JP3129706B2 - How to introduce shock waves into the blast furnace core - Google Patents

How to introduce shock waves into the blast furnace core

Info

Publication number
JP3129706B2
JP3129706B2 JP10352328A JP35232898A JP3129706B2 JP 3129706 B2 JP3129706 B2 JP 3129706B2 JP 10352328 A JP10352328 A JP 10352328A JP 35232898 A JP35232898 A JP 35232898A JP 3129706 B2 JP3129706 B2 JP 3129706B2
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
shock wave
waveguide
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10352328A
Other languages
Japanese (ja)
Other versions
JPH11286709A (en
Inventor
衛 井上
秀美 渡辺
信彦 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10352328A priority Critical patent/JP3129706B2/en
Publication of JPH11286709A publication Critical patent/JPH11286709A/en
Application granted granted Critical
Publication of JP3129706B2 publication Critical patent/JP3129706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の炉床部に形
成されている、主としてコークス粒子の堆積物からなる
炉芯部の温度、通気性を間接的に測定する際の高炉炉芯
部への衝撃波導入方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace core for indirectly measuring the temperature and air permeability of a core formed mainly of coke particle deposits formed on the hearth of a blast furnace. And a method for introducing a shock wave into a vehicle.

【0002】[0002]

【従来の技術】高炉操業をいかにうまく制御して安定さ
せるかは製鉄業における重要課題であり、高炉炉体には
種々の検出端が配備されている。しかしながら、高炉の
炉床部の湯溜まりから上方、融着帯より下方に、主とし
てコークス粒子が堆積して形成する炉芯部の検出端はそ
の重要さにもかかわらず、シャフト部ゾンデほど広く利
用されていないのが現状である。
2. Description of the Related Art How to control and stabilize the operation of a blast furnace is an important issue in the steelmaking industry, and various detection ends are provided in a blast furnace body. However, the detection end of the furnace core, which is formed mainly by the accumulation of coke particles above the pool in the hearth of the blast furnace and below the cohesive zone, is widely used as much as the shaft sonde, despite its importance. It has not been done yet.

【0003】例えば、特開昭61−257405号、特
開昭63−210208号で提案されているように、高
炉羽口部から、画像処理と連結したグラスファイバーを
内蔵した、冷却機構付のプローブを炉芯部に直接挿入し
測温する方法、あるいは、炉芯へのゾンデ挿入抵抗を検
知する方法等の直接測定法がある。また、特開昭55−
104412号で提案されているように、高炉の外周に
放射線の走査器と検出群を配置し炉内状況を連続的に監
視する方法、間接測定法が知られている。
For example, as proposed in JP-A-61-257405 and JP-A-63-210208, a probe with a cooling mechanism, which incorporates a glass fiber connected to image processing from a tuyere of a blast furnace. There is a direct measurement method such as a method of directly inserting the probe into the furnace core and measuring the temperature, or a method of detecting a sonde insertion resistance into the furnace core. Also, Japanese Unexamined Patent Publication No.
As proposed in Japanese Patent No. 104412, a method of arranging a radiation scanner and a detection group on the outer periphery of a blast furnace to continuously monitor the inside of the furnace and an indirect measurement method are known.

【0004】[0004]

【発明が解決しようとする課題】従来の直接測定法に係
わる炉芯ゾンデは羽口部より、炉内高温部であるレース
ウエイを通過させて炉芯部へゾンデを直接挿入する方法
であるため、装置、装備特に、シール機構が大ががりと
なり、また、測定作業自体にも危険が伴うことから、炉
円周方向に数十個配置されている任意の羽口から簡易に
測定することは不可能であった。
The furnace core sonde according to the conventional direct measurement method is a method in which the sonde is directly inserted into the furnace core part through a raceway, which is a high temperature part in the furnace, from a tuyere part. , Equipment and equipment, especially the sealing mechanism becomes large, and the measurement operation itself is dangerous, so it is not easy to measure easily from any tuyeres arranged in the dozens in the circumferential direction of the furnace. It was impossible.

