JP3998844B2 - Interferometer device using fringe scan - Google Patents

Interferometer device using fringe scan Download PDF

Info

Publication number
JP3998844B2
JP3998844B2 JP02145499A JP2145499A JP3998844B2 JP 3998844 B2 JP3998844 B2 JP 3998844B2 JP 02145499 A JP02145499 A JP 02145499A JP 2145499 A JP2145499 A JP 2145499A JP 3998844 B2 JP3998844 B2 JP 3998844B2
Authority
JP
Japan
Prior art keywords
fringe
lens
phase
optical axis
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02145499A
Other languages
Japanese (ja)
Other versions
JP2000221004A (en
Inventor
伸明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP02145499A priority Critical patent/JP3998844B2/en
Publication of JP2000221004A publication Critical patent/JP2000221004A/en
Application granted granted Critical
Publication of JP3998844B2 publication Critical patent/JP3998844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フリンジスキャンを用いた干渉計装置に関し、特に正確な干渉縞解析を行い得る干渉計装置に関するものである。
【0002】
【従来の技術】
従来より、光学部材等の被検体の表面形状を計測する手段として干渉計装置が知られている。そして、被検体の被検面が球面状である場合に用いられる干渉計装置としては、次のようなものが知られている。すなわち、可干渉光を、基準レンズを介して被検体の球面状の被検面に入射せしめ、該可干渉光の、該被検面における反射により生じた物体光と基準レンズの球面状の基準面における反射により生じた参照光との光干渉により生じる干渉縞を、所定の干渉縞形成面上に形成するように構成されたものが知られている。
【0003】
また、このようにして形成された干渉縞を解析する方法としてフリンジスキャン法が知られている。このフリンジスキャン法は、基準面と被検面との相対距離を変化させ、これに伴う干渉縞画像上の所定位置における位相の変化量(輝度変化量)に基づき干渉縞解析を行うものであり、これにより被検面の凹凸判定および正確な立体形状測定を行い得るようになっている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述したように被検面が球面状である場合には基準面も球面状となるため、次のような問題が生じる。
【0005】
すなわち、図2に示すように、基準面20aと被検面2aとの相対距離を変化させるために、基準レンズ20を可干渉光の光軸Ax方向に移動させた場合、光軸Ax上における位相は基準レンズ20の移動量Δに対応する量だけ変化するが、光軸Axから外れた位置における位相変化量はこれよりも小さい値となる。例えば同図において、基準面20aの曲率中心Oを基準にして光軸Axから角度θずれた位置ではΔcosθに対応する位相変化量となる。そして、このように角度θに依存した量で位相が変化するため、光軸Axから外れた位置においては位相計算に誤差が生じてしまい、正確な干渉縞解析を行うことができないという問題がある。
【0006】
本発明は、このような事情に鑑みてなされたものであって、基準レンズを可干渉光の光軸方向に移動させてフリンジスキャンを行うようにした場合において、上記光軸以外の位置における位相の計算にも誤差が発生するのを防止することができるフリンジスキャンを用いた干渉計装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明のフリンジスキャンを用いた干渉計装置は、干渉縞の位相計算をカレ法を用いて行う構成とすることにより、上記目的を達成するようにしたものである。
【0008】
すなわち、本発明のフリンジスキャンを用いた干渉計装置は、可干渉光を、基準レンズを介して被検体の球面状の被検面に入射せしめ、該可干渉光の、該被検面における反射により生じた物体光と前記基準レンズの球面状の基準面における反射により生じた参照光との光干渉により生じる干渉縞を、所定の干渉縞形成面上に形成するとともに、
