JPS6075505A - Device for detecting behaviour of raw material fed to blast furnace - Google Patents

Device for detecting behaviour of raw material fed to blast furnace

Info

Publication number
JPS6075505A
JPS6075505A JP18417183A JP18417183A JPS6075505A JP S6075505 A JPS6075505 A JP S6075505A JP 18417183 A JP18417183 A JP 18417183A JP 18417183 A JP18417183 A JP 18417183A JP S6075505 A JPS6075505 A JP S6075505A
Authority
JP
Japan
Prior art keywords
raw material
furnace
wave
blast furnace
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18417183A
Other languages
Japanese (ja)
Inventor
Taiji Ikenaga
池永 泰治
Tomoyoshi Koyama
小山 朝良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18417183A priority Critical patent/JPS6075505A/en
Publication of JPS6075505A publication Critical patent/JPS6075505A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To detect behaviour of raw material fed to a blast furnace exactly for a long period by protruding a top end of a receiving part of a microwave radiometer into a blast furnace and providing an operation means by catcying microwave energy radiated from the charged raw material. CONSTITUTION:Receiving parts 41, 42 are made to penetrate through attaching holes 31, 32 formed on a furnace wall 2, and their top ends are located to by >=ca.50-100mm. to the furnace core side than the mixing layer 10c. The opening at the top end of the receiving parts are closed by lids 7 made of a refractory which permits penetration of mu wave. The radiant energy of the mu wave emitted from the charged raw material 10 through waveguides 41a and 42a of the receiving parts 41, 42 are detected by antennas 41C, 42C and detection signals are given to the mu wave raiometer 51, 52. The behaviour of the charged raw material is detected by an operator 6 by measuring the mu wave energy in accordance with the lapse of time. For example, ratio of time measuring high energy to time measuring low energy is operated, and thus, ratio of thickness of sintered ore 10b to the thickness of coke layer 10a is detected.

Description

【発明の詳細な説明】 本発明は高炉内での装入原料の挙動を検出する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting the behavior of a charging material in a blast furnace.

高炉に装入された原料、即ちコークス、焼結鉱及びその
他の鉱石等は炉内で加熱2溶融されて銑鉄を形成すると
共にこの溶融のためにその上層の装入原料は自重にて遂
次下方へ移行する、いわゆる荷下り現象を起こす。この
荷下り現象は高炉操業に大きな影響を与える。そのため
装入原料の炉内挙動、つまり装入原料の荷下り速度は勿
論のこと荷下り速度に影響を及ぼすコークスと焼結鉱。
The raw materials charged into the blast furnace, such as coke, sintered ore, and other ores, are heated and melted in the furnace to form pig iron, and for this melting, the charged raw materials in the upper layer are sequentially heated under their own weight. This causes a so-called unloading phenomenon in which the load moves downward. This unloading phenomenon has a major impact on blast furnace operation. Therefore, coke and sintered ore affect the behavior of the charged raw material in the furnace, that is, the unloading speed of the charged raw material, as well as the unloading speed.

鉱石との層厚比及び混合状況並びに装入原料の粒度、温
度等の高炉周方向、半径方向及び高さ方向の分布等を正
確に検出する必要がある。
It is necessary to accurately detect the layer thickness ratio and mixing condition with the ore, as well as the particle size and temperature distribution of the charged raw material in the blast furnace circumferential direction, radial direction, and height direction.

この装入原料の荷下り速度の検出には磁気センサ方式、
電気抵抗式及び炉頂装入原料表面のプロフィル測定方式
等が採用されている。しかしながらこれらには次のよう
な欠点がある。
A magnetic sensor method is used to detect the unloading speed of this charged material.
The electrical resistance method and the profile measurement method on the surface of the raw material charged at the top of the furnace are used. However, these have the following drawbacks.

第1図は電気抵抗式のゾンデ装着部近傍の模式図、第2
図は第1図の■−■線によるゾンデ部の断面図である。
Figure 1 is a schematic diagram of the vicinity of the electrical resistance type sonde attachment part, Figure 2
The figure is a cross-sectional view of the sonde section taken along the line ■-■ in FIG. 1.

電気抵抗式は高炉1に跨設したゾンデ12の上下2段に
、2つの導電体13.13及びそれらを絶縁する絶縁物
14からなる電極15を対に取り付け、コークス10a
、焼結鉱10bの同一境界面での電気抵抗値の測定時間
差により検出する装置であり、装入原料粉の付着或いは
絶縁物14の劣化に伴う絶縁不良により、電気抵抗の温
度特性が影響を受けて変化し、常時正確な測定ができる
とは限らず、また測定のためには電極15を装入原料1
0側へ突出させる必要があり、このため摩耗が著しいと
いう問題がある。
In the electric resistance type, a pair of electrodes 15 consisting of two conductors 13 and 13 and an insulator 14 insulating them are attached to the top and bottom of the sonde 12 placed astride the blast furnace 1.
This is a device that detects electrical resistance values at the same boundary surface of the sintered ore 10b by measuring time differences, and the temperature characteristics of electrical resistance are affected by poor insulation due to adhesion of charged raw material powder or deterioration of the insulator 14. Therefore, it is not always possible to make accurate measurements, and for measurement, the electrode 15 is
It is necessary to protrude toward the 0 side, which causes a problem of significant wear.

