 10, measure the descending distance, and calculate the time-series change by subtracting the thickness of the layer of raw material charged since then. It is a method of estimating the loading speed,
Accuracy is not good due to the phenomenon of raw material flowing in, etc. Furthermore, weight 16
There is also a method of emitting microwaves from the top of the furnace to the top of the charging material and measuring the distance instead of letting it hang down, but this method also has the same accuracy problem as it estimates the unloading speed. .

従って、このような検出方法を用いた場合には荷下り速
度を炉頂から高温のシャフト中部下方に亘る範囲で或い
はこれを精度良く測定できず、安定操業を実現できると
は言い難い。
Therefore, when such a detection method is used, the unloading speed cannot be accurately measured in a range extending from the top of the furnace to the lower middle of the high-temperature shaft, and it is difficult to say that stable operation can be achieved.

本発明は斯かる荷下り速度の測定上の欠点を解消するた
めになされたものであり、マイクロ波ラジオメータの受
信部を高炉内に向けて、装入原料から放射されるマイク
ロ波エネルギーを捉えて、荷下り速度並びに荷下り速度
に影響を及ばずコークスと焼結鉱との層厚比及び混合状
況、装入原料の粒度、温度の高炉内分布を正確に検出す
る高炉内装入原料挙動検出方法を提供することを目的と
する。
The present invention has been made in order to eliminate such drawbacks in measuring the unloading speed, and the receiver of the microwave radiometer is directed into the blast furnace to capture the microwave energy radiated from the charged raw material. Detection of the behavior of raw materials in the blast furnace that accurately detects the layer thickness ratio and mixing status of coke and sintered ore, particle size of charged raw materials, and temperature distribution in the blast furnace without affecting the unloading speed and unloading speed. The purpose is to provide a method.

本発明に係る高炉内装入原料挙動検出方法ば高炉内に積
層装入された原料の挙動を検出する方法において、単数
又は複数のラジオメークの受信部を高炉内に向けて配し
、原料が発するマイクロ波帯の放射エネルギーを測定し
、この測定結果に基づき装入原料の挙動を検出すること
を特徴とする。
The method for detecting the behavior of raw materials charged in a blast furnace according to the present invention is a method for detecting the behavior of raw materials stacked and charged in a blast furnace, in which one or more radiomake receivers are arranged to face the inside of the blast furnace, and the raw materials are emitted. It is characterized by measuring radiant energy in the microwave band and detecting the behavior of the charged raw material based on the measurement results.

先ず本発明の測定原理につき説明する。第5図は横軸に
装入原料温度(°K)をとり縦軸にマイクロ波(μ波)
放射エネルギーをとって、装入原料から放射されるμ波
のエネルギーとそのときの装入原料温度との関係の一例
を示すグラフであり、実線は焼結鉱、破線はコークスの
場合を示している。この図より装入原料温度の上昇に伴
ってμ波放射エネルギーが大きくなることがわかる。こ
のμ波放射エネルギーPは下記fi1式にて表わされる
First, the measurement principle of the present invention will be explained. In Figure 5, the horizontal axis shows the charging material temperature (°K), and the vertical axis shows microwaves (μ waves).
This is a graph showing an example of the relationship between the energy of μ waves radiated from the charging material and the temperature of the charging material at that time, with the solid line showing the case of sintered ore and the broken line showing the case of coke. There is. This figure shows that the μ wave radiant energy increases as the temperature of the charged material increases. This μ-wave radiation energy P is expressed by the following fi1 formula.

従って測定したμ波放射エネルギー値Pを下記fl1式
に代入することにより装入原料表面の輝度温度TB (
’K)が算出される。
Therefore, by substituting the measured μ-wave radiant energy value P into the fl1 formula below, the brightness temperature TB (
'K) is calculated.

P=に−TB ・Δf ・・・(1) 但し、K:ボルツマンの定数 1.38 X 10 (
J /”K )Δf:微小周波数帯域中(1−1z) また゛輝度温度TBは下記(2)式にて表わされるので
算出したTB値を(2)に代入することにより装入原料
温度Tが算出される。
P=to-TB・Δf...(1) However, K: Boltzmann's constant 1.38 X 10 (
J/”K) Δf: In the micro frequency band (1-1z) Also, since the brightness temperature TB is expressed by the following formula (2), by substituting the calculated TB value into (2), the charging material temperature T can be calculated as follows: Calculated.