前記基準レンズを前記可干渉光の光軸方向に移動させて前記基準面と前記被検面との相対距離を変化させることにより得られる複数の干渉縞画像に基づき、前記干渉縞の位相計算を行うフリンジスキャン測定手段を有する干渉計装置において、
前記フリンジスキャン測定手段における位相計算のフリンジスキャン開始時位相は、前記基準面の曲率中心を基準にして光軸と観察点がなす角度をθとした際に、前記基準面レンズの基準面を所定量Δずつ移動させカレ法により求めた位相から(3Δ/2)cosθを減算して求めることを特徴とするフリンジスキャンを用いた干渉計装置。
【0009】
上記「カレ法」とは、縞1ピッチ移動させる間に4つの縞画像を得るフリンジスキャン法において、前後の縞画像間における基準面のシフト量が互いに同じであれば位相を計算することができるという形状解析方法を意味するものである。
【0010】
【発明の実施の形態】
以下、図面を用いて、本発明の実施の形態について説明する。
【0011】
図1は、本発明の一実施形態に係るフリンジスキャンを用いた干渉計装置10を示す側面図である。
【0012】
図示のように、この干渉計装置10は、凹球面状の被検面2aを有する被検体2の被検面2aを計測するフィゾー型の干渉計装置であって、レーザ光源12、発散レンズ14、ビームスプリッタ16、コリメータレンズ18、基準レンズ20、被検体支持部材22、およびTVカメラ24を備えてなっている。
【0013】
基準レンズ20は、被検体2側に凹球面状の基準面20aを向けた正の屈折力を有するレンズであって、その基準面20aの曲率中心Oが光軸Ax上に位置するように配置されている。また、この基準レンズ20は、図示しないピエゾ素子駆動電源に接続された複数のピエゾ素子26を介して基準レンズ支持部材28に支持されている。
【0014】
被検体支持部材22は、被検体2を支持するとともに、その被検面2aの曲率中心を基準面20aの曲率中心Oと一致させるよう該被検体2のアライメントを調整し得るように構成されている。
【0015】
この干渉計装置10においては、レーザ光源12からのビームを発散レンズ14により発散光に変換し、この発散光をビームスプリッタ16により90°回転した方向に反射させ、この反射発散光をコリメータレンズ18により平行光にした後、この平行光を基準レンズ20によりその基準面20aの曲率中心Oへ向けて集束させ、その集束光の一部を基準面20aで反射させるとともにその残りの集束光を透過させて被検体2の被検面2aに照射せしめるようになっている。そして、基準面20aで反射した参照光と被検面2aで反射した物体光との光干渉により形成される干渉縞をTVカメラ24で観察するようになっている。
【0016】
さらに、この干渉計装置10においては、所定のタイミングでピエゾ素子26に所定の電圧を印加して該ピエゾ素子26を駆動することにより基準レンズ20を光軸Ax方向に移動させるとともに、この移動により変化する干渉縞の画像データを図示しないコンピュータに取り込んで干渉縞の自動解析を行うフリンジスキャン法を用いることにより被検面2aの凹凸判定および正確な立体形状測定を行うようになっている。
【0017】
このフリンジスキャン法においては、基準面20aと被検面2aとの相対距離を変化させ、これに伴う干渉縞画像上の所定位置における位相の変化量(輝度変化量)に基づき位相計算を行うようになっているが、基準面20aは凹球面状であるため、図2に示すように、基準レンズ20を光軸Ax方向に移動させた場合、光軸Ax上における位相は基準レンズ20の移動量Δに対応する量だけ変化するが、光軸Axから外れた位置における位相変化量はこれよりも小さい値となる。具体的には、同図において、基準面20aの曲率中心Oを基準にして光軸Axから角度θずれた位置(座標 (x,y))ではΔcosθに対応する位相変化量となる。そして、このように角度θに依存した量で位相が変化するため、光軸Axから外れた位置においては位相変化量に誤差が生じてしまい、正確な干渉縞解析を行うことができなくなってしまう。
【0018】
そこで、本実施形態においては、ΔcosθにおけるΔをπ/2とし、カレ法を用いて干渉縞の位相計算を行うことにより、基準レンズ20の光軸方向移動による誤差発生を除去するようになっている。
【0019】
このカレ法を用いた位相計算は、次のようにして行われる。
【0020】
すなわち、一般の4ステップフリンジスキャン法においては、基準面とサンプル面間の光路差変化量が一定値π/2ずつとなっている。これに対しカレ法では、光路差変化量がπ/2ずつでなくても、一定値αずつであり、移動が、
−3α/2,−α/2,α/2,3α/2
の4ステップであれば形状解析を行うことができるという方法である。
【0021】
カレ法を採用した場合、上記各移動位置における座標(x,y)の干渉縞強度は、
1(x,y)=I0(x,y)[1+γcos{Φ(x,y)−3α/2}] …(1)
2(x,y)=I0(x,y)[1+γcos{Φ(x,y)−α/2}] …(2)
3(x,y)=I0(x,y)[1+γcos{Φ(x,y)+α/2}] …(3)
4(x,y)=I0(x,y)[1+γcos{Φ(x,y)+3α/2}] …(4)
と表され、また、その座標 (x,y)における位相Φ(x,y)は、
【0022】
【数1】