【0005】また、間接測定法に係わる放射線走査法は
鋳床まわりに対する放射線の遮蔽に装備を要する。
Further, the radiation scanning method related to the indirect measurement method requires equipment for shielding radiation around the casting bed.

【0006】高炉炉況は刻々と変化するものであり、リ
アルタイムに炉芯部を検出すると同時に円周方向のバラ
ンスも検出することが望まれている。
Since the blast furnace condition changes every moment, it is desired to detect the core portion in real time and at the same time to detect the balance in the circumferential direction.

【0007】本発明はかかる問題点に鑑み、上記炉芯部
へゾンデ等の検出端を直接挿入することなく、かつ、高
炉周囲に外乱を与えることなく、炉芯の全体あるいは局
部の温度、通気性を間接的に測定する際の高炉炉芯部へ
の衝撃波導入方法を提供するものである。
[0007] In view of the above problems, the present invention does not directly insert a detection end such as a sonde into the above-mentioned furnace core and does not give a disturbance around the blast furnace. It is intended to provide a method of introducing a shock wave into the core of a blast furnace when indirectly measuring the heat resistance.

【0008】[0008]

【課題を解決するための手段】即ち、本発明の要旨とす
るところは、 (1)高炉炉外で瞬間的な爆発燃焼で発生させた衝撃波
を導波管を介して高炉内に導き、炉芯部を伝播した衝撃
波を受信センサーで受信し、これらの衝撃波の伝播速
度、または減衰率から、高炉の炉床部の主としてコーク
ス粒子が堆積して形成される炉芯部の温度、または通気
性を計測するに際して、羽口に設置されている微粉炭吹
き込みバーナーの一部を前記導波管とすることを特徴と
する炉芯部の計測に用いる衝撃波を高炉炉内に導く方
法。 (2)高炉炉外で発生させた衝撃波を高炉炉内に導く場
合に、微粉炭流路を遮断して微粉炭吹き込みを中断する
ことを特徴とする上記(1)項記載の炉芯部の計測に用
いる衝撃波を高炉炉内に導く方法。である。
That is, the gist of the present invention is as follows: (1) A shock wave generated by instantaneous explosive combustion outside a blast furnace is guided into the blast furnace via a waveguide, and The shock wave propagated through the core is received by the receiving sensor, and from the propagation speed or attenuation rate of these shock waves, the temperature of the core of the blast furnace hearth, which is mainly formed by depositing coke particles, or the air permeability A method of introducing a shock wave used for measurement of a furnace core into a blast furnace, wherein a part of a pulverized coal-injected burner installed in a tuyere is used as the waveguide. (2) When the shock wave generated outside the blast furnace is guided into the blast furnace, the pulverized coal flow path is shut off to interrupt the pulverized coal injection, and the furnace core portion according to the above (1), A method to guide the shock wave used for measurement into the blast furnace. It is.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例装置を示す
図面を参照しながら具体的に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention.

【0010】操業中の高炉においては種々の振動が発生
し、伝播しており、しかも10mを超す炉床径の内部を
伝播させるには通常の超音波では減衰が大きすぎてうま
く測定できない。そこで本発明は実験の結果、衝撃波に
着目した。
Various vibrations are generated and propagated in the operating blast furnace, and ordinary ultrasonic waves are too large to propagate inside the hearth diameter exceeding 10 m, so that the measurement cannot be performed well. Thus, the present invention focused on shock waves as a result of experiments.

【0011】本発明でいう衝撃波とは一般に言われてい
る、縮む媒質中を伝播する強い圧縮波であって、具体的
には例えば、ガス状燃料等の瞬間的な燃焼、あるいは火
薬等の瞬間的な燃焼を利用して発生させる衝撃波が採用
できる。
The shock wave referred to in the present invention is a generally referred to as a strong compression wave propagating in a shrinking medium, and specifically includes, for example, instantaneous combustion of gaseous fuel or the like, or instantaneous combustion of explosive or the like. Shock waves generated by using typical combustion can be adopted.

