JPH10185654A - Method of detecting liquid level of furnace-melted matter - Google Patents

Method of detecting liquid level of furnace-melted matter

Info

Publication number
JPH10185654A
JPH10185654A JP8341059A JP34105996A JPH10185654A JP H10185654 A JPH10185654 A JP H10185654A JP 8341059 A JP8341059 A JP 8341059A JP 34105996 A JP34105996 A JP 34105996A JP H10185654 A JPH10185654 A JP H10185654A
Authority
JP
Japan
Prior art keywords
wave
furnace
height
liquid level
elastic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8341059A
Other languages
Japanese (ja)
Inventor
Toshibumi Kodama
俊文 児玉
Hajime Takada
一 高田
Akira Torao
彰 虎尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8341059A priority Critical patent/JPH10185654A/en
Publication of JPH10185654A publication Critical patent/JPH10185654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of detecting liquid level in which the level of a furnace-melted matter can be stably detected over a long period of time without being influenced by the gain fluctuation of a transmitting and receiving system resulted from the contact force of an elastic wave transmitting element and receiving element to the furnace wall and others. SOLUTION: When an elastic wave transmitting element 11 and an elastic wave receiving element 12 are set on a furnace outer wall whose circumference is covered with a refractory, and an elastic wave is emitted from the elastic wave transmitting element 11 into a furnace 100 to detect the liquid level of a furnace melted matter 101 on the basis of the received signal obtained from the elastic wave receiving element 12 by the emission of the elastic wave, the surface wave propagating the furnace outer wall surface and the reflected echo by the furnace inner wall are received by the elastic wave receiving element 12, the wave height of the reflected echo is corrected on the basis of the wave height of the surface wave, and the level is detected on the basis of the wave height of the corrected reflected echo.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高炉やその他の
炉内における溶融物の液面レベルを検出する方法に関す
るものである。以下、説明の便宜上、高炉内の溶銑の液
面レベルの検出方法を例にとって説明する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a liquid level of a melt in a blast furnace or another furnace. Hereinafter, for convenience of explanation, a method of detecting the liquid level of the hot metal in the blast furnace will be described as an example.

【0002】[0002]

【従来の技術】高炉の操業にあたって、炉底湯溜まり部
における溶銑の液面レベル(以下、単に「溶銑レベル」
という)を検知することは、操業効率を向上させる上で
極めて重要である。特に、溶銑レベルが許容レベルを越
えて上昇した場合には、羽口送風圧の上昇など炉況の不
安定化につながり、ときには出銑・出滓不良や溶滓の逆
流といったトラブルを招き、多大な損失となる。このよ
うなことから、溶銑レベルを検知することは、炉操業の
監視という点からも、不可欠な作業である。
2. Description of the Related Art In the operation of a blast furnace, the liquid level of hot metal at a bottom sump (hereinafter simply referred to as "hot metal level") is used.
It is extremely important to improve the operation efficiency. In particular, if the hot metal level rises above the allowable level, it may lead to instability of the furnace condition, such as an increase in tuyere blowing pressure, and sometimes lead to troubles such as poor tapping / slagging and backflow of the slag. Loss. For this reason, detecting the level of hot metal is an indispensable task from the viewpoint of monitoring furnace operation.

【0003】このような高炉内の溶銑レベルを検知する
方法として、例えば、特開昭52−127354号公報
には、炉壁に垂直探傷法超音波探触子を高さ方向に複数
個配置し、各探触子の受信する反射超音波のレベルを比
較することにより、炉内の溶銑レベルを検知するように
したものが開示されている。
As a method for detecting the level of hot metal in a blast furnace, for example, Japanese Patent Laid-Open Publication No. Sho 52-127354 discloses a method in which a plurality of ultrasonic probes for vertical flaw detection are arranged on a furnace wall in the height direction. There is disclosed an apparatus in which the level of hot metal in a furnace is detected by comparing the levels of reflected ultrasonic waves received by each probe.

【0004】また、本出願人も、炉の外壁から弾性波を
放射して炉内壁面からの反射波を受波し、その受波した
反射波の波高と、炉の高さ方向における反射波の受波位
置と、反射波の波高と炉内溶融物液面位置とに関して予
め設定した対応関係と、に基づいて炉内溶融物の溶銑レ
ベルを算出するようにしたものを既に開発している(特
願平7−304565号)。
Further, the present applicant also radiates an elastic wave from the outer wall of the furnace to receive a reflected wave from the inner wall of the furnace, and the wave height of the received reflected wave and the reflected wave in the height direction of the furnace. Has already been developed that calculates the hot metal level of the molten metal in the furnace based on the wave receiving position, the correspondence between the wave height of the reflected wave and the molten liquid level in the furnace set in advance. (Japanese Patent Application No. 7-304565).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、本発明
者らの種々の検討によれば、上述したように超音波等の
弾性波を用いて炉内の溶銑レベルを測定する方法にあっ
ては、以下のような改良すべき点があることが判明し
た。すなわち、上述した溶銑レベル測定方法において、
溶銑のあり、なしの判定、あるいは溶銑レベル算出の基
となるのは、受信波形中の炉内壁面での反射エコーの波
高であり、その検出法としては、予め設定した時間区間
の中での最大値、あるいは絶対値の最大値を検出するよ
うにしている。
However, according to various studies by the present inventors, according to the method for measuring the hot metal level in a furnace using an elastic wave such as an ultrasonic wave as described above, It has been found that there are points to be improved as follows. That is, in the hot metal level measurement method described above,
The basis for determining the presence or absence of hot metal, or for calculating the hot metal level, is the wave height of the reflected echo on the inner wall of the furnace in the received waveform, and its detection method is as follows. The maximum value or the maximum value of the absolute value is detected.