Figure 0003998844
と表される。
【0023】
ここで、
Φ(x,y)=Φ´(x,y)+(3π/4)cosθ …(6)
α=(π/2)cosθ …(7)
と置けば、上式(1)〜(4)は、
1(x,y)=I0(x,y)(1+γcosΦ´) …(8)
2(x,y)=I0(x,y)[1+γcos{Φ´+(π/2)cosθ}] …(9)
3(x,y)=I0(x,y){1+γcos(Φ´+πcosθ)} …(10)
4(x,y)=I0(x,y)[1+γcos{Φ´+(3π/2)cosθ}]…(11)
となる。
【0024】
したがって、求める位相Φ´(x,y)は、上式(5)により算出された位相Φ(x,y)から(3π/4)cosθを引くことで求めることができる。
【0025】
このように本実施形態においては、カレ法を用い、基準レンズ20が光軸Ax方向に(π/2)cosθ移動する毎に、干渉縞の画像データを取り込んでその干渉縞強度を測定することにより、光軸Axから離れた位置(座標 (x,y))における位相Φ´(x,y)を正確に計算することができる。
【0026】
なお、θは、基準面20aの曲率半径rと、光軸Axから座標(x,y)までの距離(x2+y2)1/2とにより、容易に算出することができる。
【0027】
以上詳述したように、本実施形態によれば、基準レンズ20を光軸Ax方向に移動させてフリンジスキャンを行うようにした場合において、光軸Ax以外の位置においても位相計算の誤差発生を除去することができる。
【0028】
本実施形態においては、基準レンズ20の基準面20aが凹球面状である場合について説明したが、該基準面20aが凸球面状である場合においても、本実施形態と同様の構成を採用することにより本実施形態と同様の作用効果を得ることができる。
【0029】
【発明の効果】
本発明に係るフリンジスキャンを用いた干渉計装置は、基準レンズを可干渉光の光軸方向に移動させてフリンジスキャンを行うように構成されているが、カレ法を用いて干渉縞の位相計算を行うように構成されているので、上記光軸以外の位置における位相計算にも誤差が発生するのを防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るフリンジスキャンを用いた干渉計装置を示す側面図
【図2】図1に示す干渉計装置の作用を説明するための図
【符号の説明】
2 被検査体
2a 被検面
10 干渉計装置
12 レーザ光源
14 発散レンズ
16 ビームスプリッタ
18 コリメータレンズ
20 基準レンズ
20a 基準面
22 被検体支持部材
24 TVカメラ
26 ピエゾ素子
28 基準レンズ支持部材
Ax 光軸
O 曲率中心[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an interferometer apparatus using fringe scanning, and more particularly to an interferometer apparatus that can perform accurate interference fringe analysis.
[0002]
[Prior art]
Conventionally, an interferometer device is known as means for measuring the surface shape of a subject such as an optical member. The following devices are known as interferometer devices used when the test surface of the subject is spherical. That is, the coherent light is incident on the spherical test surface of the subject through the reference lens, and the object light generated by the reflection of the coherent light on the test surface and the spherical reference surface of the reference lens. There is known a configuration in which interference fringes generated by optical interference with reference light generated by reflection on a surface are formed on a predetermined interference fringe forming surface.
[0003]
A fringe scan method is known as a method for analyzing the interference fringes formed in this way. This fringe scan method changes the relative distance between the reference surface and the test surface, and performs interference fringe analysis based on the amount of phase change (luminance change) at a predetermined position on the interference fringe image. As a result, it is possible to perform unevenness determination and accurate three-dimensional shape measurement of the test surface.
[0004]
[Problems to be solved by the invention]
However, when the test surface is spherical as described above, the reference surface is also spherical, which causes the following problem.
[0005]
That is, as shown in FIG. 2, when the reference lens 20 is moved in the direction of the optical axis Ax of the coherent light in order to change the relative distance between the reference surface 20a and the test surface 2a, The phase changes by an amount corresponding to the movement amount Δ of the reference lens 20, but the phase change amount at a position deviating from the optical axis Ax is a smaller value. For example, in the figure, the phase change amount corresponding to Δcos θ is obtained at a position shifted by an angle θ from the optical axis Ax with respect to the center of curvature O of the reference surface 20a. Since the phase changes by an amount dependent on the angle θ in this way, an error occurs in the phase calculation at a position deviating from the optical axis Ax, and there is a problem that accurate interference fringe analysis cannot be performed. .
[0006]
The present invention has been made in view of such circumstances, and in the case where the reference lens is moved in the optical axis direction of coherent light to perform a fringe scan, the phase at a position other than the optical axis is determined. An object of the present invention is to provide an interferometer apparatus using a fringe scan that can prevent an error from occurring in the calculation of.
[0007]
[Means for Solving the Problems]
The interferometer apparatus using the fringe scan of the present invention is configured to perform the phase calculation of the interference fringes using the Kare method, thereby achieving the above object.
[0008]
That is, the interferometer apparatus using the fringe scan of the present invention causes the coherent light to enter the spherical test surface of the subject via the reference lens, and reflects the coherent light on the test surface. Forming interference fringes caused by optical interference between the object light generated by the reference light generated by reflection on the spherical reference surface of the reference lens on a predetermined interference fringe forming surface;
Based on a plurality of interference fringe images obtained by moving the reference lens in the optical axis direction of the coherent light and changing the relative distance between the reference surface and the test surface, the phase calculation of the interference fringes is performed. In an interferometer apparatus having fringe scan measurement means to perform:
The phase at the start of the fringe scan of the phase calculation in the fringe scan measuring means is determined by setting the reference plane of the reference plane lens when the angle formed by the optical axis and the observation point with respect to the center of curvature of the reference plane is θ. An interferometer apparatus using a fringe scan, characterized in that it is obtained by subtracting (3Δ / 2) cosθ from a phase obtained by moving by a fixed amount Δ and by a Calé method.
[0009]
The above-mentioned “care method” is a fringe scan method in which four fringe images are obtained while moving one pitch of fringes, and the phase can be calculated if the reference plane shift amount between the front and rear fringe images is the same. This means the shape analysis method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a side view showing an interferometer apparatus 10 using a fringe scan according to an embodiment of the present invention.
[0012]
As shown in the figure, the interferometer device 10 is a Fizeau interferometer device that measures a test surface 2a of a subject 2 having a concave spherical test surface 2a, and includes a laser light source 12 and a diverging lens 14. , A beam splitter 16, a collimator lens 18, a reference lens 20, a subject support member 22, and a TV camera 24.
[0013]
The reference lens 20 is a lens having a positive refractive power with the concave spherical reference surface 20a facing the subject 2, and is arranged so that the center of curvature O of the reference surface 20a is located on the optical axis Ax. Has been. The reference lens 20 is supported by a reference lens support member 28 via a plurality of piezoelectric elements 26 connected to a piezoelectric element driving power source (not shown).