【0012】第1図及び第2図に示すように、上記衝撃
波は高炉3の炉外に設けた衝撃波発生装置1で発生させ
る。この衝撃波発生装置1は特定間隔で断続的に衝撃波
を発生することができる。この衝撃波は該発生装置1に
連結した導波管2を通して高炉3の炉床部に、主として
コークス粒子の堆積物で形成されている炉芯部に指向し
て炉壁4から炉内に供給する。上記衝撃波発生装置1と
導波管2の接続態様としては、第1図に示すように一つ
の導波管2に一つの上記衝撃波発生装置1を接続する方
式、あるいは第2図に示すように、間欠的に衝撃波を発
生するパルスジェネレータ12に複数、例えば、4本の
導波管2を接続する方式がある。後者の複数の導波管2
を接続する方式であると、各導波管2の長さに差異を設
けることができ、炉内への衝撃波の供給タイミングをづ
らすことができる。上記導波管2の先端は上記したよう
に炉芯部に指向させて炉壁4に設ける。この導波管2の
特徴的な設置態様としては、羽口5に設置されている例
えば、微粉炭吹き込み用バーナ6の一部を流用すること
ができる。この方式によって発生させた衝撃波を炉内に
供給させる場合は、微粉炭吹き込みを中断し、微粉炭流
路の遮断弁7を閉じておくことにより衝撃波が羽口5前
方へ伝播するのを促進する。尚、微粉炭吹き込み用バー
ナ等流用手段を設置していない羽口5の場合は、専用の
衝撃波導波管2を微粉炭吹き込み用バーナと同様の設置
態様で配置するものである。
As shown in FIGS. 1 and 2, the shock wave is generated by a shock wave generator 1 provided outside the blast furnace 3. This shock wave generator 1 can generate shock waves intermittently at specific intervals. This shock wave is supplied to the hearth of the blast furnace 3 through the waveguide 2 connected to the generator 1, and is directed from the furnace wall 4 to the furnace core mainly formed of coke particle deposits. . As a connection mode between the shock wave generator 1 and the waveguide 2, as shown in FIG. 1, one shock wave generator 1 is connected to one waveguide 2, or as shown in FIG. There is a method in which a plurality of, for example, four waveguides 2 are connected to a pulse generator 12 that generates a shock wave intermittently. The latter plural waveguides 2
Is connected, it is possible to provide a difference in the length of each waveguide 2, and it is possible to delay the supply timing of the shock wave into the furnace. The tip of the waveguide 2 is provided on the furnace wall 4 so as to face the furnace core as described above. As a characteristic installation mode of the waveguide 2, for example, a part of a burner 6 for blowing pulverized coal installed in the tuyere 5 can be used. When the shock wave generated by this method is supplied into the furnace, the pulverized coal blowing is interrupted, and the shutoff valve 7 in the pulverized coal flow path is closed to promote the propagation of the shock wave to the front of the tuyere 5. . In the case of the tuyere 5 which is not provided with a diversion means such as a pulverized coal injection burner, the dedicated shock wave waveguide 2 is arranged in the same manner as the pulverized coal injection burner.

【0013】この導波管2設置個数は炉円周方向、等間
隔に少なくとも3個設あるいは炉内円周方向十字状位置
4点a,b,c,dにそれぞれ設置すればよい。導波管
2の設置個数が増加すると後述する測定精度が高まるも
のである。
The number of the waveguides 2 to be installed may be at least three at equal intervals in the furnace circumferential direction, or at four points a, b, c, and d in the cross position in the furnace circumferential direction. As the number of the waveguides 2 increases, the measurement accuracy described later increases.

