JPH01203967A - Temperature compensation type ultrasonic flaw detector - Google Patents

Temperature compensation type ultrasonic flaw detector

Info

Publication number
JPH01203967A
JPH01203967A JP63029679A JP2967988A JPH01203967A JP H01203967 A JPH01203967 A JP H01203967A JP 63029679 A JP63029679 A JP 63029679A JP 2967988 A JP2967988 A JP 2967988A JP H01203967 A JPH01203967 A JP H01203967A
Authority
JP
Japan
Prior art keywords
temperature
ultrasonic
ultrasonic flaw
sensitivity
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63029679A
Other languages
Japanese (ja)
Inventor
Takehiko Takagi
剛彦 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP63029679A priority Critical patent/JPH01203967A/en
Publication of JPH01203967A publication Critical patent/JPH01203967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make ultrasonic flaw detecting operation efficient, to simplify the operation, and to shorten the operation time, and to improve the reliability of an ultrasonic flaw detector by detecting the temperature of a sample and correcting sensitivity variation with the angle of refraction of an ultrasonic wave due to temperature variation. CONSTITUTION:The transmitter 17 of the ultrasonic flaw detector 12 sends an ultrasonic wave signal and the vibrator 13 of an ultrasonic probe sends an ultrasonic wave into the sample 3. If there is a defect, the ultrasonic wave beam incident on the sample 3 is reflected there, received by the vibrator 13, and inputted to an amplifier 20. The temperature detection signal of the sample 3 which is measured by a temperature sensor 15, on the other hand, is applied to a temperature correction type gain control unit 19. Then the gain of the amplifier 20 is controlled with the output according to temperature to correct the sensitivity. The received signal which is amplified is displayed on a CRT 21 and the distance from a measurement point to a detecting place is found from the arrival time of a reflected wave. Consequently, the sensitivity variation with temperature is corrected to detect the defect position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は材料中の欠陥の検査に用いられる超音波探傷装
置に係わり、物体認識、形状測定、物体間の距離等の絶
対値測定に用いられる超音波センサとしても適用可能な
超音波探傷装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic flaw detection device used for inspecting defects in materials, and is used for object recognition, shape measurement, and absolute value measurement of distances between objects, etc. The present invention relates to an ultrasonic flaw detection device that can also be used as an ultrasonic sensor.

〔従来の技術〕[Conventional technology]

一般に、溶接部の欠陥、管あるいは板等の広範囲な探傷
に超音波による斜角探傷法が利用されている。これは超
音波振動子を内蔵した超音波探触子を被検体の表面に取
りつけ、表面に対して斜め方向に超音波パルスを発信し
、被検体内部のクランク等の欠陥箇所から反射した反射
波を同じ超音波探触子で受信して電気信号に変換し、ブ
ラウン管上に表示し、超音波パルスを発信してから受信
するまでの時間を測定して欠陥位置を探索するものであ
る。
In general, the angle angle flaw detection method using ultrasonic waves is used to detect defects in welds, pipes, plates, etc. over a wide range of areas. In this method, an ultrasonic probe with a built-in ultrasonic transducer is attached to the surface of the object to be examined, and ultrasonic pulses are emitted diagonally to the surface, and the reflected waves are reflected from defective parts such as cranks inside the object. is received by the same ultrasonic probe, converted into an electrical signal, and displayed on a cathode ray tube, and the time from when the ultrasonic pulse is transmitted to when it is received is measured to search for the defect location.

第5図はこのような従来の超?)゛波探(W装置を示す
図で、図中1は超音波探触子、2は超音波探傷器、3は
被検体、4は欠陥、5は超音波ビーム、6.7は温度変
化により屈折角の変化した超音波ビームである。
Figure 5 shows such a conventional super? )゛Wave detection (This is a diagram showing the W device. In the figure, 1 is an ultrasonic probe, 2 is an ultrasonic flaw detector, 3 is an object to be inspected, 4 is a defect, 5 is an ultrasonic beam, and 6.7 is a temperature change. This is an ultrasonic beam with a changed refraction angle.

図において、超音波探傷を行う場合、被検体3に設けた
超音波探触子1から発信した超音波ビーム5は欠陥位置
4で反射を生じ、その反射波を超音波探触子lで受信す
る。そして超音波探傷器2で超音波パルスを発信してか
ら受信するまでの時間を求めることにより欠陥位置4を
検出している。
In the figure, when performing ultrasonic flaw detection, an ultrasonic beam 5 emitted from an ultrasonic probe 1 installed on an object 3 is reflected at a defect position 4, and the reflected wave is received by an ultrasonic probe l. do. The defect position 4 is detected by determining the time from when an ultrasonic pulse is transmitted by the ultrasonic flaw detector 2 to when it is received.

この場合、被検体3の温度が変化すると屈折角が変化し
て破線で示した超音波ビーム6又は7のようになるが、
超音波ビームはある広がり幅を持っているため、その幅
の中に欠陥があれば欠陥信号として検出することができ
る。
In this case, when the temperature of the subject 3 changes, the refraction angle changes and becomes like the ultrasound beam 6 or 7 shown by the broken line.
Since the ultrasonic beam has a certain spread width, if there is a defect within that width, it can be detected as a defect signal.

ところで、温度変化があると前述したように屈折角が変
化するために反射波の音圧が変化したり、或いは振動子
自体の発振出力、即ち音圧が変化することにも起因して
感度が変化してしまう。
By the way, when there is a temperature change, as mentioned above, the refraction angle changes, so the sound pressure of the reflected wave changes, or the oscillation output of the vibrator itself, that is, the sound pressure changes, resulting in a decrease in sensitivity. It will change.

したがって、従来は材料の温度と同一温度に感度校正用
試験片を加熱又は冷却して感度校正を行うか、或いは基
準温度で校正し、温度変化による感度の変化をバックグ
ランドノイズとして扱ってこれを補正するようにしてい
た。
Therefore, in the past, sensitivity calibration was performed by heating or cooling a sensitivity calibration test piece to the same temperature as the material temperature, or by calibrating at a reference temperature and treating changes in sensitivity due to temperature changes as background noise. I was trying to correct it.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

このように従来の超音波探傷装置は材料の温度が変化す
るにしたがって、その都度感度の校正を行わなければな
らなかった。このため、温度変化の激しい材料での微小
な欠陥の探傷や、特に高温領域での探傷では、探傷の信
組性が問題となって探傷できない場合もあり、温度変化
による超音波探触子の感度変化を低減することが切望さ
れている。
In this manner, the sensitivity of conventional ultrasonic flaw detection equipment must be calibrated each time the temperature of the material changes. For this reason, when detecting minute defects in materials subject to rapid temperature changes, or particularly in high-temperature areas, there are cases in which flaw detection cannot be performed due to reliability issues, and the sensitivity of ultrasonic probes due to temperature changes There is a strong desire to reduce variation.

本発明は上記問題点を解決するためのもので、超音波探
触子で被検体湯度を検知することにより、感度補正を自
動的に行い、超音波探傷時の作業の効率化、簡易化、作
業時間の短縮化、さらに超音波探傷への信頼性を向上さ
せることができる温度補償型超音波探傷装置を提供する
ことを目的とず【発明が解決しようとする課題〕 本発明の温度補償型超音波探傷装置は、超音波振動子を
内蔵した超音波探触子と、超音波探触子へ超音波信号を
送ると共に、探触子からの検出信号を受信する受信器を
有する超音波探傷器とからなる超音波探傷装置において
、被検体の温度を検出する温度検出手段と検出温度信号
により感度補正する感度補正手段を設け、被検体の温度
を検出して温度変化に伴う超音波の屈折角の変化による
感度変化を補正することを特徴とする。
The present invention is intended to solve the above-mentioned problems. By detecting the hot water temperature of the object with an ultrasonic probe, sensitivity correction is automatically performed, thereby improving the efficiency and simplifying the work during ultrasonic flaw detection. The present invention does not aim to provide a temperature-compensated ultrasonic flaw detection device that can shorten working time and improve the reliability of ultrasonic flaw detection [Problems to be Solved by the Invention] The ultrasonic flaw detection device has an ultrasonic probe with a built-in ultrasonic transducer and a receiver that sends ultrasonic signals to the ultrasonic probe and receives detection signals from the probe. In an ultrasonic flaw detection device consisting of a flaw detector, a temperature detection means for detecting the temperature of the object and a sensitivity correction means for correcting the sensitivity based on the detected temperature signal are provided. It is characterized by correcting sensitivity changes due to changes in refraction angle.

〔作用〕[Effect]

本発明の温度補償型超音波探傷装置は、被検体温度を検
出し、検出した温度信号により感度補正することにより
感度の補正を自動的に行い、超音波探傷時の作業の効率
化、簡易化、作業時間の短縮化、さらに超音波探傷への
信幀性を向上させることができる。
The temperature-compensated ultrasonic flaw detection device of the present invention automatically corrects the sensitivity by detecting the temperature of the object and correcting the sensitivity based on the detected temperature signal, thereby streamlining and simplifying the work during ultrasonic flaw detection. It is possible to shorten the working time and improve the reliability of ultrasonic flaw detection.

〔実施例〕〔Example〕

以下、図面を参照して実施例を説明する。 Examples will be described below with reference to the drawings.

第1図〜第3図は本発明による温度補償型超音波探傷装
置の一実施例を示す図で、第1図は超音波探触Tの内部
を示す図、第2図は被検体に超音波探触子を取り付けた
図、第3図は超音波探傷の全体構成を示す図で、第5図
と同一番号は同一内容を示す、なお、11は超音波探触
子、12は超音波探傷器、13は振動子、14は(さび
材、15は温度センサ、16はコネクタ、17は発信器
、18は受信器、19は温度補正式ゲインコントロール
ユニット、20は増幅器、21はCRTである。
1 to 3 are diagrams showing an embodiment of the temperature compensated ultrasonic flaw detection device according to the present invention. FIG. 1 is a diagram showing the inside of the ultrasonic probe T, and FIG. Figure 3 shows the overall configuration of ultrasonic flaw detection, with the sonic probe attached, and the same numbers as in Figure 5 indicate the same content. 11 is the ultrasonic probe, 12 is the ultrasonic flaw detector, 13 is a vibrator, 14 is a rust material, 15 is a temperature sensor, 16 is a connector, 17 is a transmitter, 18 is a receiver, 19 is a temperature compensation type gain control unit, 20 is an amplifier, and 21 is a CRT. be.

図において、超音波探触子11はくさび材14のネ1面
に超音波を斜めに発信するように取り付けた振動子13
と被検体3の温度計測を行う温度センサ15を内蔵し、
外側に設けたコネクタ16を介して振動子13、及び温
度センサ15の出力は信号用電源によって外部の超音波
探傷1t2に接続されている。
In the figure, an ultrasonic probe 11 is a transducer 13 attached to one surface of a wedge member 14 so as to transmit ultrasonic waves obliquely.
and a temperature sensor 15 for measuring the temperature of the subject 3,
The outputs of the vibrator 13 and the temperature sensor 15 are connected to an external ultrasonic flaw detector 1t2 via a connector 16 provided on the outside by a signal power source.

また、超音波探傷器12は第3図のブロック図に示すよ
うに発信器17、受信器18、温度補償式ゲインコント
ロールユニット19、tt9幅120、CRT21から
構成されている。
Further, the ultrasonic flaw detector 12 is composed of a transmitter 17, a receiver 18, a temperature compensated gain control unit 19, a TT9 width 120, and a CRT 21, as shown in the block diagram of FIG.

このような構成において、発信器17より振動子I3か
ら被検体3内に超音波が発射され、被検体3に入射され
た超音波ビームは、欠陥箇所があった場合にはそこで反
射されて振動子13で受信され、その受kj信号は増幅
器20に入力される。
In such a configuration, an ultrasonic wave is emitted from the transducer I3 into the subject 3 from the transmitter 17, and if there is a defective part, the ultrasonic beam that is incident on the subject 3 is reflected there and vibrates. The received kj signal is input to the amplifier 20.

一方、温度センサ15で測定した被検体3の温度検出信
号は温度補正式ゲインコントロールユニット19に加え
られる。そして、この出力により温度に応して増幅器2
0のゲインを制御することにより感度補正が行われる。
On the other hand, the temperature detection signal of the subject 3 measured by the temperature sensor 15 is applied to the temperature compensation type gain control unit 19. Based on this output, the amplifier 2 is
Sensitivity correction is performed by controlling a gain of 0.

増幅された受信信号はCRT上に表示され、測定点から
欠陥場所までの距がか反射波の到達時間より求められる
。こうして、温度変化による感度変化を補正して欠陥位
置の検出を行うことができる。
The amplified received signal is displayed on a CRT, and the distance from the measurement point to the defect location is determined from the arrival time of the reflected wave. In this way, the defect position can be detected by correcting sensitivity changes due to temperature changes.

勿論、この場合超音波探傷器12には温度による探傷信
号レベルの増減データを記憶させておく必要がある。な
お、音速の不明な被検体については、別に予め探傷信号
の温度の影響を測定し、超音波探傷器12に記f、αさ
せておく。また、本装置に用いる超音波探触子の屈折角
は何度でもよく、取付角度の異なった振動子を複数個使
用した超音波探4!J’4Wを使用することもできる。
Of course, in this case, the ultrasonic flaw detector 12 needs to store data on increases and decreases in the flaw detection signal level due to temperature. Note that for a subject whose sound velocity is unknown, the influence of temperature on the flaw detection signal is separately measured in advance and recorded in the ultrasonic flaw detector 12 as f and α. In addition, the refraction angle of the ultrasonic probe used in this device may be any number, and the ultrasonic probe 4! uses multiple transducers with different mounting angles. J'4W can also be used.

第4図は本発明による他の実施例を示す図で、図中、第
3図と同一番号は同一内容を示す。なお、22は15i
;rIJ子、23は温度補正式超音波入射角コントロー
ルユニット、24はくさび材、25は入射角可変機構部
、2Gは超音波探傷器である。
FIG. 4 is a diagram showing another embodiment of the present invention, in which the same numbers as in FIG. 3 indicate the same contents. In addition, 22 is 15i
23 is a temperature-compensated ultrasonic incident angle control unit, 24 is a wedge material, 25 is an incident angle variable mechanism section, and 2G is an ultrasonic flaw detector.

被検体3の温度を温度センサ15で測定した温度信号を
温度補正式超音波入射角コントロールユニット23に入
力し、その出力で入射角可変機構部25を駆動し、くさ
び材24上の円弧面上で振動子22を移動させ、超音波
の入射角を制御する。
A temperature signal obtained by measuring the temperature of the subject 3 with the temperature sensor 15 is input to the temperature-compensated ultrasonic incident angle control unit 23, and its output drives the incident angle variable mechanism 25, and The transducer 22 is moved to control the incident angle of the ultrasonic waves.