[0014]
The subject support member 22 is configured to support the subject 2 and to adjust the alignment of the subject 2 so that the center of curvature of the subject surface 2a coincides with the center of curvature O of the reference surface 20a. Yes.
[0015]
In the interferometer device 10, the beam from the laser light source 12 is converted into divergent light by the diverging lens 14, and the divergent light is reflected in a direction rotated by 90 ° by the beam splitter 16, and the reflected divergent light is reflected by the collimator lens 18. Then, the parallel light is focused by the reference lens 20 toward the center of curvature O of the reference surface 20a, and a part of the focused light is reflected by the reference surface 20a and the remaining focused light is transmitted. Thus, the test surface 2a of the subject 2 is irradiated. The TV camera 24 observes interference fringes formed by optical interference between the reference light reflected by the reference surface 20a and the object light reflected by the test surface 2a.
[0016]
Further, in the interferometer device 10, the reference lens 20 is moved in the direction of the optical axis Ax by applying a predetermined voltage to the piezo element 26 at a predetermined timing and driving the piezo element 26. By using a fringe scanning method in which image data of changing interference fringes is taken into a computer (not shown) and the interference fringes are automatically analyzed, the unevenness determination of the test surface 2a and accurate three-dimensional shape measurement are performed.
[0017]
In this fringe scanning method, the relative distance between the reference surface 20a and the test surface 2a is changed, and the phase calculation is performed based on the phase change amount (luminance change amount) at a predetermined position on the interference fringe image. However, since the reference surface 20a has a concave spherical shape, as shown in FIG. 2, when the reference lens 20 is moved in the direction of the optical axis Ax, the phase on the optical axis Ax is the movement of the reference lens 20. Although it changes by an amount corresponding to the amount Δ, the amount of phase change at a position deviating from the optical axis Ax is smaller than this. Specifically, in the figure, a phase change amount corresponding to Δcos θ is obtained at a position (coordinate (x, y)) that is shifted from the optical axis Ax by the angle θ with respect to the center of curvature O of the reference surface 20a. Since the phase changes by an amount depending on the angle θ in this way, an error occurs in the phase change amount at a position off the optical axis Ax, and accurate interference fringe analysis cannot be performed. .
[0018]
Therefore, in the present embodiment, Δ in Δcosθ is set to π / 2, and the phase of the interference fringes is calculated using the Kare method, thereby eliminating the error caused by the movement of the reference lens 20 in the optical axis direction. Yes.
[0019]
The phase calculation using the Kare method is performed as follows.
[0020]
That is, in the general 4-step fringe scanning method, the amount of change in the optical path difference between the reference surface and the sample surface is a constant value π / 2. On the other hand, in the Karet method, even if the optical path difference change amount is not π / 2, it is a constant value α, and the movement is
-3α / 2, -α / 2, α / 2, 3α / 2
In this method, shape analysis can be performed.
[0021]
When the Kale method is adopted, the interference fringe intensity at the coordinates (x, y) at each moving position is
I 1 (x, y) = I 0 (x, y) [1 + γcos {Φ (x, y) −3α / 2}] (1)
I 2 (x, y) = I 0 (x, y) [1 + γcos {Φ (x, y) −α / 2}] (2)
I 3 (x, y) = I 0 (x, y) [1 + γcos {Φ (x, y) + α / 2}] (3)
I 4 (x, y) = I 0 (x, y) [1 + γcos {Φ (x, y) + 3α / 2}] (4)
And the phase Φ (x, y) at the coordinates (x, y) is
[0022]
[Expression 1]
Figure 0003998844
It is expressed.
[0023]
here,
Φ (x, y) = Φ ′ (x, y) + (3π / 4) cosθ (6)
α = (π / 2) cos θ (7)
The above formulas (1) to (4)
I 1 (x, y) = I 0 (x, y) (1 + γcosΦ ′) (8)
I 2 (x, y) = I 0 (x, y) [1 + γcos {Φ ′ + (π / 2) cosθ}] (9)
I 3 (x, y) = I 0 (x, y) {1 + γcos (Φ ′ + πcosθ)} (10)
I 4 (x, y) = I 0 (x, y) [1 + γcos {Φ ′ + (3π / 2) cosθ}] (11)
It becomes.
[0024]
Therefore, the obtained phase Φ ′ (x, y) can be obtained by subtracting (3π / 4) cos θ from the phase Φ (x, y) calculated by the above equation (5).
[0025]
As described above, in the present embodiment, every time the reference lens 20 moves (π / 2) cos θ in the optical axis Ax direction by using the Kare method, the interference fringe image data is taken and the interference fringe intensity is measured. Thus, the phase Φ ′ (x, y) at a position (coordinates (x, y)) away from the optical axis Ax can be accurately calculated.
[0026]
Θ can be easily calculated from the radius of curvature r of the reference surface 20a and the distance (x 2 + y 2 ) 1/2 from the optical axis Ax to the coordinates (x, y).
[0027]
As described above in detail, according to the present embodiment, when the reference lens 20 is moved in the direction of the optical axis Ax and fringe scanning is performed, phase calculation errors are generated even at positions other than the optical axis Ax. Can be removed.
[0028]
Although the case where the reference surface 20a of the reference lens 20 has a concave spherical shape has been described in the present embodiment, the same configuration as that of the present embodiment is adopted even when the reference surface 20a has a convex spherical shape. Thus, the same effect as that of the present embodiment can be obtained.
[0029]
【The invention's effect】
The interferometer apparatus using the fringe scan according to the present invention is configured to perform the fringe scan by moving the reference lens in the direction of the optical axis of the coherent light. Therefore, it is possible to prevent an error from occurring in the phase calculation at a position other than the optical axis.
[Brief description of the drawings]
FIG. 1 is a side view showing an interferometer device using a fringe scan according to an embodiment of the present invention. FIG. 2 is a diagram for explaining the operation of the interferometer device shown in FIG.
2 Test object 2a Test surface 10 Interferometer device 12 Laser light source 14 Diverging lens 16 Beam splitter 18 Collimator lens 20 Reference lens 20a Reference surface 22 Subject support member 24 TV camera 26 Piezo element 28 Reference lens support member Ax Optical axis O Center of curvature