TB−ε・T ・・・(2) 但し、ε:放射率(−装入原料温度Tの表面からの放射
エネルギー/装入 原料温度Tの黒体からの放 射エネルギー) つまり、装入原料温度Tばμ波放射エネルギーPと下記
(3)式の関係を有している。
TB-ε・T...(2) However, ε: Emissivity (-Radiant energy from the surface at charging material temperature T/Radiant energy from the black body at charging material temperature T) In other words, charging material temperature T has a relationship with the μ wave radiant energy P as shown in equation (3) below.

P=K・ε・T・Δf ・・・(3) このような関係があるμ波放射エネルギーを発するコー
クスと焼結鉱をラジオメータを用いて測定した場合の輝
度温度TBと装入原料温度Tとの関係を第6図に示す。
P=K・ε・T・Δf ...(3) Brightness temperature TB and charging material temperature when coke and sintered ore that emit μ-wave radiant energy having such a relationship are measured using a radiometer. The relationship with T is shown in FIG.

第6図は横軸に装入原料温度(°K)をとり縦軸にコー
クスと焼結鉱との輝度温度差(°K)をとって示してあ
り、約800°に以上では十分大きな輝度温度差を示す
。従って略等温で炉内を交互に降下するコークスの層と
焼結鉱の層は放射エネルギーレベルの差又は輝度温度の
差にて判別できる。本発明はこの原理を利用したもので
ある。
Figure 6 shows the charging material temperature (°K) on the horizontal axis and the brightness temperature difference (°K) between coke and sintered ore on the vertical axis. Shows temperature difference. Therefore, the coke layer and the sintered ore layer, which alternately descend in the furnace at approximately the same temperature, can be distinguished by the difference in radiant energy level or the difference in brightness temperature. The present invention utilizes this principle.

以下本発明を図面に基づき具体的に説明する。The present invention will be specifically explained below based on the drawings.

第7図は本発明の実施状態を示す模式図であり、図中l
は高炉である。高炉1の周壁2には高ざ方向にまた一定
間隔で周方向に多数の取付は孔が配されており、第7図
には3つが示されてあって、取イ」孔3,4.5は下側
からこの順に適長離隔して形成されている。取付孔3,
4にはプローブ(導波管) 6a、 7aが先端を炉1
内へ突出させないようにして嵌挿されており、プローブ
6a、 7aの外側端部はアンテナ6b、 7bに結合
されており、受信μ波はμ波うジオメーク6.7に与え
られる。取付孔5には周壁2より炉内へ導入へ進入でき
、不用の際には周壁2外へ退出できるように緩挿された
プローブ8aが設けられており、その外側端部にアンテ
ナ8bを取付は受信μ波をμ波うジオメーク8に与える
。μ波うジオメータ6.7.8は演算器9に接続されて
いる。なおプローブ6a、 7a、 8aの外側は高炉
l炉体からの熱がプローブ6a、 7a。
FIG. 7 is a schematic diagram showing the implementation state of the present invention, and in the figure l
is a blast furnace. A large number of mounting holes are arranged in the peripheral wall 2 of the blast furnace 1 in the height direction and in the circumferential direction at regular intervals, three of which are shown in FIG. 5 are formed in this order from the bottom, spaced apart by an appropriate length. Mounting hole 3,
4 has probes (waveguides) 6a and 7a have their tips connected to furnace 1
The outer ends of the probes 6a, 7a are coupled to antennas 6b, 7b, and the received μ-waves are applied to the μ-wave geometry 6.7. A probe 8a is provided in the attachment hole 5, which is loosely inserted so that it can enter the furnace through the peripheral wall 2 and exit outside the peripheral wall 2 when not in use, and an antenna 8b is attached to the outer end of the probe 8a. gives the received μ-wave to the μ-wave geomake 8. The μ wave geometer 6.7.8 is connected to the calculator 9. Note that the heat from the blast furnace body is transferred to the outside of the probes 6a, 7a, and 8a.

8a及びμ波うジオメータ6.7.8へ伝わらないよう
に水冷されており、またプローブ6a、 7a、 8a
の管内には高炉の高温雰囲気がμ波うジオメータ6.7
.8へ流入しないように炉内へ向けてN2ガス等を通流
させている。
The probes 6a, 7a, 8a are water-cooled to prevent the μ-wave from being transmitted to the geometer 6.7.8.
Inside the tube is a geometer 6.7 where the high temperature atmosphere of the blast furnace generates μ waves.
.. N2 gas or the like is made to flow into the furnace so as not to flow into the furnace.

μ波うジオメータ6.7.8としては種々のものが知ら
れている。例えばディツキ−型ラジオメーク、トータル
パワー型ラジオメータがある。
Various types of μ wave geometers 6.7.8 are known. For example, there are the Dietsky type radiomake and the total power type radiometer.

演算器9はラジオメータ6.7.8から送られてきた信
号に基づいて温度1層厚比、荷下り速度及び分布を次の
ようにして検出する。まず温度についてはラジオメータ
6.7又は8夫々のプローブ6a、 7a又は8a前面
をコークス10a及び焼結鉱10bが交互に通過する際
に測定された大小2つのμ波エネルギー値Pを夫々前記
(3)式に代入し、得られた2つの輝度温度TBO差(
輝度温度差)と、前述した第6図に示す装入原料温度−
輝度温度差との関係より予めめている数式とにより装入
原料温度Tを算出する。
The calculator 9 detects the temperature, single layer thickness ratio, unloading speed and distribution in the following manner based on the signals sent from the radiometers 6.7.8. First, regarding the temperature, the two large and small μ-wave energy values P measured when the coke 10a and the sintered ore 10b alternately pass the front surface of the probe 6a, 7a, or 8a of the radiometer 6.7 or 8, respectively, are expressed as ( 3) Substitute into the equation and obtain the difference between the two brightness temperatures TBO (
brightness temperature difference) and the charging material temperature shown in Fig. 6 mentioned above.
The charging raw material temperature T is calculated using a predetermined formula based on the relationship with the brightness temperature difference.

層厚比についてはラジオメータ6.7又は8にてμ波放
射エネルギーを経時的に測定し、次のようにして算出す
る。第8図は横軸に時間(1)をとり縦軸にμ波放射エ
ネルギーをとって、その測定結果を示している。図に示
される如くコークス10altiがプローブ6a、 7
a又は8aの前面を通過するときはエネルギーレベルが
低く、逆に焼結鉱10b層が通過するときはエネルギー
レベルが高く表われるので低エネルギーの測定時間tc
に対する高エネルギーの測定時間tsの比をめることに
よりコークス10a層厚に対する焼結鉱10b層厚の比
、つまり1留厚比を検出することかてできる。
The layer thickness ratio is calculated by measuring the μ wave radiant energy over time using a radiometer 6.7 or 8 as follows. FIG. 8 shows the measurement results, with time (1) plotted on the horizontal axis and μ-wave radiation energy plotted on the vertical axis. As shown in the figure, coke 10alti is connected to probes 6a and 7.
The energy level is low when passing through the front surface of a or 8a, and conversely, the energy level appears high when passing through the sintered ore 10b layer, so the low energy measurement time tc
By calculating the ratio of the high energy measurement time ts to the coke 10a layer thickness, it is possible to detect the ratio of the sintered ore 10b layer thickness to the coke 10a layer thickness, that is, the 1-reduction thickness ratio.

両層の境界の判別にはμ波放射エネルギーの微分値又は
時間的変化量が+■から次に一■へ変化する時間を利用
する。
The boundary between both layers is determined by using the time at which the differential value or the amount of change over time of the μ-wave radiation energy changes from +■ to 1■.

荷下り速度については離隔距#(L’)が分っているプ
ローブ68及び7aの前面をコークス10a と焼結鉱
10bとが発するμ波放射エネルギーを所定時間測定し
、次のようにして算出する。第9図は横軸に時間<L)
をとり縦軸にμ波放射エネルギーをとって、その測定結
果を示しており、図の下側はプローブ7aの下方に位置
するプローブ6aにおりる測定結果、上側はプローブ7
aにおりる測定結果であり、夫々のμ波放射エネルギー
は境界については第8図と同様に表われ、また各原料層
の厚み方向中央部では極大又しまハルとなっている。従
ってコークス10a層と焼結鉱10b層との同−境界面
又は一方の層中心部のラジオメータ6及び7による測定
時間差Δtをめて、μ波うジオメータ6゜7のプローブ
6a、 ’?a間距離りを用いて、荷下り速度を算出す
る。この時間差Δtは上述の方法と同様の方法によって
も、また両測定結果のピーク値からめてもよい。
The unloading speed is calculated as follows by measuring the μ wave radiant energy emitted by the coke 10a and the sintered ore 10b on the front surface of the probes 68 and 7a whose separation distance # (L') is known for a predetermined period of time. do. In Figure 9, the horizontal axis is time <L)
The measurement results are shown with the vertical axis representing the μ-wave radiation energy.
This is the measurement result shown in a, and the respective μ-wave radiant energies appear at the boundaries in the same way as in FIG. 8, and the center portion of each raw material layer in the thickness direction has a maximum or striped hull. Therefore, the measurement time difference Δt between the radiometers 6 and 7 at the interface between the coke 10a layer and the sintered ore 10b layer or at the center of one of the layers is taken into account, and the probe 6a of the μ-wave geometer 6°7 is calculated as follows. Calculate the unloading speed using the distance a. This time difference Δt may be determined by a method similar to the above-mentioned method or from the peak values of both measurement results.

温度分布については高炉高さ方向の分布は高炉1の周壁
2に配した取付高さの異なる複数のプローブ6a、 7
a、 8aと夫々接続されているラジオメータ6.7.
8により測定されたμ波放射エネルギーP値を前記(3
)式に代入して高さ方向に整理することにより得られる
。半径方向の温度分布はプローブ8aを炉内へ進入させ
、その先端のアンテナ8bの進入距離と検出したμ波放
射エネルギー値に基づきjMられ、また周方向の温度分
布は高炉1の同一高さの周壁2に一定間隔となるように
等配された複数のプローブ8aをその先端のアンテナ8
bの炉内への進入距離が同一となるように進入させ、即
ち同−半1蚤でのμ波放射エネルギー値に基づき得られ
る。
Regarding the temperature distribution, the distribution in the blast furnace height direction is determined by a plurality of probes 6a, 7 arranged at different mounting heights on the peripheral wall 2 of the blast furnace 1.
radiometers 6.7.a and 8a connected respectively.
The μ wave radiant energy P value measured by 8 is expressed as (3
) and organize it in the height direction. The temperature distribution in the radial direction is determined by entering the probe 8a into the furnace, and is calculated based on the distance of the antenna 8b at its tip and the detected μ-wave radiation energy value. A plurality of probes 8a are evenly distributed on the peripheral wall 2 at regular intervals, and an antenna 8 is attached to the tip of the probes 8a.
(b) are made to enter the furnace so that the distance of entry into the furnace is the same, that is, it is obtained based on the μ-wave radiant energy value for one and a half flea.

粒度分布については、第10図に示す如く放射率が粒度
により変化するので、これを利用してめることができる
。第1O図は横軸に装入原料温度(°K)をとり縦軸に
放射率(ε)をとって、コークス粒径の違いによる両者
の関係を示したグラフであり、四角印は粒1’17mm
、白丸印は粒径20mm、三角印は粒径50mm以上の
場合を示しており、併せて粒径により両者の関係が変化
しない焼結鉱のそれを黒丸印にて示している。この図よ
り装入原料温度に伴って放射率が変化し、またコークス
の場合にはその粒径の違いにより同一温度であっても放
射率が異なることがわかる。また装入原料温度Tと輝度
温度T’Bとの間に一定の関係があることから、公知の
方法により装入原料6114度T @ /ji’l定し
、またμ波放射エネルギー値Pを測定して前記(3)式
により放射率εをめ、この放射率εと第10図に基づき
コークスの粒度分布がわかる。
Regarding the particle size distribution, the emissivity changes depending on the particle size as shown in FIG. 10, so this can be used to determine the particle size distribution. Figure 1O is a graph showing the relationship between the charged material temperature (°K) on the horizontal axis and the emissivity (ε) on the vertical axis, depending on the difference in coke particle size. '17mm
A white circle indicates a particle size of 20 mm, a triangle indicates a particle size of 50 mm or more, and a black circle indicates a case where the relationship between the two does not change depending on the particle size. From this figure, it can be seen that the emissivity changes with the temperature of the charged raw material, and in the case of coke, the emissivity differs even at the same temperature due to the difference in particle size. In addition, since there is a certain relationship between the charging material temperature T and the brightness temperature T'B, the charging material 6114 degrees T @ /ji'l was determined by a known method, and the μ-wave radiant energy value P was After measurement, the emissivity ε is calculated using equation (3), and the particle size distribution of the coke can be determined based on this emissivity ε and FIG.