【0006】ここで、一般に超音波探触子等の弾性波の
送信および受信には、圧電素子が使用されるが、圧電素
子の圧電効率(電気−音響変換係数)は、応力や温度の
影響を受けることが知られている。このため、高炉等に
超音波探触子を長期間設置しておくと、炉壁耐火物の熱
膨張等による外力が探触子に作用する場合があり、また
炉壁外面の温度変化等により探触子自身の温度が変化し
て、検出すべき反射エコーの波高に誤差が生じることに
なる。
Here, in general, a piezoelectric element is used for transmitting and receiving an elastic wave of an ultrasonic probe or the like, and the piezoelectric efficiency (electric-acoustic conversion coefficient) of the piezoelectric element is affected by stress and temperature. It is known to receive. For this reason, if an ultrasonic probe is installed in a blast furnace or the like for a long period of time, an external force due to thermal expansion of the furnace wall refractory may act on the probe, and a temperature change of the furnace wall outer surface may cause the external force. The temperature of the probe itself changes, causing an error in the wave height of the reflected echo to be detected.

【0007】このような問題を解決する方法としては、
例えば、超音波探触子の設置面での温度や応力を同時に
モニタし、それらのモニタ量と予め作成しておいた探触
子の感度校正関係とから算出したゲイン補正値により、
反射エコーの波高を補正することが考えられる。しか
し、この場合には、探触子のゲイン変動に影響を与える
因子毎の測定手段を付加する必要があると共に、それら
の測定値に対応する探触子の感度校正関係を予め求めて
おく必要があるため、装置構成が複雑になるばかりか、
補正の後処理も複雑になるという問題が生じることにな
る。
[0007] As a method of solving such a problem,
For example, by simultaneously monitoring the temperature and stress on the installation surface of the ultrasonic probe, a gain correction value calculated from the monitored amount and the sensitivity calibration relationship of the probe created in advance,
It is conceivable to correct the wave height of the reflected echo. However, in this case, it is necessary to add measurement means for each factor that affects the gain variation of the probe, and it is necessary to obtain in advance the sensitivity calibration relationship of the probe corresponding to those measured values. Not only complicates the equipment configuration,
A problem arises in that the post-correction processing is also complicated.

【0008】また、他の解決方法としては、超音波探傷
の分野で知られているように、媒質に予め基準穴を開
け、その基準穴のエコー高さにより、検出すべきエコー
波高を補正することが考えられる。この方法によれば、
超音波送受信関係の総合的なゲインを簡単に補正できる
という利点があるが、他方では、媒質に予め基準穴を開
けるため、炉壁の強度を損ねるおそれがあり、また長時
間の稼働によって炉壁厚みが減少した場合には、基準穴
からのエコーと内壁面からのエコーとの区別が困難にな
ったり、あるいは炉壁の位置まで溶損した後は適用不可
能になる、等の問題が生じることになる。
As another solution, as is known in the field of ultrasonic flaw detection, a reference hole is previously formed in a medium, and the echo height to be detected is corrected based on the echo height of the reference hole. It is possible. According to this method,
This has the advantage that the overall gain related to ultrasonic transmission and reception can be easily corrected.On the other hand, however, since a reference hole is made in the medium in advance, the strength of the furnace wall may be impaired. When the thickness is reduced, it becomes difficult to distinguish the echo from the reference hole and the echo from the inner wall surface, or it becomes inapplicable after melting to the furnace wall position, etc. Will be.

【0009】この発明は、このような問題点に着目して
なされたもので、弾性波送信子および受信子の炉壁への
当接力その他に起因した送受信系のゲイン変動の影響を
受けることなく、炉内溶融物の液面レベルを長期間に亘
って安定して検出できる液面レベル検出方法を提供する
ことにある。
The present invention has been made in view of such a problem, and is not affected by gain fluctuation of a transmission / reception system due to a contact force between an elastic wave transmitter and a receiver against a furnace wall and the like. Another object of the present invention is to provide a liquid level detection method capable of stably detecting the liquid level of a melt in a furnace over a long period of time.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、周囲を耐火物で覆われた炉外壁に弾性
波送信子および弾性波受信子を設置して、前記弾性波送
信子から炉内に向けて弾性波を放射し、その弾性波の放
射によって前記弾性波受信子から得られる受信信号に基
づいて炉内溶融物の液面レベルを検出するにあたり、前
記弾性波受信子により炉外壁表面を伝播する表面波およ
び炉内壁における反射エコーを受信して、その表面波の
波高に基づいて反射エコーの波高を補正し、この補正さ
れた反射エコーの波高に基づいて前記液面レベルを検出
することを特徴とするものである。
In order to achieve the above object, the present invention provides an elastic wave transmitter and an elastic wave receiver provided on an outer wall of a furnace covered with a refractory. Radiating an elastic wave toward the inside of the furnace, and detecting the liquid level of the melt in the furnace based on a reception signal obtained from the elastic wave receiver by radiating the elastic wave, the elastic wave receiver A surface wave propagating on the outer wall of the furnace and a reflected echo on the inner wall of the furnace are received, and the wave height of the reflected echo is corrected based on the wave height of the surface wave, and the liquid level is corrected based on the corrected wave height of the reflected echo. Is detected.

【0011】この発明の好ましい一実施形態では、前記
反射エコーの波高を、前記表面波の波高で除して補正す
る。
In a preferred embodiment of the present invention, the wave height of the reflection echo is divided by the wave height of the surface wave for correction.

【0012】この発明の好ましい他の実施形態では、前
記表面波の波高が所定値となるように前記受信信号を増
幅して、前記反射エコーの波高を補正する。
In another preferred embodiment of the present invention, the received signal is amplified so that the wave height of the surface wave becomes a predetermined value, and the wave height of the reflected echo is corrected.

【0013】この発明の好ましいさらに他の実施形態で
は、上記のように前記表面波の波高が所定値となるよう
に前記受信信号を増幅して、前記反射エコーの波高を補
正する場合において、前記表面波の波高が最大増幅電圧
を超えているときは、該表面波の波高が所定時間、前記
最大増幅電圧となるように前記受信信号を増幅して、前
記反射エコーの波高を補正する。
According to still another preferred embodiment of the present invention, when the received signal is amplified so that the wave height of the surface wave becomes a predetermined value and the wave height of the reflected echo is corrected, When the wave height of the surface wave exceeds the maximum amplified voltage, the received signal is amplified so that the wave height of the surface wave becomes the maximum amplified voltage for a predetermined time, and the wave height of the reflected echo is corrected.

【0014】[0014]

【発明の実施の形態】図1は、この発明の原理を説明す
るための図である。図1に示すように、固体媒質よりな
る炉1の外壁に弾性波送信子2および弾性波受信子3を
取り付け、送信子2にパルス電圧を送信して炉内部に弾
性波(縦波送信波)、例えば超音波を放射すると、受信
子3には、媒質内を垂直に進行して反射面で反射された
反射エコー(縦波反射波)の他に、壁面に沿って進行し
てきた表面波も入射し、その出力電圧波形は図2に示す
ようになる。
FIG. 1 is a diagram for explaining the principle of the present invention. As shown in FIG. 1, an elastic wave transmitter 2 and an elastic wave receiver 3 are attached to an outer wall of a furnace 1 made of a solid medium, and a pulse voltage is transmitted to the transmitter 2 to generate an elastic wave (longitudinal wave transmission wave) inside the furnace. For example, when an ultrasonic wave is radiated, the receiver 3 has a surface acoustic wave traveling along the wall surface in addition to a reflected echo (longitudinal wave reflected wave) which travels vertically in the medium and is reflected on the reflecting surface. And the output voltage waveform is as shown in FIG.

【0015】図2に示す出力電圧波形において、反射エ
コーの波高Veおよび表面波の波高Vsは、図1におい
て、送信子2への送信(印加)パルス電圧をVp、該送
信子2の電気−音響変換係数をG1 、反射伝播経路のゲ
インをD1 、炉壁内面での反射率をr、受信子3の電気
−音響変換係数をG2 、該受信子3の出力信号を処理す
る超音波計測機器(図示せず)のゲインをA、表面波伝
播経路のゲインをD2とすると、 Ve=VpG1 1 rG2 A Vs=VpG1 2 2 A で表される。
In the output voltage waveform shown in FIG. 2, the peak height Ve of the reflected echo and the peak height Vs of the surface wave are represented by Vp, the transmission (applied) pulse voltage applied to the transmitter 2, and the electric potential of the transmitter 2 in FIG. The acoustic conversion coefficient is G 1 , the gain of the reflection propagation path is D 1 , the reflectivity on the inner wall of the furnace wall is r, the electro-acoustic conversion coefficient of the receiver 3 is G 2 , and the output signal of the receiver 3 is processed. the gain of the acoustic measuring instruments (not shown) a, when the gain of the surface wave propagation path and D 2, expressed by Ve = VpG 1 D 1 rG 2 a Vs = VpG 1 D 2 G 2 a.

【0016】ここで、送信子2および受信子3は、炉1
に固定的に配置されるので、反射伝播経路のゲインD1
および表面波伝播経路のゲインD2 は、定数とみなすこ
とができる。したがって、例えば、反射エコーの波高V
eを表面波の波高Vsで除して、それらの比をとると、 Ve/Vs=r(D1 /D2 ) となって、炉壁内面での反射率rにのみ比例した量とな
る。すなわち、同一の受信波形中のVeとVsとの比を
とることにより、送信パルス電圧Vp、送信子2の電気
−音響変換係数G1 、受信子3の電気−音響変換係数G
2 が変動しても、それらの影響を受けることなく、炉壁
内面での反射率rにのみ関係した計測結果を得ることが
できる。
Here, the transmitter 2 and the receiver 3 are connected to the furnace 1
, The gain D 1 of the reflection propagation path
And the gain D 2 of the surface wave propagation path can be regarded as a constant. Therefore, for example, the wave height V of the reflected echo
divided by height Vs of the surface wave e, take their ratio becomes Ve / Vs = r (D 1 / D 2), the amount proportional only to the reflectance r in the furnace wall inner surface . That is, by taking the ratio between Ve and Vs in the same reception waveform, the transmission pulse voltage Vp, the electro-acoustic conversion coefficient G 1 of the transmitter 2, and the electro-acoustic conversion coefficient G of the receiver 3 are obtained.
Even if 2 fluctuates, a measurement result related only to the reflectance r on the inner surface of the furnace wall can be obtained without being affected by them.

【0017】また、上記の除算をする代わりに、表面波
の波高Vsが所定値Vso となるように、超音波計測機
器のゲインAを調整すると、 A=Vso /(VpG1 2 2 ) となるので、ゲイン変更後の反射エコーの波高Ve′
は、
Further, instead of performing the above division, when the gain A of the ultrasonic measuring device is adjusted so that the wave height Vs of the surface wave becomes a predetermined value Vso, A = Vso / (VpG 1 D 2 G 2 ) Therefore, the wave height Ve 'of the reflected echo after changing the gain
Is

【数1】 となる。したがって、上記の除算の場合と同様に、V
p、G1 およびG2 の変動の影響を受けることなく、r
にのみ関係した計測結果を得ることができる。
(Equation 1) Becomes Therefore, as in the case of the above division, V
Unaffected by fluctuations in p, G 1 and G 2 , r
Can obtain measurement results related only to.

【0018】なお、このように表面波の波高Vsが所定
値Vso となるように、超音波計測機器のゲインAを調
整する場合において、Vsが既に超音波計測機器での最
大増幅電圧、すなわちVso を超えているときは、Vs
が所定時間、Vso となるように増幅して、Veを補正
する。このようにすれば、同様に、Vp、G1 およびG
2 の変動の影響を受けることなく、rにのみ関係した計
測結果を得ることができる。
When the gain A of the ultrasonic measuring device is adjusted so that the wave height Vs of the surface wave becomes the predetermined value Vso, Vs is already the maximum amplified voltage in the ultrasonic measuring device, that is, Vso. Is greater than Vs
Is amplified to Vso for a predetermined time to correct Ve. In this way, similarly, Vp, G 1 and G
The measurement result related only to r can be obtained without being affected by the fluctuation of 2 .

【0019】上記のようにして、弾性波受信子3で受信
した受信波形から、補正された反射エコーの波高Ve/
Vs、あるいはVe′を求めたら、それに基づいて炉内
溶融物の液面レベルの算出する。例えば、上述した本出
願人の提案に係る液面レベル測定方法においては、観測
される反射エコーの波高Vと、炉内溶融物の液面レベル
Lとの関係は、送受信子の設置高さをhとすると、
As described above, from the received waveform received by the elastic wave receiver 3, the peak height Ve /
After obtaining Vs or Ve ', the liquid level of the melt in the furnace is calculated based on Vs or Ve'. For example, in the liquid level measurement method according to the above-mentioned proposal of the present applicant, the relationship between the wave height V of the reflected echo to be observed and the liquid level L of the molten material in the furnace depends on the installation height of the transceiver. h

【数2】 で表され、F(x)の逆関数G(x)を用いて変形した
(Equation 2) Which is transformed using the inverse function G (x) of F (x)

【数3】 に基づいて、検出した反射エコーの波高Vから液面高さ
Lを算出することができるので、この波高Vの代わり
に、補正された反射エコーの波高Ve/Vs、あるいは
Ve′を用いた式
(Equation 3) , The liquid level L can be calculated from the detected peak height V of the reflected echo. Therefore, instead of this peak height V, the corrected peak height Ve / Vs of the reflected echo or Ve ′ is used.

【数4】 に基づいて液面レベルを算出することができる。なお、
この発明は、上記の算出方法以外にも、反射エコーの波
高に基づいて液面レベルを検出する方法に広く適用する
ことができる。
(Equation 4) The liquid level can be calculated based on In addition,
The present invention can be widely applied to a method of detecting a liquid level based on the wave height of a reflected echo, in addition to the above calculation method.

【0020】[0020]

【実施例】図3は、この発明に係る炉内溶融物の液面レ
ベル検出方法を実施する装置の一例の構成を示す図であ
る。図3において、100は耐火物よりなる炉、101
は炉内溶融物、11は弾性波送信子、12は弾性波受信
子、13は弾性波計測器、14は反射エコー検出回路、
15は表面波検出回路、16は除算回路、17は演算回
路、18は表示装置を示す。
FIG. 3 is a diagram showing a configuration of an example of an apparatus for implementing a method for detecting a liquid level of a melt in a furnace according to the present invention. In FIG. 3, reference numeral 100 denotes a furnace made of a refractory material;
Is an in-furnace melt, 11 is an elastic wave transmitter, 12 is an elastic wave receiver, 13 is an elastic wave measuring instrument, 14 is a reflection echo detection circuit,
Reference numeral 15 denotes a surface wave detection circuit, 16 denotes a division circuit, 17 denotes an operation circuit, and 18 denotes a display device.

【0021】弾性波送信子11および受信子12は、圧
電材料の電気−音響変換効果を利用したもので、好適に
は、数十kHz〜200kHz程度の弾性波を送受信す
る一般に安価に市販されているものを用いる。これら弾
性波送信子11および受信子12は、好適には、適当な
弾性波結合材を介して炉壁のレンガ面に密着して取り付
ける。
The elastic wave transmitter 11 and the receiver 12 make use of the electro-acoustic conversion effect of a piezoelectric material, and are preferably commercially available at low cost for transmitting and receiving elastic waves of several tens kHz to 200 kHz. Use the one that is The elastic wave transmitter 11 and the receiver 12 are preferably attached in close contact with the brick surface of the furnace wall via an appropriate elastic wave coupling material.

【0022】弾性波計測器13は、液面レベル監視頻度
に応じた時間間隔で弾性波送信子11に高電圧信号を印
加して弾性波を励起させると共に、弾性波受信子11に
おいて電気信号に変換された受信弾性波の信号を適当な
範囲の電圧信号、例えば数百mVないし数Vに増幅し
て、後段の反射エコー検出回路14および表面波検出回
路15に供給するよう構成する。
The elastic wave measuring device 13 applies a high voltage signal to the elastic wave transmitter 11 at time intervals according to the liquid level monitoring frequency to excite the elastic wave, and the elastic wave receiver 11 converts the electric signal into an electric signal. The converted received elastic wave signal is amplified to a voltage signal within an appropriate range, for example, several hundred mV to several V, and supplied to the reflection echo detection circuit 14 and the surface wave detection circuit 15 at the subsequent stage.

【0023】反射エコー検出回路14および表面波検出
回路15は、弾性波計測器13の出力波形中から、炉壁
内面での反射エコーの波高および炉外壁面を伝播する表
面波の波高をそれぞれ検出するもので、一般の弾性波計
測で用いられているゲート回路、絶対値回路、ピーク検
出回路等の機能を組み合わせて、それぞれゲート回路に
より炉壁内面での反射波および炉外壁面を伝播する表面
波を抽出して、その絶対値のピークを検出するよう構成
する。
The reflected echo detecting circuit 14 and the surface wave detecting circuit 15 detect the wave height of the reflected echo on the inner wall of the furnace wall and the wave height of the surface wave propagating on the outer wall of the furnace, respectively, from the output waveform of the elastic wave measuring device 13. The gate circuit, the absolute value circuit, the peak detection circuit, etc. used in general elastic wave measurement are combined, and the gate circuit reflects the reflected wave on the inner wall of the furnace wall and the surface that propagates on the outer wall of the furnace. It is configured to extract a wave and detect a peak of its absolute value.

【0024】除算回路16は、反射エコー検出回路14
で検出した反射エコーの波高Veおよび表面波検出回路
15で検出した表面波の波高Vsに基づいて、Ve/V
sを演算して反射エコーの波高Veを補正するよう構成
する。また、演算回路17は、除算回路16で演算した
補正された反射エコーの波高Ve/Vsに基づいて、例
えば、上記の(1)式により炉内溶融物101の液面レ
ベルLを演算するよう構成し、その演算結果を後段の表
示装置18に表示するよう構成する。
The division circuit 16 includes a reflection echo detection circuit 14
Ve / V based on the peak height Ve of the reflected echo detected in step S1 and the peak height Vs of the surface wave detected in the surface wave detection circuit 15.
s is calculated to correct the peak height Ve of the reflected echo. Further, the arithmetic circuit 17 calculates the liquid level L of the in-furnace melt 101 by, for example, the above equation (1) based on the corrected reflected echo peak height Ve / Vs calculated by the division circuit 16. And display the calculation result on the display device 18 at the subsequent stage.

【0025】なお、反射エコー検出回路14、表面波検
出回路15、除算回路16および演算回路17は、アナ
ログ素子で実現することもできるし、弾性波計測器13
以降のデータを全てデジタル化することにより、マイク
ロプロセッサ等の演算回路を用いた演算処理で代用する
よう構成することもできる。
The reflection echo detection circuit 14, the surface wave detection circuit 15, the division circuit 16 and the operation circuit 17 can be realized by analog elements.
By digitizing all subsequent data, it is also possible to adopt a configuration in which arithmetic processing using an arithmetic circuit such as a microprocessor is substituted.

【0026】以下、この実施例の動作について説明す
る。この実施例において、炉内溶融物101の液面レベ
ルがほぼ一定の状態で、弾性波送信子11から弾性波を
送波し、それによって弾性波受信子12から得られる受
信波形に基づいて、反射エコー検出回路14および表面
波検出回路15でそれぞれ反射エコーの波高Veおよび
表面波の波高Vsを検出したところ、図4に示す検出結
果が得られた。ここで、測定を行った期間の前半部分で
は、炉100の弾性波送信子11および受信子12の取
り付け部の冷却異常によるそれらの温度上昇が、また後
半部分では、付近で電気工事を行ったことによる電源電
圧のランダムな変動が、それぞれの波高VeおよびVs
の検出誤差となって現れていることを示している。
Hereinafter, the operation of this embodiment will be described. In this embodiment, while the liquid level of the in-furnace melt 101 is substantially constant, an elastic wave is transmitted from the elastic wave transmitter 11 and thereby, based on a reception waveform obtained from the elastic wave receiver 12, The peak Ve of the reflected echo and the peak Vs of the surface wave were detected by the reflection echo detection circuit 14 and the surface wave detection circuit 15, respectively, and the detection results shown in FIG. 4 were obtained. Here, in the first half of the period during which the measurement was performed, the temperature rise due to abnormal cooling of the attachment portion of the elastic wave transmitter 11 and the receiver 12 of the furnace 100, and in the second half, electric work was performed nearby. The random fluctuation of the power supply voltage caused by the peaks Ve and Vs
It appears that the detection error appears.

【0027】しかしながら、上記の反射エコー検出回路
14および表面波検出回路15でそれぞれ検出された反
射エコーの波高Veおよび表面波の波高Vsを、除算回
路16に供給してVeをVsで除算して、反射エコーの
波高を補正したところ、図5に示すように、炉内溶融物
101の液面レベルの実績とほぼ同様に推移する補正さ
れた反射エコーの波高(Ve/Vs)が得られ、これに
基づいて演算回路17で液面レベルを演算したところ、
弾性波送信子11および受信子12の温度上昇および電
源電圧のランダムな変動に影響されることなく、炉内溶
融物101の液面レベルを正確かつ安定して検出するこ
とができた。
However, the reflection echo height Ve and the surface wave height Vs detected by the reflection echo detection circuit 14 and the surface wave detection circuit 15, respectively, are supplied to a division circuit 16 to divide Ve by Vs. When the wave height of the reflected echo is corrected, as shown in FIG. 5, a corrected wave height (Ve / Vs) of the reflected echo which changes substantially in the same manner as the actual level of the melt 101 in the furnace is obtained. When the liquid level was calculated by the calculation circuit 17 based on this,
The liquid level of the in-furnace melt 101 could be accurately and stably detected without being affected by the temperature rise of the elastic wave transmitter 11 and the receiver 12 and random fluctuation of the power supply voltage.

【0028】なお、この発明は、上述した実施例にのみ
限定されるものではなく、幾多の変形または変更が可能
である。例えば、図3において、除算回路16に代えて
ゲイン調整回路を設け、ここで表面波検出回路15で検
出された表面波の波高が所定値となるように、反射エコ
ー検出回路14で検出した反射エコーの波高を増幅補正
し、その増幅補正した反射エコーの波高に基づいて演算
回路17で液面レベルを検出するよう構成することもで
きる。また、この場合において、表面波検出回路15で
検出された表面波の波高が、ゲイン調整回路での最大増
幅電圧を超えているときは、該表面波の波高が所定時
間、最大増幅電圧となるように反射エコー検出回路14
で検出した反射エコーの波高を増幅補正し、その増幅補
正した反射エコーの波高に基づいて演算回路17で液面
レベルを検出するよう構成することもできる。
It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified or changed. For example, in FIG. 3, a gain adjustment circuit is provided instead of the division circuit 16, and the reflection detected by the reflection echo detection circuit 14 is set so that the wave height of the surface wave detected by the surface wave detection circuit 15 becomes a predetermined value. The wave height of the echo may be amplified and corrected, and the arithmetic circuit 17 may detect the liquid level based on the amplified and corrected wave height of the reflected echo. Further, in this case, when the wave height of the surface wave detected by the surface wave detection circuit 15 exceeds the maximum amplified voltage in the gain adjustment circuit, the wave height of the surface wave becomes the maximum amplified voltage for a predetermined time. So that the reflection echo detection circuit 14
It is also possible to amplify and correct the wave height of the reflected echo detected in step (a), and to detect the liquid level in the arithmetic circuit 17 based on the amplified wave height of the reflected echo.

【0029】[0029]

【発明の効果】この発明によれば、炉内溶融物の液面レ
ベルの計測のもととなる反射エコーの波高を、同一受信
波中の表面波成分の波高に基づいて補正するようにした
ので、送信パルスの電圧変動や、温度・応力等による弾
性波送受信系のゲイン変動等による誤差の影響を受ける
ことなく、長期間に亘って安定して液面レベルを計測す
ることができる。したがって、高炉等の溶解炉の安定し
た操業を行うことができると共に、表面波の波高が異常
に過大な場合や過少な場合には、計測装置の異常と見な
して警報を発するという自己診断にも用いることがで
き、計測装置の運用上の信頼性も高めることもできる。
According to the present invention, the wave height of the reflected echo, which is the basis for measuring the liquid level of the melt in the furnace, is corrected based on the wave height of the surface wave component in the same received wave. Therefore, the liquid level can be stably measured over a long period of time without being affected by an error due to a voltage fluctuation of a transmission pulse or a gain fluctuation of an elastic wave transmitting / receiving system due to temperature, stress, or the like. Therefore, not only can the melting furnace such as a blast furnace be operated stably, but also if the wave height of the surface wave is abnormally large or small, it is regarded as an abnormality of the measuring device and an alarm is issued. It can be used, and the operational reliability of the measuring device can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の原理を説明するための図である。FIG. 1 is a diagram for explaining the principle of the present invention.

【図2】図1に示す弾性波受信子から得られる受信波形
の一例を示す図である。
FIG. 2 is a diagram showing an example of a reception waveform obtained from the elastic wave receiver shown in FIG.

【図3】この発明に係る炉内溶融物の液面レベル検出方
法を実施する装置の一例の構成を示す図である。
FIG. 3 is a diagram showing a configuration of an example of an apparatus for performing a method for detecting a liquid level in a furnace melt according to the present invention.

【図4】図3に示す反射エコー検出回路および表面波検
出回路での反射エコーの波高および表面波の波高の一例
の検出結果を示す図である。
FIG. 4 is a diagram showing detection results of an example of the height of a reflected echo and the height of a surface wave in the reflected echo detection circuit and the surface wave detection circuit shown in FIG.

【図5】同じく、図3に示す除算回路から得られる補正
された反射エコーの波高の一例を示す図である。
5 is a diagram showing an example of the wave height of a corrected reflected echo obtained from the division circuit shown in FIG. 3;

【符号の説明】[Explanation of symbols]

1 炉 2 弾性波送信子 3 弾性波受信子 100 炉 101 炉内溶融物 11 弾性波送信子 12 弾性波受信子 13 弾性波計測器 14 反射エコー検出回路 15 表面波検出回路 16 除算回路 17 演算回路 18 表示装置 DESCRIPTION OF SYMBOLS 1 Furnace 2 Elastic wave transmitter 3 Elastic wave receiver 100 Furnace 101 Furnace melt 11 Elastic wave transmitter 12 Elastic wave receiver 13 Elastic wave measuring instrument 14 Reflection echo detection circuit 15 Surface wave detection circuit 16 Division circuit 17 Operation circuit 18 Display device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 周囲を耐火物で覆われた炉外壁に弾性波
送信子および弾性波受信子を設置して、前記弾性波送信
子から炉内に向けて弾性波を放射し、その弾性波の放射
によって前記弾性波受信子から得られる受信信号に基づ
いて炉内溶融物の液面レベルを検出するにあたり、 前記弾性波受信子により炉外壁表面を伝播する表面波お
よび炉内壁における反射エコーを受信して、その表面波
の波高に基づいて反射エコーの波高を補正し、この補正
された反射エコーの波高に基づいて前記液面レベルを検
出することを特徴とする炉内溶融物の液面レベル検出方
法。
1. An elastic wave transmitter and an elastic wave receiver are installed on a furnace outer wall whose periphery is covered with a refractory, and an elastic wave is radiated from the elastic wave transmitter toward the inside of the furnace. In detecting the liquid level of the in-furnace melt based on the reception signal obtained from the elastic wave receiver by the radiation of, the surface acoustic wave propagating on the furnace outer wall surface by the elastic wave receiver and the reflected echo on the furnace inner wall are Receiving, correcting the wave height of the reflected echo based on the wave height of the surface wave, and detecting the liquid surface level based on the wave height of the corrected reflected echo, Level detection method.
【請求項2】 請求項1記載の液面レベル検出方法にお
いて、 前記反射エコーの波高を、前記表面波の波高で除して補
正することを特徴とする炉内溶融物の液面レベル検出方
法。
2. The liquid level detection method according to claim 1, wherein a wave height of the reflected echo is corrected by dividing the wave height of the reflected echo by a wave height of the surface wave. .
【請求項3】 請求項1記載の液面レベル検出方法にお
いて、 前記表面波の波高が所定値となるように前記受信信号を
増幅して、前記反射エコーの波高を補正することを特徴
とする炉内溶融物の液面レベル検出方法。
3. The liquid level detection method according to claim 1, wherein the reception signal is amplified so that the wave height of the surface wave becomes a predetermined value, and the wave height of the reflection echo is corrected. A method for detecting the liquid level of the melt in the furnace.
【請求項4】 請求項3記載の液面レベル検出方法にお
いて、 前記表面波の波高が最大増幅電圧を超えているときは、
該表面波の波高が所定時間、前記最大増幅電圧となるよ
うに前記受信信号を増幅して、前記反射エコーの波高を
補正することを特徴とする炉内溶融物の液面レベル検出
方法。
4. The liquid level detecting method according to claim 3, wherein when the wave height of the surface wave exceeds a maximum amplified voltage,
A method for detecting a liquid level of a melt in a furnace, comprising: amplifying the received signal so that the wave height of the surface wave becomes the maximum amplified voltage for a predetermined time; and correcting the wave height of the reflected echo.
JP8341059A 1996-12-20 1996-12-20 Method of detecting liquid level of furnace-melted matter Pending JPH10185654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8341059A JPH10185654A (en) 1996-12-20 1996-12-20 Method of detecting liquid level of furnace-melted matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8341059A JPH10185654A (en) 1996-12-20 1996-12-20 Method of detecting liquid level of furnace-melted matter

Publications (1)

Publication Number Publication Date
JPH10185654A true JPH10185654A (en) 1998-07-14

Family

ID=18342867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8341059A Pending JPH10185654A (en) 1996-12-20 1996-12-20 Method of detecting liquid level of furnace-melted matter

Country Status (1)

Country Link
JP (1) JPH10185654A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101125965B1 (en) 2010-09-03 2012-03-21 재단법인 포항산업과학연구원 Apparatus for measuring level of pig iron in blast furnice and method for performing the same
WO2016131547A1 (en) * 2015-02-20 2016-08-25 Ergolines Lab S.R.L. Measuring method, system and sensor for a continuous casting machine
JP2017160498A (en) * 2016-03-10 2017-09-14 株式会社神戸製鋼所 Estimation method of melt level in vertical furnace, and estimation device thereof
CN112458225A (en) * 2020-11-26 2021-03-09 中冶南方工程技术有限公司 Online monitoring system for liquid level of blast furnace hearth
IT202000020620A1 (en) 2020-08-28 2022-02-28 Ergolines Lab S R L SENSOR, SYSTEM AND METHOD OF MEASUREMENT AND CASTING MACHINE
WO2022201717A1 (en) 2021-03-23 2022-09-29 Jfeスチール株式会社 Molten iron slag height detection method and molten iron slag height detection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101125965B1 (en) 2010-09-03 2012-03-21 재단법인 포항산업과학연구원 Apparatus for measuring level of pig iron in blast furnice and method for performing the same
CN107257717B (en) * 2015-02-20 2021-07-20 麦角灵实验室公司 Measuring method, system and sensor for a continuous casting machine
WO2016131547A1 (en) * 2015-02-20 2016-08-25 Ergolines Lab S.R.L. Measuring method, system and sensor for a continuous casting machine
CN107257717A (en) * 2015-02-20 2017-10-17 麦角灵实验室公司 Measuring method, system and sensor for continuously casting machine
US20180021849A1 (en) * 2015-02-20 2018-01-25 Ergolines Lab S.R.L. Measuring method, system and sensor for a continuous casting machine
RU2703606C2 (en) * 2015-02-20 2019-10-21 Эрголайнз Лэб С.Р.Л. Method of measuring, system and sensor for continuous casting machine
US11020793B2 (en) 2015-02-20 2021-06-01 Ergolines Lab S.R.L. Measuring method, system and sensor for a continuous casting machine
JP2017160498A (en) * 2016-03-10 2017-09-14 株式会社神戸製鋼所 Estimation method of melt level in vertical furnace, and estimation device thereof
IT202000020620A1 (en) 2020-08-28 2022-02-28 Ergolines Lab S R L SENSOR, SYSTEM AND METHOD OF MEASUREMENT AND CASTING MACHINE
WO2022042869A1 (en) 2020-08-28 2022-03-03 Ergolines Lab S.R.L. Measuring sensor, system and method and casting machine
CN112458225A (en) * 2020-11-26 2021-03-09 中冶南方工程技术有限公司 Online monitoring system for liquid level of blast furnace hearth
WO2022201717A1 (en) 2021-03-23 2022-09-29 Jfeスチール株式会社 Molten iron slag height detection method and molten iron slag height detection device
KR20230145593A (en) 2021-03-23 2023-10-17 제이에프이 스틸 가부시키가이샤 Molten iron height detection method and molten iron height detection device

Similar Documents

Publication Publication Date Title
US5360268A (en) Ultrasonic temperature measuring apparatus
US7679996B2 (en) Methods and device for ultrasonic range sensing
JPS5987311A (en) Double element ultrasonic probe and pulse echo ultrasonic measuring meter
JPH10185654A (en) Method of detecting liquid level of furnace-melted matter
US6786633B2 (en) Method and arrangement for acoustically determining a fluid temperature
JP3117372B2 (en) Ultrasonic distance measuring device
JP3212501B2 (en) Pipe clogging detection method and device
EP1785701A1 (en) Apparatus and method for determining a temperature of a volume of gas
JP3596125B2 (en) Method and apparatus for measuring liquid level of molten material in furnace
JP2003329518A (en) Method and apparatus for measurement of temperature on inner surface of structure
KR20090040699A (en) Extension apparatus for measurement range of ultrasonic thickness gage
JP2016044984A (en) Weld monitoring device and method by ultrasonic wave
JPH08271322A (en) Ultrasonic liquid level measuring method
KR101685039B1 (en) Method and apparatus for compensating the sensitivity of ultrasonic sensors
KR100189300B1 (en) Ultrasonic distance measurement apparatus using phase compensation circuit and method thereof
JPH05231818A (en) Laser distance measuring device
JP2000171232A (en) Ultrasonic wave measuring instrument
JPH0989629A (en) Method and apparatus for measurement of liquid surface level of in-furnace molten object
JP3130975B2 (en) Acoustic temperature measurement method and device
JPH03180794A (en) Method and instrument for ultrasonic distance measurement
JPH08220229A (en) Ultrasonic wave sensor
JPH01203967A (en) Temperature compensation type ultrasonic flaw detector
JPS6176951A (en) Residual life deciding device of steel pipe, steel pipe column or the like
JPH06148316A (en) Ultrasonic distance sensor
JPH0961144A (en) Method and apparatus for measurement of thickness of object to be measured