Claims (1)

可干渉光を、基準レンズを介して被検体の球面状の被検面に入射せしめ、該可干渉光の、該被検面における反射により生じた物体光と前記基準レンズの球面状の基準面における反射により生じた参照光との光干渉により生じる干渉縞を、所定の干渉縞形成面上に形成するとともに、
前記基準レンズを前記可干渉光の光軸方向に移動させて前記基準面と前記被検面との相対距離を変化させることにより得られる複数の干渉縞画像に基づき、前記干渉縞の位相計算を行うフリンジスキャン測定手段を有する干渉計装置において、
前記フリンジスキャン測定手段における位相計算のフリンジスキャン開始時位相は、前記基準面の曲率中心を基準にして光軸と観察点がなす角度をθとした際に、前記基準面レンズの基準面を所定量Δずつ移動させカレ法により求めた位相から(3Δ/2)cosθを減算して求めることを特徴とするフリンジスキャンを用いた干渉計装置。
The coherent light is incident on the spherical test surface of the subject through the reference lens, and the object light generated by reflection of the coherent light on the test surface and the spherical reference surface of the reference lens Forming interference fringes caused by optical interference with the reference light caused by reflection on the predetermined interference fringe forming surface,
Based on a plurality of interference fringe images obtained by moving the reference lens in the optical axis direction of the coherent light and changing the relative distance between the reference surface and the test surface, the phase calculation of the interference fringes is performed. In an interferometer apparatus having fringe scan measurement means to perform:
The phase at the start of the fringe scan of the phase calculation in the fringe scan measuring means is determined by setting the reference plane of the reference plane lens when the angle formed by the optical axis and the observation point with respect to the center of curvature of the reference plane is θ. An interferometer apparatus using a fringe scan, characterized in that it is obtained by subtracting (3Δ / 2) cosθ from a phase obtained by moving by a fixed amount Δ and by a Calé method.
JP02145499A 1999-01-29 1999-01-29 Interferometer device using fringe scan Expired - Fee Related JP3998844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02145499A JP3998844B2 (en) 1999-01-29 1999-01-29 Interferometer device using fringe scan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02145499A JP3998844B2 (en) 1999-01-29 1999-01-29 Interferometer device using fringe scan

Publications (2)

Publication Number Publication Date
JP2000221004A JP2000221004A (en) 2000-08-11
JP3998844B2 true JP3998844B2 (en) 2007-10-31

Family

ID=12055424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02145499A Expired - Fee Related JP3998844B2 (en) 1999-01-29 1999-01-29 Interferometer device using fringe scan

Country Status (1)

Country Link
JP (1) JP3998844B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195316B (en) * 2018-02-01 2020-04-10 深圳市易尚康瑞技术有限公司 Three-dimensional measurement method and device based on self-adaptive phase error correction

Also Published As

Publication number Publication date
JP2000221004A (en) 2000-08-11

Similar Documents

Publication Publication Date Title
US4340306A (en) Optical system for surface topography measurement
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
JP3237309B2 (en) System error measuring method and shape measuring device using the same
JP4188515B2 (en) Optical shape measuring device
JP2020517911A (en) Radius of curvature measurement by spectrum controlled interferometry
JPH08110204A (en) Anti-vibration interferometer
JP5281837B2 (en) Method and apparatus for measuring radius of curvature
US8018601B2 (en) Method for determining vibration displacement and vibrating frequency and apparatus using the same
JP4183220B2 (en) Optical spherical curvature radius measuring device
JP2005156434A (en) Lightwave interference measuring method using computer-generated hologram, and interferometric apparatus using same
JP3998844B2 (en) Interferometer device using fringe scan
US20200096315A1 (en) Metrology and profilometry using light field generator
JP3533195B2 (en) Coherent beam device for sample observation measurement
JP4100663B2 (en) Absolute thickness measuring device
JP2831428B2 (en) Aspherical shape measuring machine
JP5333919B2 (en) Plane shape measuring apparatus and plane shape measuring method
JP2009244227A (en) Light wave interference measuring method
JP4156133B2 (en) Specimen inspection apparatus provided with conveying fringe generating means
JP4007473B2 (en) Wavefront shape measurement method
JP4187124B2 (en) Interferometer device using fringe scan
JP4177188B2 (en) Method, apparatus and optical element for simultaneous measurement of dynamic shape and dynamic position
US11815346B2 (en) Device for the chromatic confocal measurement of a local height and/or orientation of a surface of a sample and corresponding methods for measuring a height or a roughness of a sample
JP2014002026A (en) Lens shape measuring device, and lens shape measuring method
JP3922702B2 (en) Method for adjusting subject position of interferometer apparatus
KR20090034576A (en) Eccentricity measurement for aspheric lens using the interferometer producing spherical wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees