JPH08254413A - Curvature radius measuring method and device - Google Patents

Curvature radius measuring method and device

Info

Publication number
JPH08254413A
JPH08254413A JP7057605A JP5760595A JPH08254413A JP H08254413 A JPH08254413 A JP H08254413A JP 7057605 A JP7057605 A JP 7057605A JP 5760595 A JP5760595 A JP 5760595A JP H08254413 A JPH08254413 A JP H08254413A
Authority
JP
Japan
Prior art keywords
radius
curvature
inspected
entire surface
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7057605A
Other languages
Japanese (ja)
Inventor
Hajime Ichikawa
元 市川
Takahiro Yamamoto
貴広 山本
Katsuya Miyoshi
勝也 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7057605A priority Critical patent/JPH08254413A/en
Publication of JPH08254413A publication Critical patent/JPH08254413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To measure curvature radius from the whole face of a face to be tested by finding the curvature radius and the distance from some reference point found from interference fringe information in a partial region of the face to be tested, finding a distance from some reference point found from the interference fringe decided by the whole face of the face to be tested, and calculating the difference between both distances and the partial curvature radius. CONSTITUTION: A measuring system 100 is provided with a body to be tested having a face to be tested and a prototype having a base reference face which forms interference fringe with the face to be tested. R1 , R2 are set as curvature radii regulated by the whole face of the face to be tested and a partial range respectively, Z1 , Z2 are set as the heights from some reference points (vertex of a face to be tested) respectively, and (d) is set as the radius of the prototype. The prototype is mounted so as to form the interference fringe and a Newton ring is observed by a CCD camera 110. An arithmetic processing 120 calculates ΔZ=Z2 -Z1 =d<2> /(2R2 )-d<2> /(2R1 )≈-(1/2).(d/R2 )<2> .(ΔR) introduced from an approximation related to the Newton ring. The (d) is known and when R is found, R can be calculated. It is assumed to be ΔR=R1 -R2 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、曲率を有するレンズ
面、光学面等を備えた光学素子の曲率半径の測定手段に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to means for measuring a radius of curvature of an optical element having a lens surface, an optical surface, etc. having a curvature.

【0002】[0002]

【従来の技術】光学レンズの曲率半径の絶対値を測定す
るための従来技術としては、例えば、いわゆる、「オー
トコリメーション法」が、通常一般的に使用されてい
る。この方法は、「JIS−B7155/8試験/8.2
(2)対物鏡の焦点距離(近距離コリメータによる方
法)」に記載されているように、コリメータレンズと凹
面鏡とを有して構成される光学系の配置状態を調整し
て、「球心反射状態」と「頂点反射状態(キャッツアイ
反射状態)」の2状態を作り出し、この2状態間での、
被検面の移動量を測定することにより、被検面の曲率半
径の絶対値を測定するものである。
2. Description of the Related Art As a conventional technique for measuring the absolute value of the radius of curvature of an optical lens, for example, the so-called "autocollimation method" is generally generally used. This method is based on "JIS-B7155 / 8 test / 8.2.
(2) Focal length of objective mirror (method using short-range collimator) ”, the arrangement state of an optical system including a collimator lens and a concave mirror is adjusted to perform“ ball-center reflection ”. "State" and "vertex reflection state (cat's eye reflection state)" are created, and between these two states,
By measuring the amount of movement of the test surface, the absolute value of the radius of curvature of the test surface is measured.

【0003】また、被検物の有する被検面の全面の曲率
半径が大きなために、スペース的に上記オートコリメー
ション法の適用が不可能な被検面に対する曲率半径の測
定に関しては、例えば、特開昭64−28534号公報
に開示されているような、前記オートコリメーション法
を応用した、折り返し測定の手法が提案されている。
Further, since the radius of curvature of the entire surface of the surface to be inspected possessed by the object to be inspected is large, the measurement of the radius of curvature to the surface to be inspected to which the above-mentioned autocollimation method cannot be applied is spatially limited. There has been proposed a folding measurement method applying the above-mentioned auto-collimation method as disclosed in Japanese Patent Laid-Open No. 64-28534.

【0004】この折り返し測定では、収束光束の折り返
し測定の際に、平面ミラーと被検面とを有して構成され
る光学系を使用するが、収束光束折り返し位置(即ち、
平面ミラーと被検面との位置)の差の情報から、大きな
被検面の曲率半径(以下、「長大R」と称する)を求め
る方法である。
In this return measurement, an optical system having a plane mirror and a surface to be inspected is used in the return measurement of the convergent light beam.
This is a method of obtaining a large radius of curvature (hereinafter, referred to as "long R") of the surface to be inspected from information on the difference between the position of the plane mirror and the surface to be inspected.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
ような、従来の折り返し測定により、長大Rを測定する
場合、被検面の全面の情報を使用するためには、通常の
オートコリメーション法による測定時の略2倍の測定有
効径(測定に必要な径)が必要となる。
However, in the case of measuring a large radius R by the conventional folding measurement as described above, in order to use the information of the entire surface of the test surface, the measurement by the normal autocollimation method is performed. A measurement effective diameter (diameter required for measurement) that is approximately twice that at the time is required.

【0006】逆に、通常の測定系で、長大Rを部分的に
測定した場合、例えば、被検面全面での真球度が悪い場
合等には、被検面全面で規定される曲率半径が、精度良
く求まらないという問題点があった。
On the contrary, when the large radius R is partially measured by an ordinary measurement system, for example, when the sphericity on the entire surface to be inspected is poor, the radius of curvature defined on the entire surface to be inspected However, there was a problem that it could not be obtained accurately.

【0007】そこで、本発明は、上記のような従来の技
術が有する問題点に鑑みて創作されたものであり、たと
え、曲率半径の測定有効径が十分に確保できなくても、
被検面全面で規定される長大Rの測定が可能な曲率半径
測定手段を提供することを目的とする。
Therefore, the present invention was created in view of the problems of the above-mentioned conventional techniques, and even if the effective measurement radius of curvature cannot be sufficiently secured,
It is an object of the present invention to provide a curvature radius measuring means capable of measuring a large radius R defined on the entire surface to be inspected.

【0008】[0008]

【課題を解決するための手段】上記課題を解決し、本発
明の目的を達成するためには、以下の手段が考えられ
る。
In order to solve the above problems and achieve the object of the present invention, the following means can be considered.

【0009】被検物の有する被検面の全面(被検面全
面)で規定される曲率半径を測定する方法であって、前
記被検面全面の一部の領域で規定される、曲率半径(部
分曲率半径)と、干渉縞情報から求まる或る基準点から
の距離情報とを求め、次に、前記被検面全面で規定され
る、干渉縞情報から求まる前記或る基準点からの距離情
報とを求め、両距離情報を減算する。
A method for measuring a radius of curvature defined on the entire surface of a test object (the entire surface of the test surface), which is defined by a partial area of the entire surface of the test surface. (Partial curvature radius) and distance information from a certain reference point obtained from the interference fringe information are obtained, and then the distance from the certain reference point obtained from the interference fringe information, which is defined on the entire surface to be inspected. Information and and subtract both distance information.

【0010】そして、さらに、前記部分曲率半径、前記
減算結果に基づいて、予め定めた関係式を参照して、被
検面全面で規定される曲率半径を求める曲率半径測定方
法である。
Further, it is a curvature radius measuring method for obtaining a curvature radius defined on the entire surface to be inspected by referring to a predetermined relational expression based on the partial curvature radius and the subtraction result.

【0011】[0011]

【作用】まず、被検面全面の一部の領域を部分領域と定
義する。
First, a partial area of the entire surface to be inspected is defined as a partial area.

【0012】該部分領域で規定される、曲率半径(部分
曲率半径)と、干渉縞情報から求まる或る基準点からの
距離情報とを求める。なお、干渉縞を生成するために、
被検体に、既知の曲率を有する干渉縞生成用の原器を装
着しておけば良い。
A radius of curvature (partial radius of curvature) defined by the partial area and distance information from a certain reference point obtained from the interference fringe information are obtained. In order to generate the interference fringes,
It suffices to mount a prototype for generating interference fringes having a known curvature on the subject.

【0013】次に、前記被検面全面で規定される、干渉
縞情報から求まる前記或る基準点からの距離情報とを求
め、両距離情報を減算する。
Next, the distance information from the certain reference point, which is obtained from the interference fringe information and is defined on the entire surface to be inspected, is obtained, and both distance information are subtracted.

【0014】さらに、前記部分曲率半径、前記減算結果
に基づいて、予め定めた関係式を参照して、被検面全面
で規定される曲率半径を求める。
Further, based on the partial radius of curvature and the subtraction result, a radius of curvature defined on the entire surface to be inspected is obtained by referring to a predetermined relational expression.

【0015】これにより、比較的大きな被検面に対する
曲率半径も、比較的小型の測定系で求まることになる。
As a result, a relatively large radius of curvature for the surface to be tested can also be obtained with a relatively small measuring system.

【0016】[0016]

【実施例】以下、本発明にかかる実施例を図面を参照し
つつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図3に、本発明にかかる装置の一例の構成
図を示す。
FIG. 3 shows a block diagram of an example of the apparatus according to the present invention.

【0018】本装置は、測定系100とCCDカメラ1
10と演算装置120とモニタ130とを有して構成さ
れる。
This apparatus comprises a measuring system 100 and a CCD camera 1.
10, the arithmetic unit 120, and the monitor 130.

【0019】測定系100は、例えば、被検面を有する
被検体と、被検面全面との間で干渉縞を生成するための
基準参照面を有する原器とを有して構成される。この基
準参照面は、真球度誤差が校正されている。なお、干渉
縞を生成するために、照明系を備えた構成にしても良
い。
The measurement system 100 comprises, for example, an object having a surface to be inspected and a prototype having a reference surface for generating interference fringes between the entire surface to be inspected. The reference surface is calibrated for sphericity error. An illumination system may be provided in order to generate the interference fringes.

【0020】CCDカメラ110は、干渉縞情報の取得
を行なう手段である。すなわち、測定系100内にて、
生成された干渉縞の情報を取得する機能を有する。
The CCD camera 110 is a means for acquiring interference fringe information. That is, in the measurement system 100,
It has a function of acquiring information on the generated interference fringes.

【0021】次に、演算装置120は、干渉縞情報を使
用して、演算式に基づいた演算を行ない、別途与えられ
た、被検面の部分領域で規定される曲率半径から被検面
全面で規定される曲率半径を求める。
Next, the arithmetic unit 120 uses the interference fringe information to perform an arithmetic operation based on an arithmetic expression, and from the separately given radius of curvature defined by the partial area of the inspected surface, the entire inspected surface. Find the radius of curvature defined by.

【0022】なお、実施例の後述する部分において、演
算装置120が行なう演算内容や原理の説明を行なう。
In the later-described portion of the embodiment, the contents of the calculation and the principle of the calculation performed by the calculation device 120 will be described.

【0023】さらに、モニタ130は、演算装置120
が行なった演算結果を少なくとも表示する手段であり、
例えば、CRT、液晶ディスプレイ等で実現される。
Further, the monitor 130 includes the arithmetic unit 120.
Is a means for displaying at least the result of the calculation performed by
For example, it is realized by a CRT, a liquid crystal display, or the like.

【0024】さて、図1は、輪帯状に回転対称なうねり
が乗った形状を有する被検面を持つ被検物についての断
面形状を示した図である。
Now, FIG. 1 is a view showing a cross-sectional shape of an object to be inspected having a surface to be inspected having a ring-like rotationally symmetrical undulation.

【0025】今、中心部に位置する、有効φD2部は、
点O2を球心とする半径R2の完全な球面と仮定する。ま
た、全面φD1に対する最適近似球面(一点鎖線で示
す)は、点O1を球心とする半径R1の球面とする。
Now, the effective φD2 portion located at the center is
It is assumed that the point O2 is a perfect sphere having a radius R2 and having a spherical center. Further, the optimum approximate spherical surface (shown by the alternate long and short dash line) for the entire surface φD1 is a spherical surface having a radius R1 with the point O1 as the spherical center.

【0026】なお、「最適近似球面」とは、仮想的な球
面であり、被検面と本球面の偏差形状の体積が最小とな
るような球面のことを言う。
The "optimal approximate spherical surface" is a virtual spherical surface, and is a spherical surface that minimizes the volume of the deviation shape between the surface to be inspected and the main spherical surface.

【0027】さて、この被検面に対して、図示しない干
渉計によって、被検面の真球度測定を行うと、最適近似
球面からの被検面形状のズレ量が把握されることにな
る。すなわち、最適近似球面を基準平面に置き直した場
合の、偏差形状データが、3次元的な起伏として測定さ
れることになる。
When the sphericity of the surface to be measured is measured on this surface by an interferometer (not shown), the amount of deviation of the shape of the surface to be measured from the optimum approximate spherical surface can be grasped. . That is, the deviation shape data when the optimum approximate spherical surface is replaced on the reference plane is measured as a three-dimensional undulation.

【0028】なお、このような測定は、測定系100
に、形状測定用の光学測定系を備え、さらに、CCDカ
メラ110によって得られた干渉縞データに基づいて、
演算装置120が、予め内蔵してある処理プログラムに
よって、真球度の測定を行なうことが可能な構成にして
おくことによって行なえる。
Incidentally, such a measurement is performed by the measurement system 100.
Is equipped with an optical measurement system for shape measurement, and based on the interference fringe data obtained by the CCD camera 110,
This can be performed by the arithmetic device 120 having a configuration capable of measuring the sphericity according to a processing program stored in advance.

【0029】但し、通常の干渉計による測定データは、
被検面の法線方向の誤差量を検出するに止まるため、後
述する原理を使用するためには、該誤差量を、図1の中
心線方向の誤差量に変換しておく必要がある。
However, the measurement data obtained by an ordinary interferometer is
Since it is only necessary to detect the error amount in the normal direction of the surface to be inspected, it is necessary to convert the error amount to the error amount in the center line direction of FIG. 1 in order to use the principle described later.

【0030】ところで、被検面の3次元的な起伏が求ま
るだけでは、図1に示すR1の絶対値は求まらない。
By the way, the absolute value of R1 shown in FIG. 1 cannot be obtained only by obtaining the three-dimensional undulations of the surface to be inspected.

【0031】しかしながら、ここで、被検面全面測定デ
ータの中心φD2部に注目し、R2のR1からの偏差をΔ
Rとすると、「ΔR≡R2−R1」と定義できる。
However, here, paying attention to the center φD2 portion of the measurement data of the entire surface to be inspected, the deviation of R2 from R1 is Δ.
When R, it can be defined as "ΔR≡R2-R1".

【0032】したがって、中心φD2部の曲率半径R2を
別途測定し、さらに、ΔRが分かれば、全面φD1の曲
率半径R1が、「R1=R2+ΔR」として求まることと
なる。
Therefore, the radius of curvature R2 of the center φD2 portion is measured separately, and if ΔR is further known, the radius of curvature R1 of the entire surface φD1 can be obtained as “R1 = R2 + ΔR”.

【0033】なお、図1に示す、球心O2の位置を表す
量に相当するhも、全面データから求めることが可能で
ある。
It should be noted that h corresponding to the amount representing the position of the spherical center O2 shown in FIG. 1 can also be obtained from the entire surface data.

【0034】さて、ここで、図3の装置によって、ΔR
を求める原理を、図4を参照して詳しく説明する。
Now, with the apparatus of FIG. 3, ΔR
The principle for obtaining the above will be described in detail with reference to FIG.

【0035】なお、図4で、φD2部を凹面としている
のは、説明の都合上であり、本質的なものではない。
It should be noted that, in FIG. 4, the φD2 portion is a concave surface for convenience of description and is not essential.

【0036】さて、干渉計の測定球面波を原器の基準参
照面に置き換えて考えることとする。これは、無限個の
任意の曲率半径を有する原器を予め用意しておくことと
等価である。
Now, let us consider by replacing the measured spherical wave of the interferometer with the standard reference surface of the prototype. This is equivalent to preparing in advance a prototype having an infinite number of arbitrary radii of curvature.

【0037】前述したように、干渉計測定データは、基
準参照面からの偏差データであるため、この性質を利用
して、前記ΔRを求めることを考える。
As described above, since the interferometer measurement data is deviation data from the standard reference plane, it will be considered to obtain ΔR using this property.

【0038】今、図4に示すように、d、Z1(ある基
準点からの高さ)、Z2(ある基準点からの高さ)、Δ
Zをとる。また、R1は、求めるべき、被検面全面で規
定される曲率半径、R2は、別途計測された、部分領域
の曲率半径である。基準点は、任意に選んで良いが、図
4では、被検面の頂点を採用している。
Now, as shown in FIG. 4, d, Z1 (height from a certain reference point), Z2 (height from a certain reference point), Δ
Take Z. Further, R1 is a radius of curvature which is to be determined and which is defined on the entire surface to be inspected, and R2 is a radius of curvature of a partial region which is separately measured. The reference point may be arbitrarily selected, but in FIG. 4, the vertex of the surface to be inspected is adopted.

【0039】ところで、ある曲率半径を有する原器を装
着して、干渉縞を生成させると、CCDカメラ110に
よって、いわゆるニュートンリングが観測される。
By the way, when a prototype having a certain radius of curvature is attached and interference fringes are generated, a so-called Newton ring is observed by the CCD camera 110.

【0040】そして、ニュートンリングに関する近似式
より、「Z1≒d2/(2R1)」、「Z2≒d2/(2R
2)」となる。
[0040] Then, from the approximate expression for Newton's rings, "Z1 ≒ d 2 / (2R1)", "Z2 ≒ d 2 / (2R
2) ”.

【0041】したがって、演算装置が、干渉縞データを
処理することによって、「ΔZ=Z2−Z1=d2/(2
R2)−d2/(2R1)≒−(1/2)・(d/R2)2
・(ΔR)」なる、ΔZが求まる。ここで、dは、予め
定めた値であり、R2がすでに求まっているため、未知
数R1、即ち、求めるべき、被検面全面で規定される曲
率半径が演算処理により求まることになる。なお、ここ
でのΔZは、ΔRと全く同じ値ではないが、一意に対応
する値として把握すれば、ΔRが求まったことと等価で
あるといえる。
[0041] Thus, by the arithmetic unit processes the interference fringe data, "ΔZ = Z2-Z1 = d 2 / (2
R2) -d 2 / (2R1) ≒ - (1/2) · (d / R2) 2
・ (ΔR) ”, ΔZ is obtained. Here, d is a predetermined value, and R2 has already been obtained. Therefore, the unknown number R1, that is, the radius of curvature defined by the entire surface to be inspected, which is to be obtained, is obtained by calculation processing. Although ΔZ here is not exactly the same value as ΔR, it can be said that if it is understood as a uniquely corresponding value, ΔR is obtained.

【0042】以上のようにして、被検面全面で規定され
る曲率半径が求まることになる。
As described above, the radius of curvature defined on the entire surface to be inspected can be obtained.

【0043】但し、図4は、原器で測定されることを前
提に図示したため、被検面の頂点において、被検面と原
器の基準参照面が接しているが、干渉計測の場合は、図
1のように、原器に相当する部分が、図4の被検面に相
当する、最適近似球面内に、入り込んでいる分(図1の
「R2−h」)の補正が必要となる。
However, since FIG. 4 is illustrated on the assumption that the measurement is performed by the standard, the test surface and the reference reference surface of the standard are in contact with each other at the apex of the test surface, but in the case of the interferometric measurement, As shown in FIG. 1, it is necessary to correct the portion (“R2-h” in FIG. 1) corresponding to the prototype, which is included in the optimum approximate spherical surface corresponding to the test surface in FIG. Become.

【0044】また、市販の干渉計のパワー補正値の値を
使用して、被検面全面の最適近似球面を基準として、φ
D2部のみを干渉計測した時のパワー補正値の変化量「Δ
P」から、ΔRを算出することも容易に可能である。即
ち、「Δz」として、被検面の法線方向の誤差量をとれ
ば良い。
Further, using the value of the power correction value of a commercially available interferometer, φ
Change amount of power correction value when interferometric measurement is performed only on D2 part
It is also possible to easily calculate ΔR from “P”. That is, the amount of error in the direction normal to the surface to be inspected may be taken as “Δz”.

【0045】そして、以上のような測定原理を使用し
て、長大Rの測定を可能としたのが第1実施例である。
The first embodiment makes it possible to measure long R by using the above measurement principle.

【0046】例えば、従来技術において述べた方法によ
り、測定有効をφD2に限定して、被検面の部分領域の
曲率半径R2を求めることは可能である。
For example, according to the method described in the prior art, it is possible to limit the measurement effectiveness to φD2 and obtain the radius of curvature R2 of the partial area of the surface to be inspected.

【0047】次に、被検面全面の真球度測定に関して
は、通常の干渉計測定等により行えば良い。さらに、大
口径の被検面に対しては、例えば、特開平5−4002
4号公報に開示されているような測定装置を利用しても
良い。そして、得られた被検面全面の真球度データか
ら、上述の方法により、被検面全面と長大R測定時の有
効φD2との、曲率半径差ΔRを求めれば、「R1=R2
−ΔR」なる演算により、R1が算出可能となる。
Next, the sphericity of the entire surface to be inspected may be measured by a normal interferometer measurement or the like. Further, for a large-diameter surface to be inspected, for example, Japanese Patent Application Laid-Open No. 5-4002
A measuring device as disclosed in Japanese Patent No. 4 may be used. Then, from the obtained sphericity data of the entire surface to be inspected, the curvature radius difference ΔR between the entire surface to be inspected and the effective φD2 at the time of measuring the long radius R is calculated by the above-mentioned method.
R1 can be calculated by the calculation “−R”.

【0048】次に、図2を参照して、本発明にかかる第
2実施例について説明する。
Next, a second embodiment according to the present invention will be described with reference to FIG.

【0049】本実施例は、球面形状を有するワークに対
して、所定部分を研磨する部分研磨を施した場合の、研
磨深さの測定を行なう方法である。
The present embodiment is a method of measuring the polishing depth when a workpiece having a spherical shape is partially polished for polishing a predetermined portion.

【0050】図2(a)は、研磨前の球面全面(φD
1)を、例えば干渉計によって測定して得たワークの断
面図であり、最適近似球面を、平面に展開して図示した
ものである。
FIG. 2A shows the entire spherical surface (φD before polishing).
1) is a cross-sectional view of a workpiece obtained by measuring, for example, an interferometer, in which an optimum approximate spherical surface is developed on a plane and illustrated.

【0051】図2(b)は、φD2の中心部を部分研磨
し、研磨後の球面全面を、例えば干渉計によって測定し
て得た形状の断面図である。
FIG. 2B is a sectional view of a shape obtained by partially polishing the central portion of φD2 and measuring the entire surface of the polished spherical surface by, for example, an interferometer.

【0052】研磨前の球面全面に対する最適近似球面を
基準にして、研磨後の球面全面の形状を図示しているた
め、図2(b)では、最適近似球面がフラットからずれ
ている。このパワー変化量を、図2(b)に示す通り
「ΔP1」とする。ここで「パワー量」とは、曲率の変
化を前述のΔzで表した量である。
Since the shape of the entire surface of the spherical surface after polishing is shown with reference to the optimum approximate spherical surface with respect to the entire surface of the spherical surface before polishing, the optimum approximate spherical surface deviates from the flat surface in FIG. 2B. This power change amount is set to "ΔP1" as shown in FIG. Here, the “power amount” is the amount of change in curvature represented by Δz described above.

【0053】さて、いずれの球面全面データも、中心部
φD2を、演算装置内でマスキングし(中心部φD2には
データが無いとして演算処理を行ない)、マスキングし
た部分以外の残りの部分のデータに対して、「パワー補
正」を行うと、図2(c)に示すような、全く同じデー
タが得られるはずである。何故ならば、マスキングを施
していない領域には、研磨が施されていないため、全く
同じ形状情報を有することになるからである。
Now, for all spherical whole surface data, the central portion φD2 is masked in the arithmetic unit (the arithmetic processing is performed assuming that there is no data in the central portion φD2), and the data of the remaining portion other than the masked portion is obtained. On the other hand, if "power correction" is performed, exactly the same data as shown in FIG. 2C should be obtained. This is because the area that is not masked is not polished and therefore has exactly the same shape information.

【0054】図2(c)の記載も同様に、研磨前の全面
に対する最適近似球面を基準として、ワーク形状を図示
しているため、最適近似球面がフラットからずれてい
る。このパワー変化量を「ΔP2」とする。なお、図を
見て分かるように、符号は「ΔP1」と逆となる。
Similarly, in the description of FIG. 2 (c), since the workpiece shape is illustrated with the optimum approximate spherical surface for the entire surface before polishing as a reference, the optimum approximate spherical surface is deviated from the flat. This power change amount is defined as “ΔP2”. As can be seen from the figure, the sign is opposite to "ΔP1".

【0055】このように、研磨前・後のデータは、部分
研磨の施されていない領域が、同一形状を有するため、
それぞれのデータにおいて、マスクをかけた時(即ち、
φD2部をマスキングした時)に生ずるパワー変化が、
「ΔPZ=ΔP2」、「ΔPG=ΔP2−ΔP1」として求
まる。
As described above, the data before and after polishing has the same shape in the region where partial polishing is not performed,
For each data, when masked (ie
The power change that occurs when the φD2 part is masked)
It can be obtained as “ΔPZ = ΔP2” and “ΔPG = ΔP2-ΔP1”.

【0056】したがって、上記両式を参照すると、研磨
前・後のパワー変化量「ΔP1」は、「ΔP1=ΔPZ−
ΔPG」なる式から算出される。逆に、このパワー変化
量だけ、研磨後の全面データにパワーをかけなおすと
(ワークの凹凸量を補正してやる)、研磨を施さない領
域の形状は、全く同一の形状になる。したがって、両者
(研磨前と研磨後のパワー)の差をとれば、部分研磨す
ることによって研磨除去されたワークの3次元的な絶対
形状である、研磨除去形状が求まることになる。
Therefore, referring to both of the above equations, the amount of change in power “ΔP1” before and after polishing is calculated as “ΔP1 = ΔPZ−
ΔPG ”is calculated. On the contrary, when power is reapplied to the entire surface data after polishing by this power variation amount (the unevenness amount of the work is corrected), the shape of the non-polishing area becomes exactly the same. Therefore, if the difference between the two (power before polishing and power after polishing) is calculated, the polishing removal shape, which is the three-dimensional absolute shape of the workpiece polished and removed by the partial polishing, can be obtained.

【0057】以上述べてきたように、本発明にかかる曲
率半径測定手段を使用すれば、通常の手法では、曲率半
径測定が困難である大口径を有する球面の曲率半径を測
定することが可能となる。また部分的に形状が同一であ
る2個の被検物の形状差を測定することも可能となる。
As described above, by using the radius-of-curvature measuring means according to the present invention, it is possible to measure the radius-of-curvature of a spherical surface having a large diameter, which is difficult to measure with the conventional method. Become. It is also possible to measure the difference in shape between two test objects having partially the same shape.

【0058】[0058]

【発明の効果】本発明によれば、通常の手法では曲率半
径の測定が困難な大口径を有する球面等の曲率半径を測
定することが可能な装置を提供することができる。
According to the present invention, it is possible to provide an apparatus capable of measuring the radius of curvature of a spherical surface or the like having a large diameter, which is difficult to measure the radius of curvature by the usual method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明にかかる実施例である。FIG. 2 is an example according to the present invention.

【図3】本発明にかかる装置の一例の構成図である。FIG. 3 is a configuration diagram of an example of an apparatus according to the present invention.

【図4】本発明の原理図である。FIG. 4 is a principle view of the present invention.

【符号の説明】[Explanation of symbols]

1…被検面、100…測定系、110…CCDカメラ、
120…演算装置、130…モニタ
1 ... Inspected surface, 100 ... Measuring system, 110 ... CCD camera,
120 ... Arithmetic unit, 130 ... Monitor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被検物の有する被検面の全面(被検面全
面)で規定される曲率半径を測定する方法であって、 前記被検面全面の一部の領域で規定される、曲率半径
(部分曲率半径)と、干渉縞情報から求まる或る基準点
からの距離情報とを求め、 次に、前記被検面全面で規定される、干渉縞情報から求
まる前記或る基準点からの距離情報とを求め、両距離情
報を減算し、 さらに、前記部分曲率半径、前記減算結果に基づいて、
予め定めた関係式を参照して、被検面全面で規定される
曲率半径を測定することを特徴とする曲率半径測定方
法。
1. A method for measuring a radius of curvature defined on the entire surface of a test surface having a test object (the entire surface of the test surface), which is defined by a partial region of the entire surface of the test surface. The radius of curvature (partial radius of curvature) and the distance information from a certain reference point obtained from the interference fringe information are obtained, and then from the certain reference point obtained from the interference fringe information defined on the entire surface to be inspected. And subtracting both distance information, and further based on the partial curvature radius and the subtraction result,
A radius-of-curvature measuring method characterized in that a radius-of-curvature defined on the entire surface to be inspected is measured with reference to a predetermined relational expression.
【請求項2】被検物の有する被検面の全面(被検面全
面)で規定される曲率半径を測定する装置であって、 被検面全面と基準参照面が形成する干渉縞を撮像する撮
像手段と、干渉縞情報を少なくとも使用して、被検面全
面で規定される曲率半径を演算する演算手段とを備え、 前記演算手段は、前記被検面全面の一部の領域である部
分領域で規定される、干渉縞情報から求まる或る基準点
からの距離情報と、前記被検面全面で規定される、干渉
縞情報から求まる前記或る基準点からの距離情報とを求
め、両距離情報を減算し、該減算結果と前記部分曲率半
径に基づいて、予め定めた関係式を参照して、被検面全
面で規定される曲率半径を測定することを特徴とする曲
率半径測定装置。
2. An apparatus for measuring a radius of curvature defined on the entire surface of an object to be inspected (the entire surface of the object to be inspected), and imaging an interference fringe formed by the entire surface of the object to be inspected and a reference surface. And an arithmetic unit that calculates the radius of curvature defined on the entire surface to be inspected by using at least the interference fringe information, and the arithmetic unit is a partial region of the entire surface to be inspected. Defined in a partial area, the distance information from a certain reference point obtained from the interference fringe information, and the distance information from the certain reference point obtained from the interference fringe information, which is defined on the entire surface to be inspected, is obtained. Curvature radius measurement characterized by subtracting both distance information and measuring a radius of curvature defined on the entire surface to be inspected by referring to a predetermined relational expression based on the subtraction result and the partial radius of curvature apparatus.
JP7057605A 1995-03-16 1995-03-16 Curvature radius measuring method and device Pending JPH08254413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7057605A JPH08254413A (en) 1995-03-16 1995-03-16 Curvature radius measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7057605A JPH08254413A (en) 1995-03-16 1995-03-16 Curvature radius measuring method and device

Publications (1)

Publication Number Publication Date
JPH08254413A true JPH08254413A (en) 1996-10-01

Family

ID=13060501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7057605A Pending JPH08254413A (en) 1995-03-16 1995-03-16 Curvature radius measuring method and device

Country Status (1)

Country Link
JP (1) JPH08254413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134443A (en) * 2013-01-10 2014-07-24 Mitsubishi Electric Corp Surface profile measurement device
CN110631911A (en) * 2019-09-29 2019-12-31 西安财经大学 Image processing-based method for rapidly measuring elastic modulus of optical flat glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134443A (en) * 2013-01-10 2014-07-24 Mitsubishi Electric Corp Surface profile measurement device
CN110631911A (en) * 2019-09-29 2019-12-31 西安财经大学 Image processing-based method for rapidly measuring elastic modulus of optical flat glass
CN110631911B (en) * 2019-09-29 2022-03-01 西安财经大学 Image processing-based method for rapidly measuring elastic modulus of optical flat glass

Similar Documents

Publication Publication Date Title
Häusler et al. Deflectometry vs. interferometry
US4948253A (en) Interferometric surface profiler for spherical surfaces
US6707559B2 (en) Method of detecting posture of object and apparatus using the same
JP5399304B2 (en) Aspherical surface measuring method and apparatus
US20050157311A1 (en) Scanning interferometer for aspheric surfaces and wavefronts
US7212291B2 (en) Interferometric microscopy using reflective optics for complex surface shapes
JP5173106B2 (en) Method and apparatus for measuring the transmission of the geometric structure of an optical element
US5739906A (en) Interferometric thickness variation test method for windows and silicon wafers using a diverging wavefront
US6734979B2 (en) Rapid in situ mastering of an aspheric Fizeau with residual error compensation
US5737081A (en) Extended-source low coherence interferometer for flatness testing
JPH08254413A (en) Curvature radius measuring method and device
US7751064B2 (en) Interference objective for annular test surfaces
CN113776460B (en) Method and device for detecting surface shape of optical free-form surface reflector
JP3146590B2 (en) Shape measuring method and shape measuring system
JP2831428B2 (en) Aspherical shape measuring machine
JPH10508701A (en) Method of measuring absolute spatial coordinates of at least one point on a reflective surface
Rose et al. Specific design requirements for a reliable slope and curvature measurement standard
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution
Palum Surface profile error measurement for small rotationally symmetric surfaces
JPH0357905A (en) Non-contact measuring apparatus of surface shape
Tseng Simulation of Phase Measuring Deflectometry of Freeform Surfaces
Viotti et al. Evaluation of a novel algorithm to align and stitch adjacent measurements of long inner cylindrical surfaces with white light interferometry
JP3169189B2 (en) Method and apparatus for measuring surface shape of surface to be measured
Dong Absolute surface reconstruction by slope metrology and photogrammetry
JP3998844B2 (en) Interferometer device using fringe scan