なお本発明に使用し、周壁2の孔内に挿入しているプロ
ーブ6a、 7a、 8aは装入原料による摩耗が極め
て小さく、また炉内からのマイクロ波放射エネルギーを
導波管で炉外に設置されたラジオメータ本体に導き検出
することができ、熱が伝達しないようになっているので
高温となることがなく、温度による劣化は生じない。
Note that the probes 6a, 7a, and 8a used in the present invention and inserted into the holes in the peripheral wall 2 have extremely little wear due to the charged raw materials, and the microwave radiation energy from inside the furnace is transferred to the outside of the furnace using a waveguide. It can be guided to the installed radiometer body and detected, and since heat is not transmitted, it does not become high temperature and does not deteriorate due to temperature.

以上詳述した如く本発明に係る高炉内装入原料の挙動検
出方法は装入原料が発するμ波の放射エネルギーをラジ
オメークにより測定するので、炉頂低温部は勿論のこと
炉内高温部においても荷下り速度、コークスと焼結鉱、
鉱石との層厚比及び混合状況、装入原*、lの粒度並び
に装入原料の粒度。
As detailed above, the method for detecting the behavior of the charging material in a blast furnace according to the present invention measures the radiant energy of μ waves emitted by the charging material by radiomaking, so it can be used not only in the low-temperature section at the top of the furnace but also in the high-temperature section inside the furnace. unloading speed, coke and sinter,
Layer thickness ratio and mixing situation with ore, particle size of charging raw material*, l, and particle size of charging raw material.

温度の高炉内分布を正確に検出することができ、またこ
れにより高炉操業を安定して行うことができる等優れた
効果を奏する。
It is possible to accurately detect the temperature distribution within the blast furnace, and this provides excellent effects such as stably operating the blast furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図は従来方法の荷下り速
度の測定内容を示す模式図、第5図は各高炉装入原料の
温度とμ波放射エネルギーとの関係を示すグラフ、第6
図はその温度と装入原料間のμ波放射エネルギー差との
関係の一例を示すグラフ、第7図は本発明の実施状態を
示す模式図、第8図、第9図は測定したμ波放射エネル
ギーを示すグラフ、第10図は粒径が異なる場合の装入
原料温度と放射率との関係を示すグラフである。 1・・・高炉 2・・・周壁 6,7.8・・・マイク
ロ波ラジオメータ 6a、 7a、 8a・・・プロー
ブ 10・・・装入原料 特許出願人 住友金属工業株式会社 代 理 人 弁理士 河 野 登 夫 1(/ 第 1 図 悴 2 Σ *3(支) 第 4 ロ 時間 (t) 第8図 81 間 (tl 装入原料づ茎皮じk) 第 10 函
Figures 1, 2, 3, and 4 are schematic diagrams showing the measurement contents of the unloading speed using the conventional method, and Figure 5 shows the relationship between the temperature of each blast furnace charging material and the microwave radiant energy. Graph shown, No. 6
The figure is a graph showing an example of the relationship between the temperature and the μ-wave radiation energy difference between the charged raw materials, Figure 7 is a schematic diagram showing the implementation state of the present invention, and Figures 8 and 9 are the measured μ-wave A graph showing radiant energy, FIG. 10 is a graph showing the relationship between charging material temperature and emissivity for different particle sizes. 1... Blast furnace 2... Surrounding wall 6, 7.8... Microwave radiometer 6a, 7a, 8a... Probe 10... Charging raw material patent applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono 1 (/ 1st Fig. 2 Σ *3 (branch) 4th time (t) Fig. 8 81 time (tl Charged raw materials, stems and skins) 10th box

Claims (1)

【特許請求の範囲】[Claims] 1、高炉内に積層装入された原料の挙動を検出する方法
において、単数又は複数のラジオメータの受信部を高炉
内に向けて配し、原料が発するマイクロ波帯の放射エネ
ルギーを測定し、この測定結果に基づき装入原料の挙動
を検出することを特徴とする高炉内装入原料の挙動検出
方法。
1. In a method for detecting the behavior of raw materials stacked and charged into a blast furnace, the receiving section of one or more radiometers is arranged to face the inside of the blast furnace, and the radiant energy in the microwave band emitted by the raw materials is measured, A method for detecting the behavior of raw material charged into a blast furnace, characterized by detecting the behavior of the charged raw material based on the measurement results.
JP16730583A 1983-09-09 1983-09-09 Detection of behavior of raw material charged into blast furnace Pending JPS6059007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16730583A JPS6059007A (en) 1983-09-09 1983-09-09 Detection of behavior of raw material charged into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16730583A JPS6059007A (en) 1983-09-09 1983-09-09 Detection of behavior of raw material charged into blast furnace

Publications (1)

Publication Number Publication Date
JPS6059007A true JPS6059007A (en) 1985-04-05

Family

ID=15847282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16730583A Pending JPS6059007A (en) 1983-09-09 1983-09-09 Detection of behavior of raw material charged into blast furnace

Country Status (1)

Country Link
JP (1) JPS6059007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230938A (en) * 1985-04-11 1987-02-09 Nippon Steel Corp Particle size measurement of falling object
WO2001021841A1 (en) * 1999-09-17 2001-03-29 Centre De Recherches Metallurgiques Method for determining the trajectory of materials when charging a shaft kiln
CN112111618A (en) * 2020-09-22 2020-12-22 攀钢集团研究院有限公司 Blast furnace burden descending uniformity judgment and early warning method and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230938A (en) * 1985-04-11 1987-02-09 Nippon Steel Corp Particle size measurement of falling object
JPH055299B2 (en) * 1985-04-11 1993-01-22 Nippon Steel Corp
WO2001021841A1 (en) * 1999-09-17 2001-03-29 Centre De Recherches Metallurgiques Method for determining the trajectory of materials when charging a shaft kiln
BE1012905A3 (en) * 1999-09-17 2001-05-08 Centre Rech Metallurgique Method for determining the path of materials when loading a shaft furnace.
CN112111618A (en) * 2020-09-22 2020-12-22 攀钢集团研究院有限公司 Blast furnace burden descending uniformity judgment and early warning method and system

Similar Documents

Publication Publication Date Title
US3114875A (en) Microwave device for testing formations surrounding a borehole having means for measuring the standing wave ratio of energy incident to and reflected from the formations
US4442706A (en) Probe and a system for detecting wear of refractory wall
US9599401B2 (en) Method and a control system for controlling a melting and refining process
CN103307873A (en) Method for detecting flue-gas temperature in rotary kiln
US3898366A (en) Metallurgical heating system with refractory wear indicia
US4004219A (en) Method for measuring the conditions inside a metal covered furnace during its operation
JPS6059007A (en) Detection of behavior of raw material charged into blast furnace
CN106191416A (en) A kind of steel pipe senses measuring method and the device in temperature field in heating process
JP3855639B2 (en) Profile measurement method of blast furnace interior entrance surface
JPS6075505A (en) Device for detecting behaviour of raw material fed to blast furnace
JPS6259163B2 (en)
JPS5938313A (en) Detection of root part of melt sticking zone in blast furnace
JPH0138842B2 (en)
Bassett A Free‐Space Focused Microwave System to Determine the Complex Permittivity of Materials to Temperatures Exceeding 2000° C
JPS6055252A (en) Detection of boundary and grain size of material charged in blast furnace
JPS6136563B2 (en)
KR880000638B1 (en) Method &amp; apparatus for supervising charges blast furance using electromagnetic waves
JPS6240402B2 (en)
US20080311325A1 (en) Open Protective Tube
EP0065583B1 (en) Method and device for measuring the thickness of a refractory in a metallurgical apparatus
CN115727969A (en) Temperature detection device based on metal nanoparticles
JPS5833082A (en) Method of deciding behavior of charge in furnace in metal smelting furnace, etc.
Armi et al. Application of the Sliding Thermocouple Method to the Determination of Temperatures at the Interface of a Moving Bullet and a Gun Barrel
JPS62177111A (en) Detection of condition in blast furnace
KR101246498B1 (en) Probe for blast furnace