JPS6259163B2 - - Google Patents

Info

Publication number
JPS6259163B2
JPS6259163B2 JP58121983A JP12198383A JPS6259163B2 JP S6259163 B2 JPS6259163 B2 JP S6259163B2 JP 58121983 A JP58121983 A JP 58121983A JP 12198383 A JP12198383 A JP 12198383A JP S6259163 B2 JPS6259163 B2 JP S6259163B2
Authority
JP
Japan
Prior art keywords
layer
microwave
blast furnace
opening
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58121983A
Other languages
Japanese (ja)
Other versions
JPS6013009A (en
Inventor
Hirokatsu Yashiro
Jiro Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12198383A priority Critical patent/JPS6013009A/en
Priority to DE8383304312T priority patent/DE3363514D1/en
Priority to EP83304312A priority patent/EP0101219B1/en
Priority to CA000433587A priority patent/CA1200903A/en
Priority to US06/519,245 priority patent/US4641083A/en
Publication of JPS6013009A publication Critical patent/JPS6013009A/en
Publication of JPS6259163B2 publication Critical patent/JPS6259163B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/2845Electromagnetic waves for discrete levels

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉操業において、鉄鉱石、コークス
等の高炉装入物の降下速度、層厚、粒度等を計測
する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring the descending rate, layer thickness, particle size, etc. of blast furnace charges such as iron ore and coke during blast furnace operation.

〔従来技術〕[Prior art]

高炉操業に際し、高炉下部高温領域(炉腹部お
よび朝顔部)における装入物の降下速度、層厚、
粒度、融着層の層厚等、炉内装入物の状態を知る
ことは極めて重要である。
During blast furnace operation, the rate of descent of the charge, layer thickness,
It is extremely important to know the condition of the contents in the furnace, such as particle size and thickness of the fused layer.

従来、比較的低温度領域(400℃以下)におい
て、上記のような計測に使用する検出法は種々開
発されている。例えば、鉱石とコークスの磁気特
性の差を利用した検出方法、鉱石とコークスの電
気抵抗の差を利用した検出方法等々である。しか
しながら、これらの方法は、磁気特性がキユリー
点以上で消滅したり、電極が高温帯で劣化した
り、付着物により絶縁特性が劣化したりするなど
の理由により、使用範囲が上記のような低温域に
限定されていた。
Conventionally, various detection methods for use in the above-mentioned measurements have been developed in a relatively low temperature range (400° C. or lower). For example, there are detection methods that utilize the difference in magnetic properties between ore and coke, detection methods that utilize the difference in electrical resistance between ore and coke, and the like. However, these methods cannot be used in the low-temperature range mentioned above due to reasons such as magnetic properties disappearing above the Curie point, electrodes deteriorating at high temperatures, and insulation properties deteriorating due to deposits. was limited to the area.

本発明者は、このような事情から先に高炉下部
高温領域における計測方法について研究を進め、
電波の透過特性あるいは反射特性の差を利用して
高炉内装入物を検出する方法を発明し、特願昭57
−135354号、同57−147967号として特許出願し
た。
Under these circumstances, the present inventor first conducted research on a measurement method in the high temperature region of the lower part of the blast furnace.
Invented a method for detecting the contents of blast furnaces by utilizing differences in the transmission or reflection characteristics of radio waves, and received a patent application in 1983.
Patent applications were filed as Nos.-135354 and 57-147967.

これらの特許出願に開示した方法は、高温領域
における高炉装入物の計測方法として極めて有効
であり、その検出端を垂直方向に多段に装着すれ
ば、コークス層、鉱石層、融着層の層厚、降下速
度等も測定可能である。
The methods disclosed in these patent applications are extremely effective as a method for measuring blast furnace charge in high-temperature regions, and if the detection ends are mounted vertically in multiple stages, the layers of the coke layer, ore layer, and cohesive layer can be measured. Thickness, descent speed, etc. can also be measured.

しかしながらこの方法では、電波を送、受信す
る導波管のそれぞれを各一個の筐体で包囲した検
出端を複数個備える必要があり、筐体それぞれを
炉壁に取付ける作業が大変である。
However, in this method, it is necessary to provide a plurality of detection ends in which each of the waveguides for transmitting and receiving radio waves is surrounded by a housing, and the work of attaching each housing to the furnace wall is difficult.

〔発明の目的〕[Purpose of the invention]

本発明は前記の発明をさらに改良し、高炉炉内
装入物の降下速度、層厚、粒度等の測定を簡単化
し、1個の装置で行なうことを意図したものであ
る。
The present invention further improves the above-mentioned invention, and is intended to simplify the measurement of the falling rate, layer thickness, particle size, etc. of the contents in the blast furnace, and to perform the measurements with one device.

〔発明の構造、作用〕 上記目的を達成するために本発明で開発した装
置は、少なくとも3個の導波管を内蔵し冷却用流
体を用いる冷却機構を備えた筐体を、筐体先端部
が高炉内装入物の間に挿入された状態で高炉炉壁
に取付け、該導波管の先端部に設けたマイクロ波
放射用開口と、マイクロ波受信用開口とをそれぞ
れ筐体の反対面に設け、前記マイクロ波受信用開
口を前記マイクロ波放射用開口とは垂直方向に高
さを変えて配置するとともに、前記マイクロ波放
射用開口を設けた導波管にマイクロ波送受信装置
を、前記マイクロ波受信用開口を設けた導波管に
マイクロ波受信装置を、各々接続してなる高炉装
入物の計測装置である。
[Structure and operation of the invention] In order to achieve the above object, the device developed by the present invention includes a housing having at least three built-in waveguides and a cooling mechanism using a cooling fluid. is inserted between the contents of the blast furnace and attached to the wall of the blast furnace, and a microwave radiation opening and a microwave reception opening provided at the tip of the waveguide are respectively placed on opposite sides of the housing. The microwave receiving aperture is arranged at a different height in the vertical direction from the microwave emitting aperture, and a microwave transmitter/receiver is installed in the waveguide provided with the microwave emitting aperture. This is a blast furnace charge measuring device in which microwave receiving devices are connected to waveguides provided with wave receiving openings.

上記の本発明の装置を用い、高炉炉壁に冷却機
構を備えた筐体をその先端部が高炉内装入物の間
に挿入された状態に装着し、該筐体から高炉装入
物層内にマイクロ波を放射すると共に、該筐体の
垂直方向の複数箇所において高炉装入物層で散乱
したマイクロ波を受信し、このマイクロ波から高
炉装入物層を識別し、高炉装入物の降下速度、層
厚、粒度、融着層の層厚等の、炉内状況を計測す
ることができる。
Using the above-mentioned apparatus of the present invention, a casing equipped with a cooling mechanism is attached to the blast furnace wall with its tip inserted between the blast furnace charges, and the casing is inserted into the blast furnace charge layer from the casing. At the same time, the microwaves scattered by the blast furnace charge layer are received at multiple locations in the vertical direction of the housing, and the blast furnace charge layer is identified from the microwaves, and the blast furnace charge layer is identified. It is possible to measure the conditions inside the furnace, such as the rate of descent, layer thickness, particle size, and thickness of the fused layer.

以下図面に示す実施例を基にして本発明の内容
を詳細に説明する。
The contents of the present invention will be explained in detail below based on embodiments shown in the drawings.

第1図は高炉の外観を示す説明図で、1は炉体
である。2は本発明の一実施例である計測装置で
あり、炉腹に取付けてある。3は羽口、4は融着
帯である。
FIG. 1 is an explanatory diagram showing the appearance of a blast furnace, and 1 is a furnace body. Reference numeral 2 denotes a measuring device which is an embodiment of the present invention, and is attached to the furnace belly. 3 is a tuyere, and 4 is a cohesive zone.

第2a図に計測装置2の拡大側面を示し、第2
b図に第2a図のB―B線断面図を、第2c
図に第2a図のC―C線断面図を示す。導波
管6,6および6を内蔵した筐体2′を高
炉壁10に取付ける。この導波管6の炉外側に
は、マイクロ波送受信器5が接続し、また導波管
,6の炉外側にはマイクロ波受信器8,9
が接続する。また、導波管6,6,6の炉
内側端部は筐体2′に設けた開口7,7,7
と接続してある。なお、第2b図に示すよう
に、開口7は開口7,7とは反対側に設け
てある。11は筐体2′を冷却する冷却水の入
口、12は出口である。13,13,13
は導波管6,6,6内のパージ用ガスの吹
込口である。14はコークス層、15は鉱石層で
ある。第2c図に示すPRGは耐圧石英ガラスで
ある。
Figure 2a shows an enlarged side view of the measuring device 2.
Figure b shows a sectional view taken along line BB in Figure 2a, and Figure 2c
The figure shows a sectional view taken along the line CC in FIG. 2a. A housing 2' containing waveguides 6 1 , 6 2 and 6 3 is attached to the blast furnace wall 10 . A microwave transceiver 5 is connected to the outside of the furnace of the waveguide 6 1 , and microwave receivers 8 and 9 are connected to the outside of the furnace of the waveguides 6 2 and 6 3 .
connects. Furthermore, the inner side ends of the waveguides 6 1 , 6 2 , 6 3 are connected to openings 7 1 , 7 2 , 7 provided in the housing 2'.
It is connected to 3 . Note that, as shown in FIG. 2b, the opening 7 1 is provided on the opposite side from the openings 7 2 and 7 3 . 11 is an inlet of cooling water for cooling the housing 2', and 12 is an outlet. 13 1 , 13 2 , 13 3
is an inlet for purge gas in the waveguides 6 1 , 6 2 , 6 3 . 14 is a coke layer, and 15 is an ore layer. The PRG shown in FIG. 2c is a pressure-resistant quartz glass.

本発明の装置により高炉装入物の各種計測を行
なうには、マイクロ波送受信器5によりマイクロ
波〔例えば+20dBm(100W),10GHz)を発生さ
せ、導波管6を介して開口7から装入物層内
に放射する。放射されたマイクロ波は、コークス
層14あるいは鉱石層15内で散乱されながら開
口7および開口7に到達するので、導波管6
および6で炉外に導き出し、マイクロ波受信
器8および9で検出し記録する。
In order to carry out various measurements of the blast furnace charge using the apparatus of the present invention, microwaves (for example, +20 dBm (100 W), 10 GHz) are generated by the microwave transmitter/receiver 5 and are transmitted from the opening 7 1 through the waveguide 6 1 . Radiate into the charge layer. The emitted microwaves reach the openings 7 2 and 7 3 while being scattered within the coke layer 14 or the ore layer 15, so the waveguide 6
2 and 6 3 out of the furnace, and detected and recorded by microwave receivers 8 and 9.

開口7の周囲が空間になつているときに比
べ、開口7の直前がコークスあるいは鉱石が塞
がれているときの方が、マイクロ波が反射し、マ
イクロ波送受信器5に戻るマイクロ波が大きくな
る。そこでマイクロ波送受信器5で反射波の強度
を測定すれば後述するように装入物の粒度dを計
測することができる。
Compared to when there is a space around the opening 7 1 , when the area just in front of the opening 7 1 is blocked with coke or ore, the microwave is reflected and returns to the microwave transmitter/receiver 5. becomes larger. Therefore, by measuring the intensity of the reflected wave with the microwave transmitter/receiver 5, the particle size d of the charge can be measured as described later.

記録した信号の実例を第3a図および第3b図
に示す。第3a図は、開口7,7に到達した
散乱波の信号でCはコークス層による信号を、θ
は鉱石層による信号である。
Examples of recorded signals are shown in Figures 3a and 3b. Figure 3a shows the signals of the scattered waves that have reached the apertures 7 2 and 7 3 , and C represents the signal due to the coke layer.
is a signal from the ore layer.

第3b図は開口7での反射波の信号をローパ
スフイルタを通してノイズを除いたものである。
FIG. 3b shows the signal of the reflected wave at the aperture 71 through which noise is removed by passing it through a low-pass filter.

第3a図から明らかなように散乱波の波形は、
開口7側の方が開口7側よりもΔtだけ遅れ
ている。その理由は装入物が炉頂から下りて来る
のに対して開口7が開口7より距離だけ下
にあるからである。従つて開口7側の信号は開
口7側の信号よりもに比例した遅れΔtをも
つ。そこで装入物の降下速度vは、 v=・c/Δt (但し、cは筐体形状等によつて決まる補正係
数で、実験的に決定する。第2図の場合は0.5) によつて求めることができる。
As is clear from Figure 3a, the waveform of the scattered wave is
The opening 73 side lags behind the opening 72 side by Δt. This is because the charge comes down from the top of the furnace, whereas the opening 73 is a distance below the opening 72 . Therefore, the signal on the aperture 73 side has a delay Δt proportional to that of the signal on the aperture 72 side. Therefore, the descending speed v of the charge is v=・c/Δt (where c is a correction coefficient determined by the housing shape, etc., and is determined experimentally. In the case of Fig. 2, it is 0.5). You can ask for it.

降下速度vが求められれば、コークス層厚Dc
は、 Dc=tc×v (但し、tcはコークス層の信号の継続時間) により求めることができ、また鉱石層厚Doは、 Do=to×v (但しtoは鉱石層の信号の継続時間) により求めることができる。
If the descending speed v is determined, the coke layer thickness Dc
can be obtained from Dc=tc×v (where tc is the duration of the signal of the coke layer), and the ore layer thickness Do is calculated as Do=to×v (where to is the duration of the signal of the ore layer). It can be found by

また、装入物の粒度αは、第3b図に示すよう
に、開口7の前面を装入物が通過する毎に反射
波のピークが検出されるので、その間隔τと降下
速度vから、 α=τ×v により求めることができる。
In addition, as shown in Fig. 3b, the particle size α of the charge is calculated from the interval τ and the falling speed v, since the peak of the reflected wave is detected every time the charge passes the front surface of the opening 71 . , α=τ×v.

さらに、融着層の層厚は、本発明装置を高炉朝
顔部に取付け、開口7および開口7の前面を
通過する装入物を検出することにより知ることが
できる。すなわち開口7の前面にコークス層が
存在するときには、第3図の場合と同様に出力が
大きい散乱波の受信出力が検出されるが、融着帯
根部が降下し、開口7の前面に到達すると、受
信出力が全く検出されない程度に低下するので、
この信号の変化から融着層を検知することができ
る。さらに融着帯根部が開口7の前面を通過し
たことを反射波受信信号により確認すれば、融着
層の層厚を求めることができる。
Further, the thickness of the fused layer can be determined by attaching the device of the present invention to the morning glory section of the blast furnace and detecting the charge passing through the front surfaces of the openings 72 and 71 . In other words, when there is a coke layer in front of the opening 72 , the received output of a scattered wave with a large output is detected as in the case of FIG . Once it reaches that point, the received power drops to such an extent that it cannot be detected at all.
The fused layer can be detected from the change in this signal. Further, by confirming from the reflected wave reception signal that the root of the cohesive zone has passed through the front surface of the opening 71 , the thickness of the cohesive layer can be determined.

なお、開口7(送信側)と開口7(受信
側)とを互に反対側に設けた理由は、開口を同一
側に設けると、開口7から放射されたマイクロ
波が筐体表面を装入物の間を伝播して開口7
よび7に達し、このレベルが鉱石層内を伝播し
たマイクロ波のレベルより大きいため、層の検出
を正確に行なえなくなるからである。なお、図示
のものでは、送信側開口を1個にしているが、複
数個設けても差支えないことは勿論である。
The reason why the aperture 7 1 (transmission side) and the aperture 7 2 (reception side) are provided on opposite sides is that if the apertures are provided on the same side, the microwaves emitted from the aperture 7 1 will be transmitted to the surface of the housing. This is because the microwaves propagate between the charges and reach the openings 72 and 73 , and this level is higher than the level of the microwaves propagated within the ore layer, making it impossible to accurately detect the layer. In the illustrated example, there is only one transmitting side aperture, but it goes without saying that a plurality of apertures may be provided.

次に本発明の装置を用いた操業例を説明する。 Next, an example of operation using the apparatus of the present invention will be explained.

長さ2100mm、幅70mm、厚み300mmの寸法からな
る筐体を高炉炉腹部の炉壁に取付け、かつその先
端を炉内レンガ内面より500mm突出させて設置し
た。また、開口7と開口7および7との距
離をそれぞれ200mmとした。マイクロ波送受信器
5により9.4GHz,100mW(+20dBm)のマイク
ロ波を発生させ、開口7から装入物内に放射し
た。装入物を伝播して開口7および7を介し
てマイクロ波受信器8および9で第3a図に示す
ような散乱波を受信した。この受信波の継続時間
tcおよびtoからコークス層および鉱石層を識別す
ることができた。なお、このときの受信電力のレ
ベルはコークス層で平均10-5mW(−50dBm)、
鉱石層で平均10-9mW(−90dBm)であつた。ま
た、コークス層および鉱石層の層厚はそれぞれ
0.44mおよび0.36mであつた。
A casing with dimensions of 2100 mm in length, 70 mm in width, and 300 mm in thickness was attached to the wall of the abdomen of the blast furnace, with its tip protruding 500 mm from the inner surface of the bricks inside the furnace. Further, the distances between the opening 71 and the openings 72 and 73 were each 200 mm. Microwaves of 9.4 GHz and 100 mW (+20 dBm) were generated by the microwave transceiver 5 and radiated into the charged material through the opening 71 . Scattered waves propagated through the charge and were received by the microwave receivers 8 and 9 through the openings 72 and 73 as shown in FIG. 3a. Duration of this received wave
The coke layer and ore layer could be identified from tc and to. The received power level at this time was an average of 10 -5 mW (-50 dBm) in the coke layer.
The average power was 10 -9 mW (-90 dBm) in the ore layer. In addition, the thickness of the coke layer and ore layer is
They were 0.44m and 0.36m.

次に装入物の降下不良状態を検出する場合の実
例について説明する。第4a図―第4c図はその
検出例を示すもので、第4a図はコークス層が長
時間停滞した場合を、第4b図は鉱石層が長時間
停滞した場合を示す。これらの場合、散乱波の信
号は、それぞれコークス層あるいは鉱石層の信号
が持続し、なおかつ反射波の信号が変化しなくな
ることから装入物が停滞していることがわかる。
なお、第4c図はコークス層と鉱石層の混合層が
降下している状態を示す。この場合、散乱波の信
号はコークス層と鉱石層の中間のレベルになり、
かつリツプルを含んだ変化の大きい信号になる。
Next, an actual example of detecting a state in which a load is not properly lowered will be described. Figures 4a to 4c show examples of such detection, with Figure 4a showing the case where the coke layer has stagnated for a long time, and Figure 4b showing the case where the ore layer has stagnated for a long time. In these cases, it can be seen that the charge is stagnant because the scattered wave signal continues to be the signal of the coke layer or the ore layer, and the reflected wave signal does not change.
Note that FIG. 4c shows a state in which a mixed layer of a coke layer and an ore layer is descending. In this case, the scattered wave signal will be at a level between the coke layer and the ore layer,
In addition, it becomes a signal with large changes including ripples.

第5図はこの測定を長期間継続した場合の実例
である。測定開始5日目頃から鉱石層厚が厚く、
コークス層厚が薄くなり始め、10日目頃から降下
速度の乱れが顕著になると共に、降下速度は徐々
に遅くなつた。13日目から17日目までは第4a
図、第4b図のような降下不良状態が続き、降下
速度、層厚、粒度とも測定できなかつた。これは
本発明装置の取付け位置で局所的な装入物の停滞
現象が起つたことを示すものである。35日目から
45日目までは、第4c図のような混合層の信号が
続いている。その数日前から平均鉱石粒度は小さ
くなり、鉱石層厚は薄く、コークス層厚は厚くな
る傾向にある。これは鉱石がその下のコークス層
に入り込みコークス主体の混合層ができたことを
示している。
FIG. 5 shows an example where this measurement is continued for a long period of time. From around the 5th day of measurement, the ore layer became thicker.
The coke layer thickness began to thin, and from around the 10th day, the turbulence in the falling rate became noticeable, and the falling rate gradually slowed down. 4a from day 13 to day 17
The poor descent state as shown in Figures 4b and 4b continued, and the rate of descent, layer thickness, and grain size could not be measured. This indicates that a local charge stagnation phenomenon has occurred at the installation location of the device of the present invention. From day 35
Until the 45th day, the mixed layer signal continues as shown in Figure 4c. From a few days before that, the average ore particle size tends to become smaller, the ore layer thickness becomes thinner, and the coke layer thickness tends to become thicker. This indicates that the ore entered the coke layer below, creating a mixed layer consisting mainly of coke.

次に本発明により融着層の厚さを測定した場合
の実例を示す。この場合は、検出端となる筐体を
高炉朝顔部に装着する。この位置は通常融着帯根
部の位置が下つて筐体の位置に至ると、前述の検
出手段および信号処理によつて、降下速度、コー
クス層の厚さ、融着層の厚さ、粒度等が測定でき
る。
Next, an example will be shown in which the thickness of the adhesive layer is measured according to the present invention. In this case, the casing serving as the detection end is attached to the morning glory part of the blast furnace. Normally, when the root of the cohesive zone descends and reaches the position of the casing, the above-mentioned detection means and signal processing determine the falling speed, thickness of the coke layer, thickness of the cohesive layer, particle size, etc. can be measured.

第6a図および第6b図はその実例であつて、
A時以前は融着帯は筐体の上方にあるのでコーク
ス層のみが検出される。A時において融着帯根部
が開口7に達したので散乱波受信信号のレベル
は−100dBm(マイクロ波が全く受信されない状
態)まで下り、融着帯根部を検出した。また、A
時とB時の間では、開口7と開口7の間で消
失しているため、開口7では融着帯根部の信号
は検出されない。そこで融着帯根部下端が開口7
と7との間にあることを確認することができ
る。さらにB時以降になると、融着帯根部が開口
以下のレベルまで下つているので、融着帯根
部の降下速度、層厚、粒度等を正確に測定でき
る。因みに、B時における降下速度は3m/時、
平均融着層厚は0.2m、平均コークス粒度は40m/
mであつた。なお、融着層が開口7に達したと
きの特徴として、反射信号が大きくなり、しかも
変化が小さくなる現象が顕著に現われる。
Figures 6a and 6b are examples of this,
Before time A, the cohesive zone is above the casing, so only the coke layer is detected. At time A, the root of the cohesive zone reached the opening 72 , so the level of the scattered wave reception signal decreased to -100 dBm (a state in which no microwave was received), and the root of the cohesive zone was detected. Also, A
Between time and time B, the signal disappears between the aperture 72 and the aperture 71 , so no signal from the root of the cohesive zone is detected at the aperture 73 . Therefore, the lower end of the root of the cohesive zone has an opening 7.
It can be confirmed that it is between 1 and 72 . Furthermore, after time B, the root of the cohesive zone has descended to a level below the opening 71 , so that the descending speed, layer thickness, grain size, etc. of the root of the cohesive zone can be accurately measured. By the way, the descending speed at time B is 3m/hour.
Average cohesive layer thickness is 0.2m, average coke particle size is 40m/
It was m. Note that when the fusion layer reaches the opening 71 , a phenomenon in which the reflected signal becomes large and the change becomes small appears conspicuously.

また、融着層の厚みの変化(開口7で検出さ
れるときより開口7で検出されるときの方が薄
いこと)より、融着帯の消失位置(融着帯根部下
端)の推定も可能である。
In addition, the location of disappearance of the cohesive zone (lower end of the root of the cohesive zone) can be estimated from the change in the thickness of the cohesive layer ( it is thinner when detected at opening 7 1 than when detected at opening 7 2). is also possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、装入物の
降下速度、層厚、粒度等を測定し得るのはもとよ
り、複数個の導波管を1つの筐体に収納してこの
筐体を高炉炉壁に取付けるので、取付け作業や取
付け部の炉壁保守が容易であると共に、放射用開
口と受信用口とを同一筐体の反対面に設けている
ので、上述の検出を正確に行なうことができる。
さらに、本発明によれば高炉装入物の各状態を計
測することができ、高炉の操業を円滑に行なう上
でその効果は極めて大きい。
As explained above, according to the present invention, it is possible not only to measure the descending speed, layer thickness, particle size, etc. of the charge, but also to store a plurality of waveguides in one housing and to use the same housing. Since it is attached to the blast furnace wall, installation work and furnace wall maintenance of the attachment part are easy, and since the radiation opening and reception opening are provided on opposite sides of the same housing, the above-mentioned detection can be performed accurately. be able to.
Further, according to the present invention, each state of the blast furnace charge can be measured, which is extremely effective in smoothly operating the blast furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炉の外観を示す説明図である。第2
a図〜第2c図は本発明の計測装置の構造を示す
ものであり、第2a図は一部を切欠した側面図、
第2b図は第2a図のB―B線断面図、第2
c図は第2a図のC―C線断面図である。第
3a図および第3b図は、本発明の装置によりコ
ークス層および鉱石層の検出および粒度測定を行
なつた実測データを示すグラフである。第4a
図、第4b図および第4c図は、本発明の装置で
装入物の降下不良状態を検出した実測データを示
すグラフ、第5図は同じく長期間の測定データを
示すグラフである。第6a図および第6b図は、
本発明の装置で融着層の厚さを測定した場合の測
定データを示すグラフである。 1:高炉、2:計測装置、2′:筐体、3:羽
口、4:融着帯、5:マイクロ波送受信器、6
,6,6:導波管、7,7,7:開
口、8,9:マイクロ波受信器、10:炉壁、1
1:冷却水の入口、12:冷却水の出口、13
,13,13:パージ用ガス吹込口、1
4:コークス層、15:鉱石層、PRG:耐圧石
英ガラス。
FIG. 1 is an explanatory diagram showing the appearance of a blast furnace. Second
Figures a to 2c show the structure of the measuring device of the present invention, and Figure 2a is a partially cutaway side view;
Figure 2b is a sectional view taken along line B-B of Figure 2a,
Figure c is a sectional view taken along line CC in Figure 2a. FIGS. 3a and 3b are graphs showing actual measurement data obtained by detecting coke layers and ore layers and measuring particle sizes using the apparatus of the present invention. 4th a
Figures 4b and 4c are graphs showing actual measurement data for detecting failure of the load to descend using the apparatus of the present invention, and Figure 5 is a graph showing similarly measured data over a long period of time. Figures 6a and 6b are
It is a graph showing measurement data when the thickness of a fusion layer is measured with the apparatus of the present invention. 1: Blast furnace, 2: Measuring device, 2': Housing, 3: Tuyere, 4: Cohesive zone, 5: Microwave transceiver, 6
1 , 6 2 , 6 3 : Waveguide, 7 1 , 7 2 , 7 3 : Opening, 8, 9: Microwave receiver, 10: Furnace wall, 1
1: Cooling water inlet, 12: Cooling water outlet, 13
1 , 13 2 , 13 3 : Purge gas inlet, 1
4: Coke layer, 15: Ore layer, PRG: Pressure-resistant quartz glass.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも3個の導波管を内蔵し冷却用流体
を用いる冷却機構を備えた筐体を、筐体先端部が
高炉内装入物の間に挿入された状態で高炉炉壁に
取付け、該導波管の先端部に設けたマイクロ波放
射用開口と、マイクロ波受信用開口とをそれぞれ
筐体の反対面に設け、前記マイクロ波受信用開口
を前記マイクロ波放射用開口とは垂直方向に高さ
を変えて配置するとともに、前記マイクロ波放射
用開口を設けた導波管にマイクロ波送受信装置
を、前記マイクロ波受信用開口を設けた導波管に
マイクロ波受信装置を、各々接続してなる高炉装
入物の計測装置。
1. Attach a housing equipped with a cooling mechanism that incorporates at least three waveguides and uses a cooling fluid to the blast furnace wall with the housing tip inserted between the contents of the blast furnace, and A microwave radiation aperture provided at the tip of the wave tube and a microwave reception aperture are provided on opposite sides of the housing, and the microwave reception aperture is vertically higher than the microwave radiation aperture. A microwave transmitter/receiver is connected to the waveguide provided with the microwave radiation opening, and a microwave receiver is connected to the waveguide provided with the microwave reception opening. A measuring device for blast furnace charge.
JP12198383A 1982-08-03 1983-07-05 Method and device for measuring blast furnace charge Granted JPS6013009A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12198383A JPS6013009A (en) 1983-07-05 1983-07-05 Method and device for measuring blast furnace charge
DE8383304312T DE3363514D1 (en) 1982-08-03 1983-07-26 Method and apparatus for supervising charges in blast furnace
EP83304312A EP0101219B1 (en) 1982-08-03 1983-07-26 Method and apparatus for supervising charges in blast furnace
CA000433587A CA1200903A (en) 1982-08-03 1983-07-29 Method and apparatus for supervising charges in blast furnace
US06/519,245 US4641083A (en) 1982-08-03 1983-08-01 Method and apparatus for supervising charges in blast furnace using electromagnetic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12198383A JPS6013009A (en) 1983-07-05 1983-07-05 Method and device for measuring blast furnace charge

Publications (2)

Publication Number Publication Date
JPS6013009A JPS6013009A (en) 1985-01-23
JPS6259163B2 true JPS6259163B2 (en) 1987-12-09

Family

ID=14824661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12198383A Granted JPS6013009A (en) 1982-08-03 1983-07-05 Method and device for measuring blast furnace charge

Country Status (1)

Country Link
JP (1) JPS6013009A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230938A (en) * 1985-04-11 1987-02-09 Nippon Steel Corp Particle size measurement of falling object
US6725718B2 (en) 2001-02-08 2004-04-27 Vega Grieshaber Kg Method and device for the coarse differentiation between a liquid or a bulk material of a filling product present in a receptacle
DE10105652A1 (en) * 2001-02-08 2002-08-14 Grieshaber Vega Kg Method and device for roughly differentiating a filling material in a container in liquid or bulk material
JP4493571B2 (en) * 2005-09-09 2010-06-30 新日本製鐵株式会社 Method for measuring dust concentration in exhaust gas
JP5509944B2 (en) * 2010-03-11 2014-06-04 Jfeスチール株式会社 Surface condition measuring apparatus and method for measuring surface condition of granular deposit
JP5787607B2 (en) * 2011-05-10 2015-09-30 新日鐵住金株式会社 Profile measuring device for blast furnace interior

Also Published As

Publication number Publication date
JPS6013009A (en) 1985-01-23

Similar Documents

Publication Publication Date Title
EP0418224B1 (en) Transducer device operating with ultrasound for the measurement of the flow velocity of a fluid in a pipe
TWI323777B (en) Survey method and apparatus for locating the width direction edge of a strip, and survey method and apparatus for locating the width direction center of a strip
WO2022143013A1 (en) Sounding system and method for electrode for use in submerged arc furnace
US10001398B2 (en) Fill-level measuring device and apparatus for determining the dielectric constant
EP0096912B1 (en) A method of monitoring the wear of a refractory lining of a metallurgical furnace wall
JPS6259163B2 (en)
JP5787607B2 (en) Profile measuring device for blast furnace interior
CA1200903A (en) Method and apparatus for supervising charges in blast furnace
JP2570886B2 (en) Furnace level meter
JPH0138842B2 (en)
JPS5938313A (en) Detection of root part of melt sticking zone in blast furnace
JPS61290378A (en) Instrument for measuring deposited quantity in vertical furnace
JPS6055252A (en) Detection of boundary and grain size of material charged in blast furnace
US20130300598A1 (en) Apparatus for measuring width direction end position of strip, apparatus for measuring width direction central position of strip and microwave scattering plate
JPS6059007A (en) Detection of behavior of raw material charged into blast furnace
JPS6136563B2 (en)
JPS63229385A (en) Gas flow velocity measuring apparatus at blast furnace gate
JP4231451B2 (en) Coke oven coal level measurement device
KR880000638B1 (en) Method & apparatus for supervising charges blast furance using electromagnetic waves
GB1001857A (en) Method and apparatus for flaw detection by ultrasonic means
JPH0112216Y2 (en)
JPS5828654A (en) Slopping foreseeing method
CN107058660A (en) Means for correcting for thermocouple temperature measurement in blast furnace
Ohno et al. Microwave Burden Sensor for Blast Furnaces
JPS6075505A (en) Device for detecting behaviour of raw material fed to blast furnace