【0014】上記導波管2の設置レベルとほぼ同レベル
の炉壁4には、炉内円周方向に複数の受信センサー8を
配置する。この受信センサー8は音波を検知する手段で
構成されており、例えば、感圧素子が使用できる。該受
信センサー8の設置位置としては種々の態様を適用する
ことができ、例えば、炉床炉壁4の炉内側に設置する場
合は、耐熱対策を考慮して、炉周方向に等間隔に複数設
置されている羽口5の水冷ジャケット部の先端部に内蔵
する方式、あるいは、受信センサー8を内蔵した水冷ブ
ローブ(図示せず)を羽口5あるいは炉壁4に設置する
方式が採用できる。上記受信センサー8を炉床炉壁4の
炉外側に設置する場合は、羽口5の後端に配置してある
ブローパイプ部あるいは最後端の覗き窓部に受信センサ
ー8を臨ませる方式が採用でき、この場合は羽口5とか
ブローパイプが受信用導波管として機能する。
A plurality of receiving sensors 8 are arranged in the furnace circumferential direction on the furnace wall 4 at substantially the same level as the installation level of the waveguide 2. The receiving sensor 8 is constituted by means for detecting a sound wave, and for example, a pressure-sensitive element can be used. Various modes can be applied as the installation position of the receiving sensor 8. For example, when the receiving sensor 8 is installed inside the furnace of the hearth furnace wall 4, a plurality of the sensors are arranged at equal intervals in the furnace circumferential direction in consideration of heat resistance measures. A method in which the tuyere 5 is installed at the tip of the water-cooling jacket portion, or a method in which a water-cooling probe (not shown) incorporating the receiving sensor 8 is installed in the tuyere 5 or the furnace wall 4 can be adopted. When the receiving sensor 8 is installed outside the hearth furnace wall 4, a method is adopted in which the receiving sensor 8 faces a blow pipe portion or a rearmost viewing window portion arranged at the rear end of the tuyere 5. In this case, the tuyere 5 or the blow pipe functions as a receiving waveguide.

【0015】上記受信センサー8の設置個数は前記導波
管2に対向する炉壁部に少なくとも8個設置してあれば
測定精度として許容できる。
As long as at least eight receiving sensors 8 are installed on the furnace wall facing the waveguide 2, the number of the receiving sensors 8 is acceptable as the measurement accuracy.

【0016】上記衝撃波発生装置1で発生させた衝撃波
を導波管2を介して炉壁部から炉内に供給すると、衝撃
波を発射した導波管2に直近の受信センサー8は発射と
同時に衝撃波を受信する、また炉周方向に配置されてい
る他の受信センサー8はその部位に対応した遅れ時間後
の衝撃波を受信する。第2図に示すように、各羽口5に
設けた導波管2及び受信センサー8を用い、衝撃波発射
から受信までの間の最大遅れ時間後に他の部位にある導
波管2を介して衝撃波を炉内に供給し、受信するという
操作を巡回して行なうことにより、特定の導波管2から
方向性を持って発射された衝撃波の波及効果の比較的弱
い帯域(衝撃波発射導波管の両側部域)を次回の操作で
補完するので、炉芯部の円周方向の複数点を測定するこ
とができる。
When the shock wave generated by the shock wave generator 1 is supplied from the furnace wall through the waveguide 2 into the furnace, the receiving sensor 8 closest to the waveguide 2 that has emitted the shock wave simultaneously emits the shock wave. The other receiving sensor 8 arranged in the furnace circumferential direction receives the shock wave after a delay time corresponding to the part. As shown in FIG. 2, the waveguide 2 and the receiving sensor 8 provided at each tuyere 5 are used, and after the maximum delay time from the emission of the shock wave to the reception thereof, through the waveguide 2 at another portion. By cyclically performing operations of supplying and receiving a shock wave into the furnace, a band where a ripple effect of a shock wave emitted from a specific waveguide 2 with directionality is relatively weak (shock wave emitting waveguide). Are complemented in the next operation, so that a plurality of points in the circumferential direction of the furnace core can be measured.

【0017】上記操作によって受信された衝撃波は増幅
器9で増幅され、受信波形として記録計10に記録さ
れ、後述する求めんとする温度、通気性に合致した演算
をする演算表示器11に印加される。
The shock wave received by the above operation is amplified by the amplifier 9, recorded as a received waveform in the recorder 10, and applied to a calculation display 11 for performing a calculation corresponding to a desired temperature and air permeability to be described later. You.

【0018】演算表示器11に印加された各受信波はC
Tスキャニング手法でデータ処理する。具体的には総和
法、コンボリューション法、最小二乗法等があるが、円
周方向に得られるデータ数があまり多くないので最小二
乗法が適している。
Each received wave applied to the operation display 11 is C
Data processing is performed by the T scanning method. Specifically, there are a summation method, a convolution method, a least square method, and the like, but the least square method is suitable because the number of data obtained in the circumferential direction is not so large.