第3図は炉頂装入原料表面のプロフィル測定方式の模式
図である。炉頂装入原料表面のプロフィル測定方式は錘
り16を炉頂付近より装入原料10上に垂下させて、降
下距離を測り、それ以降に装入した原料層厚を差し引い
た時系列変化により荷下り速度を推定するようにした装
置であり、原料の流れ込み現象等で精度は良くない。な
お錘り16を垂下させる替わりにマイクロ波を炉頂より
装入原料上に向けて発信し、距離を測定する装置もある
が、この装置による場合も荷下り速度を推定により行う
点で同様に精度上の問題がある。
FIG. 3 is a schematic diagram of a method for measuring the profile of the surface of the raw material charged at the top of the furnace. The method of measuring the profile of the surface of the raw material charged at the top of the furnace is to suspend the weight 16 from near the top of the furnace above the charged raw material 10, measure the descending distance, and calculate the time-series change by subtracting the thickness of the layer of raw material charged since then. This is a device designed to estimate the unloading speed, and the accuracy is not good due to the phenomenon of raw material flowing in. Note that instead of hanging the weight 16, there is also a device that transmits microwaves from the top of the furnace to the top of the charging material and measures the distance, but this device is similar in that the unloading speed is estimated. There is a problem with accuracy.

第4図は磁気センサ方式のセンサ装着部近傍を示す模式
図である。磁気センサ方式は磁気センサ11を高炉炉壁
2内に装着し、高炉装入原料10中のコークス10a、
焼結鉱10b、鉱石の透磁率の違いを利用して測定する
装置である。一般に物質の透磁率の温度特性は400℃
程度以下では略一定レベルであるが400℃程度を越え
ると物質の磁気変態により特性が変化し始め、更に高温
、つまり700〜800℃程度以上となると透磁率が極
度に小さくなる。従ってこの装置により測定する場合は
高炉炉頂部に近い比較的低温部での検出は可能であるが
高炉操業に直接係るシャフト中部から下部に亘る高温部
では透磁率が低下して検出が困難であり、また装入原料
IOが荷下りする際壁効果により炉壁近傍でコークス1
0a、焼結鉱10b等が混合されるので測定誤差が生じ
やすい。
FIG. 4 is a schematic diagram showing the vicinity of a sensor mounting part of a magnetic sensor type. In the magnetic sensor method, a magnetic sensor 11 is installed inside the blast furnace wall 2, and coke 10a in the blast furnace charging material 10,
This is a device that measures sintered ore 10b using the difference in magnetic permeability of ore. Generally, the temperature characteristic of magnetic permeability of materials is 400℃
Below this level, the permeability is approximately constant, but when the temperature exceeds about 400°C, the properties begin to change due to magnetic transformation of the material, and at even higher temperatures, that is, above about 700 to 800°C, the magnetic permeability becomes extremely small. Therefore, when measuring with this device, it is possible to detect in the relatively low-temperature area near the top of the blast furnace, but it is difficult to detect in the high-temperature area from the middle to the bottom of the shaft, which is directly involved in blast furnace operation, because the magnetic permeability decreases. Also, when the charging raw material IO is unloaded, coke 1 is generated near the furnace wall due to the wall effect.
Since 0a, sintered ore 10b, etc. are mixed, measurement errors are likely to occur.

したがってこのような検出装置を用いた場合には荷下り
速度を炉頂から高温のシャフト中部下方に亘る範囲で或
いはこれを精度良く測定できず、安定操業を実現できる
とは言い難い。
Therefore, when such a detection device is used, it is difficult to accurately measure the unloading speed in a range extending from the top of the furnace to the lower middle of the high-temperature shaft, and it is hard to say that stable operation can be achieved.

本発明は斯かる荷下り速度の測定」二の欠点を解消する
ためになされたものであり、マイクロ波ラジオメークの
受信部の先端を高炉内に所要長以上突出させた状態、詳
述すると装入原料が荷下りし壁効果により炉壁近傍で混
合された混合層よりも内部に受信部先端を突出させた状
態で装入原料から放射されるマイクロ波エネルギーを捉
えるようにして装入原料の挙動を正確に検出する高炉内
装入原料挙動検出装置を提供することを目的とする。
The present invention has been made in order to eliminate the second drawback of "Measurement of unloading speed". When the incoming raw materials are unloaded, the tip of the receiver protrudes further inside the mixed layer near the furnace wall due to the wall effect, and the microwave energy radiated from the charged raw materials is captured. An object of the present invention is to provide a behavior detection device for raw material input into a blast furnace that accurately detects behavior.

先ず本発明の測定原理につき説明する。第5図は横軸に
装入原料温度(°K)をとり縦軸にマイクロ波(μ波)
放射エネルギーをとって、装入原料から放射されるμ波
のエネルギーとそのときの装入原料温度との関係の一例
を示すグラフであり、実線はコークス、破線は焼結鉱の
場合を示している。この図より装入原料温度の上昇に伴
ってμ波放射エネルギーが大きくなることがわかる。こ
のμ波放射エネルギーPは下記(1)にて表わされる。
First, the measurement principle of the present invention will be explained. In Figure 5, the horizontal axis shows the charging material temperature (°K), and the vertical axis shows microwaves (μ waves).
This is a graph showing an example of the relationship between the energy of μ waves radiated from the charging material and the temperature of the charging material at that time, with the solid line showing the case of coke and the broken line showing the case of sintered ore. There is. This figure shows that the μ wave radiant energy increases as the temperature of the charged material increases. This μ-wave radiation energy P is expressed by the following (1).

したがって測定したμ波放射エネルギー値Pを下記(1
,1式に代入することにより装入原料表面の輝度温度T
B(’K)が算出される。
Therefore, the measured μ wave radiant energy value P is as follows (1
, by substituting into equation 1, the brightness temperature T of the surface of the charging material
B('K) is calculated.

P=に−TO・Δf ・・・(1) 但し、K:ボルツマンの定数 1.38X10 (J/’K) Δf:微小周波数帯域中(Hz ) また輝度温度TBは下記(2)式にて表わされるので算
出したTB値を(2)式に代入することにより装入原料
温度Tが算出される。
P=to -TO・Δf...(1) However, K: Boltzmann's constant 1.38X10 (J/'K) Δf: In the micro frequency band (Hz) Also, the brightness temperature TB is calculated by the following formula (2) By substituting the calculated TB value into equation (2), the charging material temperature T is calculated.

TB =ε・T ・・・(2) 但し、ε:放射率(=装入原料温度Tの表面からの放射
エネルギー/装入原料温度 Tの黒体からの放射エネルギー) つまり、装入原料温度Tはμ波放射エネルギーPと下記
(3)式の関係にある。
TB = ε・T ... (2) However, ε: emissivity (=radiant energy from the surface of the charging material temperature T/radiant energy from the black body at the charging material temperature T) In other words, the charging material temperature T has a relationship with the μ-wave radiation energy P as shown in equation (3) below.

P=K・ε・T・Δf ・・・(3) このような関係があるμ波放射エネルギーを発するコー
クスと焼結鉱をラジオメータを用いて測定した場合の輝
度温度TBと装入原料温度との関係を第6図に示す。
P=K・ε・T・Δf ...(3) Brightness temperature TB and charging material temperature when coke and sintered ore that emit μ-wave radiant energy having such a relationship are measured using a radiometer. Figure 6 shows the relationship between

第6図は横軸に装入原料温度(°K)をとり縦軸に輝度
温度(°K)をとって示してあり、○印。
In Figure 6, the horizontal axis shows the charging material temperature (°K) and the vertical axis shows the brightness temperature (°K), marked with a circle.

O印、0印、・印は粒径が夫々7 mm、 20mm、
 50mm、 ・70mmのコークス、Δ印、A印、ム
印は粒径が夫々7 mm、 20nun、 50+no
+の焼結鉱、0印はハマスレー、■印は粉焼結、l印は
配合焼結である。この図より約800°に以上では十分
大きな輝度温度差を示している。従って略等温で炉内を
交互に降下するコークスの層と焼結鉱の層は放射エネル
ギーレベルの差又は輝度温度の差にて判別できる。本発
明はこの原理を利用したものである。
The O mark, 0 mark, and ・ mark have particle diameters of 7 mm and 20 mm, respectively.
50mm, ・70mm coke, Δ mark, A mark, Mu mark have particle size of 7 mm, 20nun, 50+no respectively
+ indicates sintered ore, 0 mark indicates Hamasley, ■ mark indicates powder sintering, and l mark indicates mixed sintering. This figure shows that there is a sufficiently large difference in brightness temperature above about 800°. Therefore, the coke layer and the sintered ore layer, which alternately descend in the furnace at approximately the same temperature, can be distinguished by the difference in radiant energy level or the difference in brightness temperature. The present invention utilizes this principle.

以下本発明装置を図面に基づき具体的に説明する。The apparatus of the present invention will be specifically explained below based on the drawings.

第7図は本発明の実施例を示す模式図であり、図中1は
高炉を示す。高炉1内には装入原料10としてコークス
10aと焼結鉱10bとが交互に積層装入されてあって
、装入原料10は高炉1下部(図には現れていない)に
て溶融されて自重にて下方へ移動している。このとき装
入原料10は炉壁2の壁効果により混合され、炉壁2か
ら200〜300mm程度のコークス10aと焼結鉱1
0bとの混合層10cを形成している。
FIG. 7 is a schematic diagram showing an embodiment of the present invention, and 1 in the figure indicates a blast furnace. In the blast furnace 1, coke 10a and sintered ore 10b are alternately stacked and charged as charging materials 10, and the charging materials 10 are melted in the lower part of the blast furnace 1 (not shown in the figure). It is moving downward under its own weight. At this time, the charging raw material 10 is mixed by the wall effect of the furnace wall 2, and the coke 10a and the sintered ore 1 are about 200 to 300 mm from the furnace wall 2.
0b to form a mixed layer 10c.

炉壁2には高さ方向1周方向に多数の取付孔が配されて
おり、図面には高さ方向の2つが示されてあって取付孔
31ば取付孔32の下側に適長離隔して形成されている
。取付孔31.32には次のように構成された受信部4
1.42が貫通されており、受信部41.42は炉半径
方向に進出、退入できる。受信部41.42は二重管構
造であり、その内管は装入原料10からのμ波放射エネ
ルギーを導くための導波管41a 、 42aである。
A large number of mounting holes are arranged in the circumferential direction of the furnace wall 2 in the height direction, and two in the height direction are shown in the drawing. It is formed as follows. In the mounting holes 31 and 32, there is a receiving section 4 configured as follows.
1.42 is penetrated, and the receiving portion 41.42 can advance and retract in the radial direction of the furnace. The receiving sections 41 and 42 have a double tube structure, and the inner tubes thereof are waveguides 41a and 42a for guiding the μ-wave radiation energy from the charged raw material 10.

その先端は混合層10cよりも50〜100mm以上の
炉心側に位置されている。そしてその先端開口部はμ波
が透過可能な耐火物(例えば3i02系ポーラスレンガ
)製の蓋7により閉塞されており、装入原料10が入ら
ないようにされている。外管41b 、 42bと導波
管41a 、 42aとの間には受信部41.42冷却
のために冷却水が通流されており、導波管41a 、 
42a内はN2ガスにより正圧となっている。このため
受信部41.42は高炉1下側内部の高温部であっても
取付可能であり、また蓋7の一部が破損しても受信部内
のN2ガス圧が炉内圧よりも高いのでN2ガスが炉壁内
へ噴出して炉内還元ガスがμ波うジオメータ51゜52
へ流入することがない。
The tip thereof is located 50 to 100 mm or more closer to the core than the mixed layer 10c. The opening at the tip is closed with a lid 7 made of a refractory material (for example, 3i02 porous brick) through which μ waves can pass, so that the charging raw material 10 cannot enter. Cooling water is passed between the outer tubes 41b, 42b and the waveguides 41a, 42a to cool the receiving section 41.42, and the waveguides 41a, 42a
The inside of 42a is under positive pressure due to N2 gas. For this reason, the receiving parts 41 and 42 can be installed even in the high-temperature part inside the lower part of the blast furnace 1, and even if a part of the lid 7 is damaged, the N2 gas pressure inside the receiving part is higher than the pressure inside the furnace, so the N2 Geometer 51゜52 where gas blows out into the furnace wall and the reducing gas inside the furnace generates μ waves.
There is no inflow into the area.

このように構成され、また配置された受信部41゜42
の導波管41a 、 42aを通って、装入原料10が
発するμ波放射エネルギーが導波管41a 、 42a
の外側端部に結合されたアンテナ41c 、 42cに
て検出され、検出された信号はμ波うジオメータ51.
52に与えられる。μ波うジオメータ51.52として
は種々のものが知られており、例えばディツキ−型ラジ
オメータ、l−一タルパワー型ラジオメータがある。該
μ波うジオメータ51.52は演算器6に接続されてお
り、演算器6はラジオメータ51.52から送られてき
た信号に基づいて温度2層厚比、荷下り速度及び分布を
次のようにして検出する。まず温度についてはラジオメ
ータ51.52夫々の受信部41.42前面をコークス
10a及び焼結鉱10bが交互に通過する際に測定され
た大小2つのμ波エネルギー値Pを夫々前記(1)式に
代入し、得られた2つの輝度温度TBの差(輝度温度差
)と、前述した第6図に示す装入原料温度−輝度温度と
の関係より予めめている数式とにより装入原料温度Tを
算出する。
Receiving sections 41 and 42 configured and arranged in this way
The μ wave radiant energy emitted by the charging raw material 10 passes through the waveguides 41a and 42a.
The detected signals are detected by the antennas 41c, 42c coupled to the outer ends of the μ-wave geometers 51.
52. Various types of μ wave geometers 51, 52 are known, such as a Dicksky type radiometer and a 1-tal power type radiometer. The μ-wave geometers 51 and 52 are connected to a calculator 6, and the calculator 6 calculates the temperature two-layer thickness ratio, unloading speed, and distribution as follows based on the signals sent from the radiometers 51 and 52. Detect it like this. First, regarding the temperature, the two large and small μ-wave energy values P measured when the coke 10a and the sintered ore 10b alternately pass through the front surface of the receiving section 41, 42 of each radiometer 51, 52 are calculated using the above formula (1). By substituting the difference between the two brightness temperatures TB (brightness temperature difference) obtained by substituting into Calculate T.

層厚比についてはラジオメータ51.52にてμ波放射
エネルギーを経時的に測定し、次のようにして算出する
。第8図は横軸に時間(1)をとり縦軸にμ波放射エネ
ルギーをとって、その測定結果を示している。図に示さ
れる如くコークス10a Nが受信部41.42の前面
を通過するときはエネルギーレベルが低く、逆に焼結鉱
10b Nが通過するときはエネルギーレベルが高く表
われるので低エネルギーの測定時間tcに対する高エネ
ルギーの測定時間tsの比をめることによりコークス1
0a層厚に対する焼結鉱10b層厚の比、つまり層厚比
を検出することができる。両層の境界の判別にはμ波放
射エネルギーの微分値又は時間的変化量が+閃から次に
一部へ変化する時間を利用する。
The layer thickness ratio is calculated as follows by measuring the μ wave radiation energy over time using radiometers 51 and 52. FIG. 8 shows the measurement results, with time (1) plotted on the horizontal axis and μ-wave radiation energy plotted on the vertical axis. As shown in the figure, when the coke 10a N passes through the front surface of the receiver 41, 42, the energy level is low, and conversely, when the sintered ore 10b N passes, the energy level appears high, so the measurement time is low energy. By calculating the ratio of high energy measurement time ts to tc, coke 1
The ratio of the layer thickness of sintered ore 10b to the layer thickness of 0a, that is, the layer thickness ratio can be detected. The boundary between both layers is determined by using the time at which the differential value or the amount of change over time of the μ-wave radiant energy changes from + flash to partial.

荷下り速度については離隔距離(L)が分っている受信
部41及び42の前面をコークス10aと焼結鉱10b
とが発するμ波放射エネルギーを所定時間測定し、次の
ようにして算出する。第9図は横軸に時間(1)をとり
縦軸にμ波放射エネルギーをとって、その測定結果を示
しており、図の下側は受信部42の下方に位置する受信
部41における測定結果、上側は受信部41における測
定結果であり、夫々のμ波放射エネルギーは境界につい
ては第8図と同様に表われ、また各原料層の厚め方向中
央部では極大又は極小となっている。従ってコークス1
0a Nと焼結鉱10b層との同−境界面又は一方の層
中心部のラジオメータ51及び52による測定時間差Δ
tをめて、μ波うジオメータ51.52の受信部41.
42間距離I7を用いて、荷下り速度を算出する。この
時間差Δtは上述の方法と同様の方法によっても、また
再測定結果のピーク値からめてもよい。
Regarding the unloading speed, the front surfaces of the receiving parts 41 and 42 whose separation distance (L) is known are the coke 10a and the sintered ore 10b.
The μ-wave radiation energy emitted by is measured for a predetermined period of time, and calculated as follows. FIG. 9 shows the measurement results with time (1) plotted on the horizontal axis and μ-wave radiation energy on the vertical axis. As a result, the upper side shows the measurement results in the receiving section 41, and the respective μ-wave radiation energies appear at the boundaries in the same manner as in FIG. 8, and are maximum or minimum at the center in the thickness direction of each raw material layer. Therefore coke 1
Measurement time difference Δ between the interface between 0a N and the sintered ore 10b layer or the center of one layer using the radiometers 51 and 52
t, the receiving section 41. of the μ-wave geometer 51.52.
42 distance I7 is used to calculate the unloading speed. This time difference Δt may be determined by a method similar to the above-mentioned method or from the peak value of the remeasurement result.

温度分布については高炉高さ方向の分布は高炉1の炉壁
2に配した取付高さの異なる受信部41゜42と夫々接
続されているラジオメータ51.52により測定された
μ波放射エネルギーP値を前記(3)式に代入して高さ
方向に整理することにより得られる。半径方向の温度分
布は受信部41.42の先端を炉壁2から所要長突出さ
せることにより検出したμ波放射エネルギー値に基づき
得られ、また周方向の温度分布は高炉1の同一高さの炉
壁2に一定間隔となるように等配された複数の受信部に
より得られたμ波放射エネルギー値に基づいて得られる
Regarding the temperature distribution, the distribution in the blast furnace height direction is based on the μ wave radiant energy P measured by radiometers 51 and 52 connected to receiving sections 41 and 42 of different mounting heights arranged on the furnace wall 2 of the blast furnace 1, respectively. It can be obtained by substituting the values into the above equation (3) and arranging them in the height direction. The temperature distribution in the radial direction is obtained based on the μ wave radiant energy value detected by protruding the tips of the receiving parts 41 and 42 from the furnace wall 2 by a required length, and the temperature distribution in the circumferential direction is obtained by It is obtained based on the μ wave radiant energy values obtained by a plurality of receivers arranged at regular intervals on the furnace wall 2.

粒度分布については、第6図に示した如く輝度温度が粒
度により変化するので、これを利用してめることができ
る。
As for the particle size distribution, since the brightness temperature changes depending on the particle size as shown in FIG. 6, this can be used to determine the particle size distribution.

つまりこの図よりわかる如く装入原料温度に伴って輝度
温度が変化し、またコークスの場合にはその粒径の違い
により同一温度であっても輝度温度が異なっており、ま
た装入原料温度Tと輝度温度TBとの間に一定の関係が
あることから、公知の方法により装入原料温度Tを測定
し、またμ波放射エネルギー値Pを測定して前記fit
式により輝度温度TBをめ、この輝度温度と第6図に基
づきコークスの粒度分布がわかる。
In other words, as can be seen from this figure, the brightness temperature changes with the temperature of the charging material, and in the case of coke, the brightness temperature differs even at the same temperature due to the difference in particle size, and the temperature of the charging material T Since there is a certain relationship between the brightness temperature TB and the fit
The brightness temperature TB is determined by the formula, and the coke particle size distribution can be determined based on this brightness temperature and FIG.

なお本発明に使用している受信部41.、42は水冷さ
れているので高温に対してもまた荷重に対しても十分耐
え得る。そして導波管先端開口部はμ波透過率の高い耐
火物語の蓋によって閉塞されているので装入原料の詰り
による測定誤差が回避でき、1 また炉内の還元ガスによる導波管41a 、 42aの
腐食がなく、長期間安定した検出が可能である。
Note that the receiving section 41. used in the present invention. , 42 are water-cooled and can withstand high temperatures and loads. Since the opening at the tip of the waveguide is closed with a refractory lid with high μ-wave transmittance, measurement errors due to clogging of the charging material can be avoided. There is no corrosion and stable detection is possible over a long period of time.

次に本発明の他の実施例を第10図、第11図に基づき
説明する。
Next, another embodiment of the present invention will be described based on FIGS. 10 and 11.

第10図は1本の受信部に複数、例えば5本の導波管を
有する装置の模式図であり、前述の第7図に示した部分
と同様の部分には同一の番号を付しである。この装置の
受信部43は水冷されて炉壁2を貫通するように炉壁2
に取付けられており、5本の導波管43a 、 43a
・・・を有している。該導波管43a 、 43a −
の先#43d 、 43e 、 43f 、 43g 
、 43hは受信部43の炉壁2内部下側に炉壁2寄り
の先端43dが混合層10cより内側となるように設け
られており、各先端開口部はμ波透過可能な蓋7により
閉塞されている。各画7を透過したμ波は導波管切替器
8により交番的にμ波うジオメータ53へ送られ、μ波
うジオメータ53の出力信号は演算器61へ与えられる
。演算器61ば入力信号に基づき装入原料の挙動を検出
する。このように構成された本発明装置は1つの受信部
で炉内半径方向の原料2 挙動、例えば第10図に示す如き炉半径方向の装入原料
の勾配等を捉えることができる。またこれを炉の高さ方
向1周方向に配置することにより第7図に示した装置に
よる検出結果と同様な結果を得ることができる。
FIG. 10 is a schematic diagram of a device having a plurality of waveguides, for example, five waveguides in one receiving section, and parts similar to those shown in FIG. 7 above are given the same numbers. be. The receiving section 43 of this device is water-cooled and is inserted into the furnace wall 2 so as to penetrate through the furnace wall 2.
are attached to the five waveguides 43a, 43a.
···have. The waveguides 43a, 43a-
Tip #43d, 43e, 43f, 43g
, 43h are provided on the lower side inside the furnace wall 2 of the receiving part 43 so that the tip 43d closer to the furnace wall 2 is inside the mixed layer 10c, and each tip opening is closed by a lid 7 that can transmit μ waves. has been done. The μ-waves transmitted through each image 7 are alternately sent to the μ-wave geometer 53 by the waveguide switch 8, and the output signal of the μ-wave geometer 53 is given to the arithmetic unit 61. The computing unit 61 detects the behavior of the charged raw material based on the input signal. The apparatus of the present invention configured in this manner can detect the behavior of the raw material 2 in the radial direction within the furnace, such as the gradient of the charged raw material in the radial direction of the furnace, as shown in FIG. 10, with one receiving section. Further, by arranging this in one circumferential direction in the height direction of the furnace, it is possible to obtain results similar to those detected by the apparatus shown in FIG.

第11図はガスサンプリング用のゾンデを受信部として
用いた装置の模式図である。この装置は炉内のガスサン
プリング用の水冷されているゾンデ44を導波管と兼用
し、炉外のゾンデ44基端側に三方管92を設けてμ波
の直進方向側にμ名うジオメータ54を、一方の分岐側
にガス分析器91を接続し、三方管92のμ波うジオメ
ータ54側をμ波透過性の蓋7により閉塞させてあり、
ガスがガス分析器91の方へのみ流れるようにすると共
にμ波をμ波うジオメータ54により測定できるように
して演算器62にて挙動を検出するようにしたものであ
る。したがってこの装置により同位置でのガス分析と原
料挙動とが検出できる。
FIG. 11 is a schematic diagram of an apparatus using a gas sampling sonde as a receiving section. In this device, a water-cooled sonde 44 for gas sampling inside the furnace is also used as a waveguide, and a three-way tube 92 is installed at the proximal end of the sonde 44 outside the furnace, and a geometer with μ waves on the straight direction side of the μ waves is installed. 54, a gas analyzer 91 is connected to one branch side, and the μ-wave transmitting geometer 54 side of the three-way tube 92 is closed with a μ-wave transparent lid 7.
The gas is made to flow only toward the gas analyzer 91, and the micro-waves can be measured by the micro-wave geometer 54, so that the behavior is detected by the computing unit 62. Therefore, this device allows gas analysis and raw material behavior detection at the same location.

以上詳述した如く本発明に係る高炉内装入原料の挙動検
出装置は、装入原料が発するマイクロ波帯の放射エネル
ギーを受信すべく炉壁を貫通させ、その先端を炉壁内面
より所要長突出せしめると共に開口部をマイクロ波透過
性の蓋で閉塞してあり、また冷却手段を備えた部上の受
信部と、受信した放射エネルギーを測定するラジオメー
タと、測定結果に基づき装入原料の挙動を検出する演算
器とを具備しているので、混合層からのマイクロ波を受
信することがなく装入原料の挙動を正確に検出でき、ま
た開口部を閉塞する蓋により炉内還元ガスの流入がなく
、また冷却されているので受信部が炉内雰囲気に対して
強(長期に亘り安定した検出が行い得、更に検出結果に
基づき高炉操業を安定して行うことができる等本発明は
優れた効果を奏する。
As described in detail above, the apparatus for detecting the behavior of raw material charged in a blast furnace according to the present invention penetrates the furnace wall in order to receive the microwave band radiant energy emitted by the charged raw material, and its tip protrudes for a required length from the inner surface of the furnace wall. At the same time, the opening is closed with a microwave-transparent lid, and there is also a receiving section on the section equipped with a cooling means, a radiometer that measures the received radiant energy, and a radiometer that measures the behavior of the charged material based on the measurement results. The behavior of the charging material can be accurately detected without receiving microwaves from the mixed layer, and the lid that closes the opening prevents the inflow of reducing gas into the furnace. Moreover, since the receiving part is cooled, the receiving part is strong against the furnace atmosphere (stable detection can be performed for a long period of time, and furthermore, blast furnace operation can be performed stably based on the detection results, etc.). It has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図は従来装置による荷下
り速度の測定内容を示した模式図、第5図は各高炉装入
原料の温度とμ波放射エネルギーとの関係を示したグラ
フ、第6図は各高炉装入原料の温度と輝度温度との関係
を示したグラフ、第7図は本発明の実施例を示した模式
図、第8図。 第9図は測定したμ波放射エネルギーを示したグラフ、
第10図、第11図は本発明の他の実施例を示した模式
図である。 1・・・高炉 2・・・炉壁 41.42.43.44
・・・受信部IO・・・装入原料 特 許 出願人 住友金属工業株式会社 ゛代理人 弁
理士 河 野 登 夫 5 芋I圀 」 /U 茅?凹 v3 図 G /l 第4図 装−入芹糾;ML度(°に) 第 汐図
Figures 1, 2, 3, and 4 are schematic diagrams showing the measurement contents of the unloading speed using conventional equipment, and Figure 5 is the relationship between the temperature of each blast furnace charging material and μ-wave radiant energy. FIG. 6 is a graph showing the relationship between the temperature and brightness temperature of each blast furnace charging material, FIG. 7 is a schematic diagram showing an example of the present invention, and FIG. Figure 9 is a graph showing the measured μ-wave radiation energy.
FIGS. 10 and 11 are schematic diagrams showing other embodiments of the present invention. 1... Blast furnace 2... Furnace wall 41.42.43.44
...Receiving section IO...Charging raw material patent Applicant: Sumitomo Metal Industries, Ltd. ゛Representative: Patent attorney Noboru Kono 5 Imo Ikuni'' /U Kaya? Concave v3 Fig. G /l Fig. 4 - Inseriji; ML degree (°) No. 1

Claims (1)

【特許請求の範囲】[Claims] 1、高炉内に積層装入された原料の挙動を検出する装置
において、前記装入原料が発するマイクロ波帯の放射エ
ネルギーを受信すべく炉壁を貫通させ、その先端を炉壁
内面より所要長突出せしめると共に開口部をマイクロ波
透過性の蓋老閉塞してあり、また冷却手段を備えた筒状
の受信部と、受信した放射エネルギーを測定するラジオ
メータと、測定結果に基づき装入原料の挙動を検出する
演算器とを具備することを特徴とする高炉内装入原料の
挙動検出装置。
1. In a device that detects the behavior of raw materials stacked and charged in a blast furnace, the furnace wall is penetrated in order to receive the microwave band radiant energy emitted by the charged raw materials, and the tip is inserted for a required length from the inner surface of the furnace wall. It protrudes and the opening is closed with a microwave-transparent lid, and it also has a cylindrical receiver equipped with a cooling means, a radiometer that measures the received radiant energy, and a radiometer that measures the charging material based on the measurement results. A behavior detection device for raw material input into a blast furnace, characterized by comprising a computing unit for detecting behavior.
JP18417183A 1983-09-30 1983-09-30 Device for detecting behaviour of raw material fed to blast furnace Pending JPS6075505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18417183A JPS6075505A (en) 1983-09-30 1983-09-30 Device for detecting behaviour of raw material fed to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18417183A JPS6075505A (en) 1983-09-30 1983-09-30 Device for detecting behaviour of raw material fed to blast furnace

Publications (1)

Publication Number Publication Date
JPS6075505A true JPS6075505A (en) 1985-04-27

Family

ID=16148603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18417183A Pending JPS6075505A (en) 1983-09-30 1983-09-30 Device for detecting behaviour of raw material fed to blast furnace

Country Status (1)

Country Link
JP (1) JPS6075505A (en)

Similar Documents

Publication Publication Date Title
CA1165726A (en) Method and apparatus for controlling the heat balance in aluminum reduction cells
US4442706A (en) Probe and a system for detecting wear of refractory wall
CA2053298C (en) Continuous-use molten metal inclusion sensor
JP6140822B2 (en) Method and apparatus for measuring cast iron and slag levels in a blast furnace
JPH0345325B2 (en)
EP3183521B1 (en) A system and a method for determining temperature of a metal melt in an electric arc furnace
US9599401B2 (en) Method and a control system for controlling a melting and refining process
CN114688883B (en) Electrode sounding system and method for electrode of submerged arc furnace
CN103969510B (en) Dielectric constant measurement device
US20190195810A1 (en) Method and apparatus for detecting deposits in a pipe system of an apparatus
US4004219A (en) Method for measuring the conditions inside a metal covered furnace during its operation
JPS6075505A (en) Device for detecting behaviour of raw material fed to blast furnace
JPS6059007A (en) Detection of behavior of raw material charged into blast furnace
Bassett A Free‐Space Focused Microwave System to Determine the Complex Permittivity of Materials to Temperatures Exceeding 2000° C
JPH0138842B2 (en)
JPS6013009A (en) Method and device for measuring blast furnace charge
CN217819070U (en) Furnace wall temperature measuring device
JPS6055252A (en) Detection of boundary and grain size of material charged in blast furnace
CN112400098A (en) Detection system for detecting metal liquid level in smelting furnace
CN211291004U (en) Temperature detection device in rotary kiln
JPS5983004A (en) Method for measuring thickness of wall of refractories for fused metal container
JPS6136563B2 (en)
KR19990009490A (en) Method and apparatus for measuring melt level by measuring voltage difference in blast furnace bar
JPH09263809A (en) Method for measuring distance to charged material surface in blast furnace and instrument therefor
KR0176919B1 (en) Food temp.control method and device thereof in ref.