このようにして、被検体3の温度によって変化する被検
体3内の屈折角を常に基準温度の屈折角にして探傷する
In this way, the refraction angle inside the object 3, which changes depending on the temperature of the object 3, is always set to the reference temperature for flaw detection.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、超音波探触子で被検体の
温度を検知することにより、温度補正を自動的に行うこ
とができ、被検体の温度を考慮する必要がないので、超
音波探傷時の作業の効率化、単純化、従って作業時間を
短縮することが可能となり、作業経費を低減することが
でき、超音波探傷器への信頼性を向上することができる
As described above, according to the present invention, temperature correction can be automatically performed by detecting the temperature of the object with an ultrasonic probe, and there is no need to take the temperature of the object into consideration. It is possible to improve the efficiency and simplify the work during sonic flaw detection, thereby shortening the work time, reducing work costs, and improving the reliability of the ultrasonic flaw detector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超音波探傷装置における探触子を示す
図、第2図は被検体に超音波探触子を取り付けた状態を
示す図、第3図は超音波探傷装置の全体構成図、第4図
は本発明の他の実施例を示す図、第5図は従来の超音波
探傷装置を示す図である。 1・・・超音波探触子、2・・・超音波探傷器、3・・
・被検体、4・・・欠陥、5・・・超音波ビーム、6.
7・・・温度変化により屈折角の変化した超音波ビーム
、11・・・超音波探触子、12・・・超音波探傷器、
13・・・振動子、14・・・くさび材、15・・・温
度センサ、16・・・コネクタ、17・・・発信器、1
8・・・受信器、19・・・温度補正式ゲインコントロ
ールユニット、20・・・増幅器、21・・・CRT、
22・・・振動子、23・・・温度補正式超音波入射角
コントロールユニット、24・・・くさび材、25・・
・入射角可変機構部、26・・・超音波探傷器。 出 願 人   動力炉・核燃fi開発事業団代理人弁
理士  蛭 川 昌 信(外4名)第1図 第2図 第5図
Fig. 1 is a diagram showing the probe in the ultrasonic flaw detection device of the present invention, Fig. 2 is a diagram showing the state in which the ultrasonic probe is attached to a test object, and Fig. 3 is the overall configuration of the ultrasonic flaw detection device. FIG. 4 is a diagram showing another embodiment of the present invention, and FIG. 5 is a diagram showing a conventional ultrasonic flaw detection device. 1... Ultrasonic probe, 2... Ultrasonic flaw detector, 3...
・Object to be inspected, 4... Defect, 5... Ultrasonic beam, 6.
7... Ultrasonic beam whose refraction angle has changed due to temperature change, 11... Ultrasonic probe, 12... Ultrasonic flaw detector,
13... Vibrator, 14... Wedge material, 15... Temperature sensor, 16... Connector, 17... Transmitter, 1
8...Receiver, 19...Temperature compensation type gain control unit, 20...Amplifier, 21...CRT,
22... Vibrator, 23... Temperature-compensated ultrasonic incident angle control unit, 24... Wedge material, 25...
- Incident angle variable mechanism section, 26... Ultrasonic flaw detector. Applicant Masanobu Hirukawa (4 others), patent attorney representing the Power Reactor and Nuclear Fuel Development Corporation (Fig. 1, Fig. 2, Fig. 5)

Claims (4)

【特許請求の範囲】[Claims] (1)超音波振動子を内蔵した超音波探触子と、超音波
探触子へ超音波信号を送ると共に、探触子からの検出信
号を受信する受信器を有する超音波探傷器とからなる超
音波探傷装置において、被検体の温度を検出する温度検
出手段と検出温度信号により感度補正する感度補正手段
を設け、被検体の温度を検出して温度変化に伴う超音波
の屈折角の変化による感度変化を補正することを特徴と
する温度補償型超音波探傷装置。
(1) An ultrasonic probe with a built-in ultrasonic transducer and an ultrasonic flaw detector that has a receiver that sends ultrasonic signals to the ultrasonic probe and receives detection signals from the probe. This ultrasonic flaw detection device is equipped with a temperature detection means for detecting the temperature of the object to be inspected and a sensitivity correction means for correcting the sensitivity based on the detected temperature signal. A temperature-compensated ultrasonic flaw detection device that corrects sensitivity changes due to
(2)感度補正手段は、検出温度に応じて受信信号を増
幅する増幅器のゲインを制御する請求項1記載の温度補
償型超音波探傷装置。
(2) The temperature compensated ultrasonic flaw detection apparatus according to claim 1, wherein the sensitivity correction means controls the gain of an amplifier that amplifies the received signal according to the detected temperature.
(3)感度補正手段は、検出温度に応じて探触子の取付
角度を変えて温度変化に伴う超音波の屈折角を一定にな
るように制御する請求項1記載の温度補償型超音波探傷
装置。
(3) The temperature-compensated ultrasonic flaw detection according to claim 1, wherein the sensitivity correction means controls the refraction angle of the ultrasonic waves to be constant as the temperature changes by changing the mounting angle of the probe according to the detected temperature. Device.
(4)探触子は、円弧面に沿って取付角度が変えられる
請求項3記載の温度補償型超音波探傷装置。
(4) The temperature-compensated ultrasonic flaw detection device according to claim 3, wherein the probe has a mounting angle that can be changed along an arcuate surface.
JP63029679A 1988-02-09 1988-02-09 Temperature compensation type ultrasonic flaw detector Pending JPH01203967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029679A JPH01203967A (en) 1988-02-09 1988-02-09 Temperature compensation type ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029679A JPH01203967A (en) 1988-02-09 1988-02-09 Temperature compensation type ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPH01203967A true JPH01203967A (en) 1989-08-16

Family

ID=12282802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029679A Pending JPH01203967A (en) 1988-02-09 1988-02-09 Temperature compensation type ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPH01203967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470056B2 (en) * 2004-02-12 2008-12-30 Industrial Measurement Systems, Inc. Methods and apparatus for monitoring a condition of a material
US8256953B2 (en) 2008-10-31 2012-09-04 Yuhas Donald E Methods and apparatus for measuring temperature and heat flux in a material using ultrasound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153690A (en) * 1978-05-24 1979-12-04 Hitachi Ltd Variable angle ultrasonic probe
JPS5710449A (en) * 1980-06-21 1982-01-20 Teruo Kishi Temperature compensation type crack measuring device
JPS5940250A (en) * 1982-08-31 1984-03-05 Mitsubishi Heavy Ind Ltd Variable angle ultrasonic sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153690A (en) * 1978-05-24 1979-12-04 Hitachi Ltd Variable angle ultrasonic probe
JPS5710449A (en) * 1980-06-21 1982-01-20 Teruo Kishi Temperature compensation type crack measuring device
JPS5940250A (en) * 1982-08-31 1984-03-05 Mitsubishi Heavy Ind Ltd Variable angle ultrasonic sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470056B2 (en) * 2004-02-12 2008-12-30 Industrial Measurement Systems, Inc. Methods and apparatus for monitoring a condition of a material
US7726875B2 (en) 2004-02-12 2010-06-01 Industrial Measurement Systems, Inc. Methods and apparatus for monitoring a condition of a material
US8256953B2 (en) 2008-10-31 2012-09-04 Yuhas Donald E Methods and apparatus for measuring temperature and heat flux in a material using ultrasound

Similar Documents

Publication Publication Date Title
US4437332A (en) Ultrasonic thickness measuring instrument
US6684701B2 (en) System and method of determining porosity in composite materials using ultrasound
US5156636A (en) Ultrasonic method and apparatus for measuring outside diameter and wall thickness of a tube and having temperature compensation
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
US4068524A (en) Ultrasonic inspection of articles
US4669312A (en) Method and apparatus for ultrasonic testing of defects
US6823737B2 (en) Non-contact inspection system for large concrete structures
JPS60233547A (en) Method and device for maintaining parallel relationship between working surface of acoustic transducer and flat surface of object
JPS6314762B2 (en)
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
US3942361A (en) Arrangement for testing thick-walled specimens by the ultrasonic pulse-echo method
JPH11118771A (en) Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
JPH01203967A (en) Temperature compensation type ultrasonic flaw detector
US4187725A (en) Method for ultrasonic inspection of materials and device for effecting same
JP2006313115A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
US4171644A (en) Means for ultrasonic testing when material properties vary
JP2006313110A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2008232622A (en) Ultrasonic flaw detection device and ultrasonic flaw detection program
US3533280A (en) Ultrasonic material tester
KR920007199B1 (en) Nondestructive inspection method and apparatus
SU1320742A1 (en) Method of ultrasonic shadow examination of articles and device for effecting same
SU1557516A1 (en) Method of ultrasonic through-transmission inspection of articles
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JP2826013B2 (en) Ultrasonic flaw detection method