【0019】例えば、炉芯部の温度分布を求める場合、
一般に気体中の音速vは次式で与えられる。
For example, when obtaining the temperature distribution of the furnace core,
Generally, the sound velocity v in a gas is given by the following equation.

【0020】[0020]

【数1】 (Equation 1)

【0021】ここで、κは比熱比、Rはガス定数、Tは
ガス温度である。伝播距離が既知であれば伝播時間より
ガス温度を知ることができる。
Here, κ is a specific heat ratio, R is a gas constant, and T is a gas temperature. If the propagation distance is known, the gas temperature can be known from the propagation time.

【0022】CTにおける各投影データは、送信点Aか
ら受信点Bを区間nに分割し、その区間内では伝播速度
が一定であると仮定すると、送信から受信までの伝播時
間τ ABは次式で表される。
Each projection data in CT is transmitted at point A
Divides receiving point B into section n, and within that section the propagation velocity
Is assumed to be constant, the propagation time from transmission to reception
Interval τ ABIs represented by the following equation.

【0023】[0023]

【数2】 (Equation 2)

【0024】ここで、li:区間iの伝播距離、Ti:区
間iの温度、v(Ti):区間iの伝播速度、ui:区間
iの気体速度である。
Here, l i : propagation distance in section i, T i : temperature in section i, v (T i ): propagation velocity in section i, and u i : gas velocity in section i.

【0025】逆に、送信点Bから受信点Aへの伝播時間
をZBAとし、羽口先端部は別として、高炉の炉芯部での
iはviに比べて十分小さいと仮定すれば(2)式よ
り、
Conversely, it is assumed that the propagation time from the transmission point B to the reception point A is Z BA, and that u i at the core of the blast furnace is sufficiently smaller than v i , apart from the tuyere tip. From equation (2),

【0026】[0026]

【数3】 (Equation 3)

【0027】[0027]

【数4】 (Equation 4)

【0028】で表される。## EQU1 ##

【0029】(3)式より炉芯部の温度分布を表す方程
式は次のような多次元連立方程式となる。
From equation (3), the equation representing the temperature distribution in the furnace core is the following multidimensional simultaneous equation.

【0030】[0030]

【数5】 (Equation 5)

【0031】(5)式において、ベクトルbは伝播時間
の計測値、行列Aは区間iにおける距離、ベクトルYは
区間iのViの逆数で温度Tiと(1)式の関係がある。
In the equation (5), the vector b is the measured value of the propagation time, the matrix A is the distance in the section i, the vector Y is the reciprocal of V i in the section i, and has a relationship between the temperature T i and the equation (1).

【0032】n個以上のデータ数があれば(5)式に基
づくと、最小二乗法では下記(6)式が最小になるベク
トルYを求め、これより温度分布Tiを求めることがで
きる。
If there are n or more data, based on the equation (5), the least squares method finds the vector Y that minimizes the following equation (6), from which the temperature distribution T i can be found.

【0033】[0033]

【数6】 (Equation 6)

【0034】尚、前記したように高炉内には種々の雑音
が発生しており、受信波形にノズルが混入するが、炉芯
部の温度変化の周期は長いので前記した測定操作を周期
的に繰り返し、得られた受信波形を加算することでS/
N比を上げることができる。パルスゼネレータ12によ
って、周期的かつ順番に衝撃波を発生させるのが好まし
い。
As described above, various noises are generated in the blast furnace, and nozzles are mixed in the received waveform. However, since the cycle of the temperature change of the furnace core is long, the above-described measurement operation is periodically performed. By repeatedly adding the obtained reception waveforms, S /
The N ratio can be increased. Preferably, the pulse generator 12 generates the shock waves periodically and sequentially.

【0035】温度の演算事例に基づいて説明したが、通
気性に対応した衝撃波の減衰率をもとめる場合は特性値
に対応した理論式を展開することは言うまでもない。
Although the description has been given based on the calculation example of the temperature, it is needless to say that a theoretical equation corresponding to the characteristic value is developed when the shock wave attenuation rate corresponding to the air permeability is obtained.

【0036】[0036]

【実施例】本発明方法を用いて実験用高炉の炉芯温度分
布を測定した結果を第3図に示す。ガス燃料を瞬間的に
燃焼する方式で発生した衝撃波は高炉円周方向の十字状
位置4点の羽口5から順次3秒間隔で炉内に供給すると
共に15個の羽口5に内蔵した受信センサー8で受信す
る操作を10回繰り返した。得られた受信波形を演算処
理して炉芯内部温度を求めた結果である。
FIG. 3 shows the results of measurement of the core temperature distribution of an experimental blast furnace using the method of the present invention. Shock waves generated by instantaneous combustion of gaseous fuel are supplied into the furnace at three-second intervals sequentially from the tuyeres 5 at four cross-shaped positions in the circumferential direction of the blast furnace, and are received in 15 tuyeres 5 built-in. The operation of receiving with the sensor 8 was repeated 10 times. This is a result of calculating the furnace core internal temperature by performing arithmetic processing on the obtained reception waveform.

【0037】[0037]

【発明の効果】本発明によると、高炉操業中に短時間に
炉芯部の温度分布等を間接的に測定できるので、測定し
た物理特性情報を操業に直ちに反映させ、その結果を再
度測定することでモニタリングできるので、安定した操
業維持が可能となる。
According to the present invention, since the temperature distribution and the like of the furnace core can be indirectly measured in a short time during the operation of the blast furnace, the measured physical property information is immediately reflected in the operation, and the result is measured again. Monitoring can be performed, and stable operation can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる装置例の縦断面説明図である。FIG. 1 is an explanatory longitudinal sectional view of an example of an apparatus according to the present invention.

【図2】本発明の概要を示す水平断面説明図である。FIG. 2 is an explanatory horizontal sectional view showing an outline of the present invention.

【図3】実験炉における炉芯部の温度分布を示したモデ
ル図である。
FIG. 3 is a model diagram showing a temperature distribution of a furnace core in an experimental furnace.

【符号の説明】[Explanation of symbols]

1…衝撃波発生装置、2…導波管 3…高炉、4…炉壁 5…羽口 6…微粉炭吹き込みバーナ 7…遮断弁、8…受信センサー 9…増幅器、10…記録器 11…演算表示器、12…パルスゼネレータ DESCRIPTION OF SYMBOLS 1 ... Shock wave generator, 2 ... Waveguide 3 ... Blast furnace, 4 ... Furnace wall 5 ... Tuyere 6 ... Pulverized coal blowing burner 7 ... Shutoff valve, 8 ... Reception sensor 9 ... Amplifier, 10 ... Recorder 11 ... Calculation display Vessel, 12 ... pulse generator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−72114(JP,A) 特開 昭60−131906(JP,A) 特開 昭59−22189(JP,A) 特開 昭59−83708(JP,A) 日本機械学会論文集、第53巻、第489 号、1610−1614頁 (58)調査した分野(Int.Cl.7,DB名) C21B 7/24 305 C21B 7/00 310 F27D 21/00 G01K 11/24 F27B 1/28 G01F 23/28 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-49-72114 (JP, A) JP-A-60-131906 (JP, A) JP-A-59-22189 (JP, A) 83708 (JP, A) Transactions of the Japan Society of Mechanical Engineers, Vol. 53, No. 489, pp. 1610-1614 (58) Fields investigated (Int. Cl. 7 , DB name) C21B 7/24 305 C21B 7/00 310 F27D 21/00 G01K 11/24 F27B 1/28 G01F 23/28

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高炉炉外で瞬間的な爆発燃焼で発生させ
た衝撃波を導波管を介して高炉内に導き、炉芯部を伝播
した衝撃波を受信センサーで受信し、これらの衝撃波の
伝播速度、または減衰率から、高炉の炉床部の主として
コークス粒子が堆積して形成される炉芯部の温度、また
は通気性を計測するに際して、羽口に設置されている微
粉炭吹き込みバーナーの一部を前記導波管とすることを
特徴とする炉芯部の計測に用いる衝撃波を高炉炉内に導
く方法。
1. A shock wave generated by an instantaneous explosive combustion outside a blast furnace is guided into a blast furnace through a waveguide, and a shock wave transmitted through a furnace core is received by a receiving sensor, and propagation of these shock waves is performed. One of the pulverized coal blowing burners installed at the tuyere is used to measure the temperature or air permeability of the furnace core formed by depositing mainly coke particles in the hearth of the blast furnace from the speed or the damping rate. A method for guiding a shock wave used for measurement of a furnace core portion into a blast furnace, wherein the portion is the waveguide.
【請求項2】 高炉炉外で発生させた衝撃波を高炉炉内
に導く場合に、微粉炭流路を遮断して微粉炭吹き込みを
中断することを特徴とする請求項1記載の炉芯部の計測
に用いる衝撃波を高炉炉内に導く方法。
2. The furnace core part according to claim 1, wherein, when a shock wave generated outside the blast furnace is guided into the blast furnace, the pulverized coal passage is interrupted to interrupt pulverized coal injection. A method to guide the shock wave used for measurement into the blast furnace.
JP10352328A 1998-12-11 1998-12-11 How to introduce shock waves into the blast furnace core Expired - Fee Related JP3129706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352328A JP3129706B2 (en) 1998-12-11 1998-12-11 How to introduce shock waves into the blast furnace core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352328A JP3129706B2 (en) 1998-12-11 1998-12-11 How to introduce shock waves into the blast furnace core

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2040764A Division JPH0826376B2 (en) 1990-02-21 1990-02-21 Blast furnace core measuring method and device

Publications (2)

Publication Number Publication Date
JPH11286709A JPH11286709A (en) 1999-10-19
JP3129706B2 true JP3129706B2 (en) 2001-01-31

Family

ID=18423313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352328A Expired - Fee Related JP3129706B2 (en) 1998-12-11 1998-12-11 How to introduce shock waves into the blast furnace core

Country Status (1)

Country Link
JP (1) JP3129706B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101190670B1 (en) 2010-02-26 2012-10-15 재단법인 포항산업과학연구원 Apparatus for analyzing inner state of electric arc furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本機械学会論文集、第53巻、第489号、1610−1614頁

Also Published As

Publication number Publication date
JPH11286709A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US4848924A (en) Acoustic pyrometer
GB1594395A (en) Method and apparatus for measuring slag foaming using microwave level meter
US4442706A (en) Probe and a system for detecting wear of refractory wall
US5571974A (en) Method and apparatus for the measurement of particle flow in a pipe
JP3129706B2 (en) How to introduce shock waves into the blast furnace core
JPH0826376B2 (en) Blast furnace core measuring method and device
CN102818251A (en) Power station boiler heat expansion monitoring system and measuring method based on acoustical principle
Nabagło et al. Combustion process analysis in boiler OP-650k based on acoustic gas temperature measuring system
US5223908A (en) Measurement of blast furnace raceway parameters
JPH08145810A (en) Optical-fiber temperature-distribution measuring method
JPH07305105A (en) Method for evaluating raceway condition of blast furnace
JPH07174524A (en) Method and equipment for measuring variation of abrasion length of tuyere
JP3252724B2 (en) Refractory thickness measurement method and apparatus
JP3144254B2 (en) Iron skin temperature distribution measurement method
JP2003329518A (en) Method and apparatus for measurement of temperature on inner surface of structure
JPH07311186A (en) Internal measuring apparatus for blast furnace
JPH0150832B2 (en)
CN1047205C (en) Choke detecting method and equipment for coal jetting branch of blast furnace
JP3128089B2 (en) Structure of porous plug for molten metal container
CN106706156A (en) Ultrasonic-based boiler furnace smoke temperature measuring device
US20240027400A1 (en) System and method for assessing deterioration of a metallurgical runner using acoustic emissions
KR101421561B1 (en) Apparatus and method detecting the inside of the blast furnace using microwave through tuyeres
SU973625A1 (en) Device for controlling bath level in converter during blasting
JP3140543B2 (en) Flame velocity measurement device
JPS6117919A (en) Temperature measuring instrument of molten metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees