JPH08253874A - High adhesion oxidation resistant coating film for c/c composite material and its formation - Google Patents

High adhesion oxidation resistant coating film for c/c composite material and its formation

Info

Publication number
JPH08253874A
JPH08253874A JP5756895A JP5756895A JPH08253874A JP H08253874 A JPH08253874 A JP H08253874A JP 5756895 A JP5756895 A JP 5756895A JP 5756895 A JP5756895 A JP 5756895A JP H08253874 A JPH08253874 A JP H08253874A
Authority
JP
Japan
Prior art keywords
composite material
coating
silicon carbide
high adhesion
oxidation resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5756895A
Other languages
Japanese (ja)
Inventor
Osamu Ebato
修 江波戸
Tomoyuki Tawara
知之 田原
Kenpei Shiyu
建平 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5756895A priority Critical patent/JPH08253874A/en
Publication of JPH08253874A publication Critical patent/JPH08253874A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To form a high adhesion oxidation resistant coating film for preventing the oxidation of a C/C composite material on the surface of the C/C composite material. CONSTITUTION: A metal coating film layer 3 of one or more kinds of B, Cr Mo and W, which are >=500 deg.C in m.p., is formed on the surface of the C/C composite material 2, silicon carbide 4 is applied thereon and the change of adhesive strength due to the difference of thermal expansion between the C/C composite material 2 and the silicon carbide 4 is absorbed by the plastic deformation of the metal coating film layer 3 at a high temp. Further, it is more preferable to provide a vitreous coating film layer 5 on the silicon carbide 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維強化炭素(以
下C/Cとする)複合材料に関するもので、高温大気雰
囲気中で長時間、かつ、繰り返し使用可能なC/C複合
材料用高密着性耐酸化性被覆及びその形成方法を提供す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced carbon (hereinafter referred to as C / C) composite material, which is a high-performance C / C composite material which can be used repeatedly for a long time in a high temperature atmosphere. An adhesive oxidation resistant coating and a method for forming the same are provided.

【0002】[0002]

【従来の技術】C/C複合材料は、炭素繊維を補強材と
し、炭素をマトリックスとした複合材料であって、耐熱
性、耐薬品性、耐摩耗性に優れ、かつ高強度、軽量な材
料である。そのためロケットノズルや航空機のディスク
ブレーキなどに使用されている。C/C複合材料は酸素
雰囲気中では、約500℃から酸化され、それ自身の持
つ優れた物理的、化学的性能が低下するため、高温大気
中での使用は極く短時間の場合を除き不可能であった。
この現象を防止するために従来から炭素材料の耐酸化性
性能を高める方法について種々の検討がなされてきた。
それらの方法の中で、化学気相蒸着法(以下CVDとす
る)によるセラミックスの被覆は最も広く行われている
方法のひとつであり、この方法により緻密な被覆膜を得
ることができる。しかしながら、この方法では被覆時
に、基材となるC/C複合材料を1000℃前後の温度
まで加熱しなければならない場合が多く、被覆処理完了
後室温まで冷却する際に表面のセラミックス被覆が剥離
したり、割れを発生することが多かった。これは、C/
C複合材料とセラミックス間の熱膨張率の差が大きいこ
とが主原因である。C/C複合材料はその熱膨張率が炭
素繊維自体の熱膨張率によって決定されてしまい、ま
た、C/C複合材料と同じ熱膨張率を持つセラミックス
被覆材料も存在しないために、CVD法によるセラミッ
クスの被覆膜を利用することは困難であった。
2. Description of the Related Art A C / C composite material is a composite material in which carbon fiber is used as a reinforcing material and carbon is used as a matrix, and is excellent in heat resistance, chemical resistance, and abrasion resistance, and has high strength and light weight. Is. Therefore, it is used for rocket nozzles and aircraft disc brakes. The C / C composite material is oxidized in an oxygen atmosphere from about 500 ° C, and its excellent physical and chemical performance deteriorates. Therefore, use in a high temperature atmosphere except for an extremely short time It was impossible.
In order to prevent this phenomenon, various studies have hitherto been made on a method of enhancing the oxidation resistance performance of the carbon material.
Among these methods, chemical vapor deposition (hereinafter referred to as CVD) coating of ceramics is one of the most widely used methods, and a dense coating film can be obtained by this method. However, in this method, it is often necessary to heat the base material C / C composite material to a temperature of around 1000 ° C. at the time of coating, and the ceramic coating on the surface peels off when cooled to room temperature after the coating treatment is completed. And often cracked. This is C /
The main cause is the large difference in the coefficient of thermal expansion between the C composite material and the ceramics. The thermal expansion coefficient of the C / C composite material is determined by the thermal expansion coefficient of the carbon fiber itself, and there is no ceramic coating material having the same thermal expansion coefficient as the C / C composite material. It was difficult to use a ceramic coating film.

【0003】また、特公平2−54778号公報にはC
VD法によりセラミックス層を被覆する前に、C/C複
合材料の表層にパック拡散法により金属珪素をC/C複
合材料と反応させてSiC化させたSiC転換被覆を設
けることによって、CVD−SiC層との密着性を高め
る技術が記載されている。この技術は密着性を高める上
では優れているが、C/C複合材料の表層の補強繊維の
一部をSiC化するためにC/C複合材料の材料強度が
極端に低下してしまうという問題があった。
In Japanese Patent Publication No. 2-54778, C
Before coating the ceramics layer by the VD method, the surface conversion layer of the C / C composite material is provided with a SiC conversion coating obtained by reacting metallic silicon with the C / C composite material by the pack diffusion method to form SiC, thereby forming a CVD-SiC. Techniques for increasing adhesion to layers are described. Although this technique is excellent in improving the adhesion, a problem that the material strength of the C / C composite material is extremely lowered because a part of the reinforcing fibers in the surface layer of the C / C composite material is converted to SiC. was there.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
技術における上記問題点を解決し、母材C/C複合材料
の材料強度を低下させることなく、C/C複合材料と炭
化珪素被覆膜との密着性が優れ、高い耐酸化性能を示す
C/C複合材料用高密着性耐酸化性被覆及びその形成方
法を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems in the prior art, and to prevent the C / C composite material and the silicon carbide coating from being deteriorated without lowering the material strength of the base material C / C composite material. It is an object of the present invention to provide a high adhesion and oxidation resistant coating for C / C composite materials, which has excellent adhesion to a covering film and exhibits high oxidation resistance and a method for forming the same.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するため、C/C複合材料の面方向と厚さ方向
間における熱膨張率の違いと、C/C複合材料と炭化珪
素間の熱膨張率の違いに着目し鋭意研究を重ねた結果、
両者の熱膨張率の違いを高温において塑性変形する金属
層によって緩和することができるとの結論に達した。す
なわち、本発明は、C/C複合材料の表面に融点が15
00℃以上である少なくとも1種類の金属を被覆し、さ
らにその上に炭化珪素を被覆した高い耐酸化性能を示す
C/C複合材料およびその製造方法を提供するものであ
る。
In order to solve the above-mentioned problems, the present inventors have found that the difference in the coefficient of thermal expansion between the C / C composite material in the plane direction and the thickness direction, and the C / C composite material. As a result of repeated intensive research focusing on the difference in the coefficient of thermal expansion between silicon carbide,
It was concluded that the difference in thermal expansion coefficient between the two can be relaxed by a metal layer that plastically deforms at high temperature. That is, the present invention has a melting point of 15 on the surface of the C / C composite material.
It is intended to provide a C / C composite material which is coated with at least one kind of metal having a temperature of 00 ° C. or higher, and is further coated with silicon carbide, which shows high oxidation resistance, and a method for producing the same.

【0006】以下に本発明をさらに詳細に説明する。C
/C複合材料の補強炭素繊維として、PAN系、レーヨ
ン系又はタールピッチ系炭素繊維を用いることができ、
強度的にPAN系のものを用いると最も優れたものが得
られる。例えば東邦レーヨン製『高強度ベスファイト
(HTA)』、『高弾性ベスファイト(HM40)』等
の一般に市販されているものを使用することができる。
Hereinafter, the present invention will be described in more detail. C
As the reinforcing carbon fiber of the / C composite material, PAN-based, rayon-based or tar-pitch-based carbon fiber can be used,
The most excellent one is obtained by using a PAN-based one in terms of strength. For example, commercially available products such as "High Strength Vesphite (HTA)" and "High Elasticity Vesphite (HM40)" manufactured by Toho Rayon can be used.

【0007】補強繊維の形態としては長繊維フィラメン
トを100本〜12000本束ねたロービングを一方向
に引き揃えたものおよび/または織物を使用することが
できる。強度的に、補強炭素繊維が50mm以上の長さ
であることが好ましく、50mm未満の長さでは母材C
/C複合材料の強度を十分に高くすることができない。
As the form of the reinforcing fiber, a roving obtained by bundling 100 to 12000 long fiber filaments in one direction and / or a woven fabric can be used. In terms of strength, the reinforcing carbon fiber preferably has a length of 50 mm or more, and when the length is less than 50 mm, the base material C is used.
The strength of the / C composite material cannot be increased sufficiently.

【0008】本発明は補強炭素繊維が、長繊維であると
き最も有効に作用し、強度の高いC/C複合材料の強度
を低下させることなく高い耐酸化性性能を示す密着性良
好な耐酸化性被覆を提供することができる。補強炭素繊
維のバインダとしては、フェノール樹脂、フラン樹脂な
どの熱硬化性物質、ピッチのような熱可塑性物質を用い
ることができる。
The present invention works most effectively when the reinforcing carbon fiber is a long fiber and exhibits high oxidation resistance performance without deteriorating the strength of the C / C composite material having high strength. A protective coating can be provided. As the binder of the reinforcing carbon fiber, a thermosetting substance such as phenol resin or furan resin, or a thermoplastic substance such as pitch can be used.

【0009】C/C複合材料の製造方法としては、例え
ば炭素繊維にバインダを含浸、塗布することによってプ
リプレグシートを作り、積層、加熱加圧して成形体と
し、この成形体を窒素、アルゴン等の不活性雰囲気中で
焼成した後、さらに必要に応じて黒鉛化することによ
り、C/C複合材料とする。その後に要求性能に応じ
て、熱硬化性物質や熱可塑性物質を含浸し焼成を行う含
浸法、メタン、プロパン等の炭化水素ガスを熱分解して
炭素を得るCVI法などにより緻密化を繰り返し行い、
C/C複合材料の高密度化ならびに高強度化を図る方法
をあげることができる。本発明では、C/C複合材料の
密度を1.5g/cm3 以上に高めC/C複合材料母材
の強度が十分に高くなっている時に特に有効に作用し、
本発明の特徴である母材C/C複合材料の材料強度を低
下させないという効果を十分に発揮することができる。
As a method for producing a C / C composite material, for example, a prepreg sheet is prepared by impregnating and coating a carbon fiber with a binder, laminating, heating and pressing to form a compact, and the compact is made of nitrogen, argon or the like. After firing in an inert atmosphere, and further graphitizing as necessary, a C / C composite material is obtained. Then, depending on the required performance, densification is repeatedly performed by an impregnation method in which a thermosetting material or a thermoplastic material is impregnated and firing, or a CVI method in which a hydrocarbon gas such as methane or propane is thermally decomposed to obtain carbon. ,
A method for increasing the density and strength of the C / C composite material can be given. In the present invention, when the density of the C / C composite material is increased to 1.5 g / cm 3 or more and the strength of the C / C composite material base material is sufficiently high, it acts particularly effectively,
The effect of not lowering the material strength of the base material C / C composite material, which is a feature of the present invention, can be sufficiently exerted.

【0010】前述のようにして得たC/C複合材料の表
面に、融点が1500℃以上である少なくとも1種類の
金属、好ましくはB、Cr、Mo、Wより選ばれた1種
類以上の金属を被覆する。前記金属が選ばれる理由は融
点が1500℃未満の金属では、通常C/C複合材料が
使われる1500℃以上の温度において溶融し最外層の
炭化珪素被覆層を剥離させてしまうため使用することが
できないからである。金属を被覆する方法としては、気
相蒸着法、スパッタ法など通常金属被覆に用いられる方
法を使用することができる。
On the surface of the C / C composite material obtained as described above, at least one metal having a melting point of 1500 ° C. or higher, preferably at least one metal selected from B, Cr, Mo and W. To cover. The reason why the metal is selected is that a metal having a melting point of less than 1500 ° C. is melted at a temperature of 1500 ° C. or higher at which a C / C composite material is usually used and the outermost silicon carbide coating layer is peeled off. Because you can't. As a method for coating a metal, a method usually used for metal coating such as a vapor deposition method and a sputtering method can be used.

【0011】高融点金属の膜厚は0.5μm以上100
μm以下とする。0.5μm未満では熱応力緩和として
の効果が低くなり、最外層の炭化珪素層が剥離してしま
う。より好ましくは、2μm以上とするのがよい。10
0μmを越えると得られる耐酸化性能に対して時間並び
に材料費がかかり過ぎ好ましくない。より好ましい上限
は50μmである。
The film thickness of the high melting point metal is 0.5 μm or more and 100 or more.
μm or less. If it is less than 0.5 μm, the effect of relaxing the thermal stress becomes low, and the outermost silicon carbide layer peels off. More preferably, the thickness is 2 μm or more. 10
When it exceeds 0 μm, it takes time and material cost for the obtained oxidation resistance, which is not preferable. A more preferable upper limit is 50 μm.

【0012】高融点金属の被覆層上には、炭化珪素の被
覆層を形成させる。特にこれらが選ばれる理由は、高温
安定性、高温での低い蒸気圧、炭素との低い反応性、低
い酸素透過性による。被覆する方法としてはCVD法が
適しており、最も緻密な層がえられるとともに、本発明
では特に、CVD法による炭化珪素皮膜の密着性を高め
る上で効果がある。炭化珪素被覆層の厚さとしては5μ
m〜500μmが好ましく、5μm未満では、酸化雰囲
気中での耐酸化性性能が低下する。より好ましくは50
μm以上とするのがよい。500μmを越える被覆厚を
得るのは得られる耐酸化性性能に対して時間並びに材料
費がかかり過ぎ好ましくない。より好ましくは300μ
m以下である。
A silicon carbide coating layer is formed on the high melting point metal coating layer. In particular, these are selected because of their high temperature stability, low vapor pressure at high temperature, low reactivity with carbon, and low oxygen permeability. The CVD method is suitable as a coating method, and the most dense layer can be obtained, and in the present invention, it is particularly effective in increasing the adhesion of the silicon carbide film by the CVD method. The thickness of the silicon carbide coating layer is 5μ
m-500 μm is preferable, and if it is less than 5 μm, the oxidation resistance performance in an oxidizing atmosphere deteriorates. More preferably 50
It is preferable that the thickness is at least μm. It is not preferable to obtain a coating thickness of more than 500 μm because it takes too much time and material cost for the obtained oxidation resistance performance. More preferably 300μ
m or less.

【0013】被覆した炭化珪素被覆層には、冷却時に微
細な亀裂等の欠陥が生じ易い。この欠陥を通って進入し
た酸素は、C/C複合材料の酸化が起こり始める約50
0℃から、熱膨張によって炭化珪素被覆層の微細な亀裂
が閉じる数百℃までの温度領域において、著しい酸化を
引き起こす。そのため、例えば、酸化硼素、酸化珪素、
酸化アルミニウム、酸化ジルコニウム等を主成分とする
硝子状物質を塗布する。これらの硝子状物質は500℃
近傍のC/C複合材料の酸化が始まる温度で溶融して亀
裂を防止し、炭化珪素被覆層の微細な亀裂が熱膨張によ
って閉じ始めるときは流動性を有しているので、亀裂が
閉じる際にそれにともなって容易に変形・流動すること
ができ、亀裂を封止し続ける。本発明は、この硝子状物
質があることによって更に効果的に作用する。硝子状物
質を被覆する方法としては、例えば硼酸トリエチル、珪
酸テトラエチル、燐酸アルミニウム等の反応により硝子
化する溶液を塗布する方法、アルミニウム−アルコキシ
ド、ジルコニウム−アルコキシド等の反応によって酸化
物を析出する有機化合物の溶液を塗布する方法をあげる
ことができる。通常、塗布して乾燥しただけでは内部に
揮発性の物質や気泡を含有しているため、より緻密なガ
ラスを得るために、一度ガラスの融点近傍以上の温度ま
で加熱する場合もある。
The coated silicon carbide coating layer is apt to have defects such as fine cracks during cooling. Oxygen that has entered through this defect will start oxidation of the C / C composite at about 50
In the temperature range from 0 ° C. up to several hundreds of degrees Celsius where thermal expansion closes fine cracks in the silicon carbide coating layer, significant oxidation is caused. Therefore, for example, boron oxide, silicon oxide,
A glass-like substance containing aluminum oxide, zirconium oxide or the like as a main component is applied. These glassy substances are 500 ° C
When the C / C composite material in the vicinity melts at a temperature at which oxidation starts and prevents cracks, and when the fine cracks in the silicon carbide coating layer start to close due to thermal expansion, they have fluidity, so when the cracks close. In addition, it can easily deform and flow, and keeps cracks sealed. The present invention works more effectively due to the presence of this vitreous substance. Examples of the method for coating the vitreous substance include, for example, triethyl borate, tetraethyl silicate, a method of applying a solution that vitrifies by a reaction of aluminum phosphate, an aluminum-alkoxide, an organic compound which precipitates an oxide by a reaction of zirconium-alkoxide, etc. The method of applying the solution of can be mentioned. Usually, since it contains a volatile substance or bubbles inside only by coating and drying, it may be heated to a temperature near the melting point of the glass or more once in order to obtain a more dense glass.

【0014】[0014]

【作用】本発明の高強度高密度C/C複合材料用高密着
性耐酸化性被覆は、C/C複合材料とその外層に被覆す
る炭化珪素間の熱膨張率の違いによって生ずる反応を、
高温において塑性変形する金属層によって緩和するため
に、母材C/C複合材料の強度を低下させることなく、
C/C複合材料と炭化珪素との密着性を高めることがで
き、室温から1000℃までの間のサイクル加熱を受け
ても界面の密着強度がほとんど低下しない。
The high-adhesion, oxidation-resistant coating for high-strength and high-density C / C composite material according to the present invention causes a reaction caused by a difference in coefficient of thermal expansion between the C / C composite material and silicon carbide coating the outer layer thereof.
Since it is relaxed by the metal layer that plastically deforms at a high temperature, without lowering the strength of the base material C / C composite material,
The adhesiveness between the C / C composite material and silicon carbide can be enhanced, and the adhesive strength at the interface hardly decreases even when subjected to cycle heating from room temperature to 1000 ° C.

【0015】[0015]

【実施例】図1に本発明の実施例の高強度高密度C/C
複合材料用高密着性耐酸化性被覆1の模式的断面図を示
した。C/C複合材料2上に高融点金属層3が形成さ
れ、その上に炭化珪素4の層が形成され、最上部に硝子
質被覆層5が被覆されている。
EXAMPLE FIG. 1 shows the high strength and high density C / C of the example of the present invention.
A schematic cross-sectional view of the high adhesion and oxidation resistant coating 1 for a composite material is shown. A refractory metal layer 3 is formed on a C / C composite material 2, a layer of silicon carbide 4 is formed on the refractory metal layer 3, and a vitreous coating layer 5 is coated on the uppermost portion.

【0016】以下、本発明を実施例及び比較例に基づき
具体的に説明する。 〔実施例1〕フェノール樹脂(住友ベークライト(株)
製“PR−50273”)を不揮発成分が28重量%と
なるようにアセトンに溶解希釈した後、炭素繊維織布
(東邦レーヨン(株)製、“高強度ベスファイト”#3
121)に含浸した。オーブン中で80度30分間、1
00度30分間乾燥し、樹脂目付け量35重量%の炭素
繊維シートを得た。このシートを6枚積層して、ホット
プレスにより10kg/cm2 の圧力下で150度60
分間加熱加圧成形し炭素繊維強化プラスチック板を得
た。次にArガス雰囲気中で10℃毎分の昇温速度にて
2000℃まで加熱して厚さ約2mmの材料を得た。
The present invention will be specifically described below based on Examples and Comparative Examples. [Example 1] Phenolic resin (Sumitomo Bakelite Co., Ltd.)
"PR-50273" manufactured by Toray Co., Ltd.) was dissolved and diluted in acetone so that the non-volatile component was 28% by weight, and then carbon fiber woven cloth (manufactured by Toho Rayon Co., Ltd., "High strength vesphite"# 3)
121) was impregnated. 80 degrees 30 minutes in the oven, 1
It was dried at 00 degrees for 30 minutes to obtain a carbon fiber sheet having a resin basis weight of 35% by weight. Six of these sheets are laminated and hot-pressed under a pressure of 10 kg / cm 2 at 150 ° C. 60.
It was heated and pressed for a minute to obtain a carbon fiber reinforced plastic plate. Next, the material was heated to 2000 ° C. at a temperature rising rate of 10 ° C. per minute in an Ar gas atmosphere to obtain a material having a thickness of about 2 mm.

【0017】この材料に緻密化処理としてフラン樹脂含
浸を真空中で4時間行った後、更に10kg/cm2
圧力のもとで4時間行い、これをオーブン中100度1
5時間加熱してフラン樹脂を硬化した後、Arガス雰囲
気中で2000度で焼成した。この緻密化処理を密度が
1.55g/cm3 になるまで繰り返し、高密度高強度
C/C複合材料を作製した。
This material was impregnated with furan resin for 4 hours as a densification treatment in a vacuum, and then under a pressure of 10 kg / cm 2 for 4 hours, and this was heated in an oven at 100 ° C. for 1 hour.
After heating for 5 hours to cure the furan resin, it was baked at 2000 ° C. in an Ar gas atmosphere. This densification treatment was repeated until the density reached 1.55 g / cm 3 , to produce a high density and high strength C / C composite material.

【0018】得られた高密度高強度C/C複合材料にス
パッタ法にてモリブデンを10μm被覆した。しかる後
に、四塩化珪素、メタン、水素、アルゴン混合ガスを、
約1300℃に加熱された炉内に導入するCVD法にて
炭化珪素を100μm被覆しC/C複合材料に耐酸化性
性能を付与した。当該C/C複合材料に、大気雰囲気で
1400℃に加熱した炉内に挿入し、6分間保持した後
に取り出し急冷する酸化試験を行ったところ、30回の
繰り返し加熱徐冷を受けても炭化珪素皮膜の剥離はみら
れず、重量減少は1.8%であった。
The obtained high-density and high-strength C / C composite material was coated with molybdenum by 10 μm by a sputtering method. After that, a mixed gas of silicon tetrachloride, methane, hydrogen and argon was added.
A C / C composite material was coated with 100 μm of silicon carbide by a CVD method introduced into a furnace heated to about 1300 ° C. to impart oxidation resistance performance to the C / C composite material. When the C / C composite material was inserted into a furnace heated to 1400 ° C. in an air atmosphere, held for 6 minutes, and then taken out and rapidly cooled, an oxidation test was conducted. No peeling of the film was observed, and the weight loss was 1.8%.

【0019】〔実施例2〕実施例1の高融点金属をホウ
素5μm、クロム15μm、ダングステン7μmに変え
た他は全く同様にしてC/C複合材料に耐酸化性能を付
与した。当該C/C複合材料を実施例1と同様に、酸化
試験を行ったところ、炭化珪素皮膜の剥離はみられず、
重量減少はそれぞれ1.8%、1.8%、1.9%であ
った。
Example 2 The C / C composite material was provided with oxidation resistance in exactly the same manner as in Example 1, except that the refractory metal in Example 1 was changed to boron 5 μm, chromium 15 μm, and dungsten 7 μm. When the C / C composite material was subjected to an oxidation test in the same manner as in Example 1, no peeling of the silicon carbide film was observed,
The weight loss was 1.8%, 1.8% and 1.9%, respectively.

【0020】〔実施例3〕実施例1と同様の耐酸化性を
付与したC/C複合材料に、予め酸触媒のもとで重合反
応させ高分子化した珪酸テトラエチルの溶液を塗布した
後、500℃で30分乾燥した後に、1000℃まで加
熱し一度ガラスを溶融させて、C/C複合材料表面をガ
ラス質で被覆した、当該C/C複合材料を実施例1と同
様に、酸化試験を行ったところ、炭化珪素被膜の剥離は
みられず、重量減少は0.5%であった。
Example 3 A C / C composite material having the same oxidation resistance as that of Example 1 was coated with a solution of tetraethyl silicate polymerized by a polymerization reaction under an acid catalyst in advance. After drying at 500 ° C. for 30 minutes, the glass was once melted by heating to 1000 ° C., and the surface of the C / C composite material was coated with glass. The C / C composite material was subjected to an oxidation test in the same manner as in Example 1. As a result, peeling of the silicon carbide coating was not observed, and the weight loss was 0.5%.

【0021】〔比較例1〕実施例1の高融点金属をジル
コニウム7μm、ハフニウム7μmに変えたほかは全く
同様にして、CVD法によって炭化珪素の100μmを
被覆しようとしたが、炭化珪素をC/C複合材料表面に
均一に被覆することができず、C/C複合材料表面に浮
き上がってしまった。
COMPARATIVE EXAMPLE 1 In the same manner as in Example 1, except that the refractory metal was changed to zirconium 7 μm and hafnium 7 μm, 100 μm of silicon carbide was coated by the CVD method. The C composite material surface could not be uniformly coated and floated on the C / C composite material surface.

【0022】〔比較例2〕窒化珪素の被覆層の厚さを5
μmにしたほかは、実施例1と全く同様にして耐酸化性
能を付与し、酸化試験を行ったところ、10回目の加熱
冷却時に窒化珪素被膜が剥離した。 〔比較例3〕高融点金属の被覆を行わなかったほかは、
実施例1と全く同様にして耐酸化性能を付与し、酸化試
験を行ったところ、1回目の加熱冷却時に窒化珪素被膜
が剥離した。
[Comparative Example 2] The thickness of the silicon nitride coating layer was 5
Oxidation resistance was imparted and an oxidation test was performed in the same manner as in Example 1 except that the thickness was changed to μm, and the silicon nitride film was peeled off during the 10th heating and cooling. [Comparative Example 3] Except that the coating of the refractory metal was not performed,
When oxidation resistance was given and an oxidation test was conducted in exactly the same manner as in Example 1, the silicon nitride film was peeled off during the first heating and cooling.

【0023】[0023]

【発明の効果】本発明の高密度高強度C/C複合材料用
高密着性酸化被覆は、以上説明したように高密度で高い
強度を有するC/C複合材料の機械的特性を損なうこと
なく、高い耐酸化性能をC/C複合材料に付与すること
ができるため、宇宙往環機等の宇宙関連の構造材料向け
に設計、作製された高密度高強度C/C複合材料の耐酸
化処理被覆として使用することができる。
As described above, the high-adhesion oxide coating for high-density and high-strength C / C composite materials according to the present invention does not impair the mechanical properties of the high-density and high-strength C / C composite materials. Since it is possible to impart high oxidation resistance to C / C composite materials, oxidation resistance treatment of high density and high strength C / C composite materials designed and manufactured for space related structural materials such as space shuttles It can be used as a coating.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の被覆の部分断面図である。1 is a partial cross-sectional view of a coating of an example.

【符号の説明】[Explanation of symbols]

1 被覆 2 C/C複合
材料 3 高融点金属層 4 炭化珪素 5 硝子質被覆層
1 coating 2 C / C composite material 3 refractory metal layer 4 silicon carbide 5 vitreous coating layer

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // D06M 101:40 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // D06M 101: 40

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 C/C複合材料の表面に高融点金属の被
覆層を有し、さらにその上に炭化珪素の被覆層を有する
ことを特徴とするC/C複合材料用高密着性耐酸化性被
覆。
1. A high adhesion oxidation resistance for C / C composite material, comprising a coating layer of refractory metal on the surface of C / C composite material, and further having a coating layer of silicon carbide thereon. Coating.
【請求項2】 前記高融点金属の融点が1500℃以上
である少なくとも1種類の金属であることを特徴とする
請求項1記載のC/C複合材料用高密着性耐酸化性被
覆。
2. The high adhesion oxidation resistant coating for a C / C composite material according to claim 1, wherein the high melting point metal is at least one kind of metal having a melting point of 1500 ° C. or higher.
【請求項3】 前記高融点金属がB、Cr、Mo、Wよ
りなる群から選ばれた少なくとも1種類の金属であるこ
とを特徴とする請求項1記載のC/C複合材料用高密着
性耐酸化性被覆。
3. The high adhesion property for C / C composite material according to claim 1, wherein the refractory metal is at least one kind of metal selected from the group consisting of B, Cr, Mo and W. Oxidation resistant coating.
【請求項4】 前記高融点金属の膜厚が0.5μm〜1
00μmであることを特徴とする請求項1記載のC/C
複合材料用高密着性耐酸化性被覆。
4. The film thickness of the refractory metal is 0.5 μm to 1
C / C according to claim 1, characterized in that
High adhesion and oxidation resistant coating for composite materials.
【請求項5】 前記炭化珪素が気相化学蒸着法(CVD
法)による炭化珪素被覆層であることを特徴とする請求
項1記載のC/C複合材料用高密着性耐酸化性被覆。
5. The silicon carbide is vapor phase chemical vapor deposition (CVD).
2. A high adhesion and oxidation resistant coating for C / C composite materials according to claim 1, which is a silicon carbide coating layer according to the method).
【請求項6】 前記炭化珪素の被覆層の上に少なくとも
1種類の珪素、アルミニウム、ジルコニウムの酸化物か
らなる硝子質の被覆層を有することを特徴とする請求項
1記載のC/C複合材料用高密着性耐酸化性被覆。
6. The C / C composite material according to claim 1, further comprising a glassy coating layer made of at least one kind of oxides of silicon, aluminum and zirconium on the coating layer of silicon carbide. High adhesion and oxidation resistant coating for use.
【請求項7】 C/C複合材料の表面にB、Cr、Mo
及びWよりなる群から選ばれた少なくとも1種類の金属
を蒸着法又はスパッタ法により膜厚0.5μm〜100
μm被着させ、ついで該被着した金属上にCVD法によ
り炭化珪素の厚さ5〜500μmの被覆層を形成するこ
とを特徴とするC/C複合材料用高密着性耐酸化性被覆
の形成方法。
7. B, Cr, Mo on the surface of the C / C composite material.
And at least one metal selected from the group consisting of W by a vapor deposition method or a sputtering method to a film thickness of 0.5 μm to 100 μm.
to form a coating layer having a thickness of 5 to 500 μm of silicon carbide on the deposited metal by a CVD method, and forming a high adhesion and oxidation resistant coating for a C / C composite material. Method.
JP5756895A 1995-03-16 1995-03-16 High adhesion oxidation resistant coating film for c/c composite material and its formation Withdrawn JPH08253874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5756895A JPH08253874A (en) 1995-03-16 1995-03-16 High adhesion oxidation resistant coating film for c/c composite material and its formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5756895A JPH08253874A (en) 1995-03-16 1995-03-16 High adhesion oxidation resistant coating film for c/c composite material and its formation

Publications (1)

Publication Number Publication Date
JPH08253874A true JPH08253874A (en) 1996-10-01

Family

ID=13059450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5756895A Withdrawn JPH08253874A (en) 1995-03-16 1995-03-16 High adhesion oxidation resistant coating film for c/c composite material and its formation

Country Status (1)

Country Link
JP (1) JPH08253874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432282C (en) * 2006-08-04 2008-11-12 南京航空航天大学 Tungsten/iridium composite coating layer for carbon material antioxidation and its preparation method
WO2019131728A1 (en) * 2017-12-28 2019-07-04 積水化学工業株式会社 Layered sheet
CN116573953A (en) * 2023-04-29 2023-08-11 西北工业大学 Carbon/carbon composite material surface grid structure enhanced ablation-resistant coating, preparation method and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432282C (en) * 2006-08-04 2008-11-12 南京航空航天大学 Tungsten/iridium composite coating layer for carbon material antioxidation and its preparation method
WO2019131728A1 (en) * 2017-12-28 2019-07-04 積水化学工業株式会社 Layered sheet
CN116573953A (en) * 2023-04-29 2023-08-11 西北工业大学 Carbon/carbon composite material surface grid structure enhanced ablation-resistant coating, preparation method and application
CN116573953B (en) * 2023-04-29 2024-04-30 西北工业大学 Carbon/carbon composite material surface grid structure enhanced ablation-resistant coating, preparation method and application

Similar Documents

Publication Publication Date Title
US6291058B1 (en) Composite material with ceramic matrix and SiC fiber reinforcement, method for making same
US7374709B2 (en) Method of making carbon/ceramic matrix composites
DK172031B1 (en) Composite material with matrix and carbon reinforcing fibers as well as process for its manufacture
US5545435A (en) Method of making a toughened ceramic composite comprising chemical vapor deposited carbon and ceramic layers on a fibrous preform
EP0495570B1 (en) Silicon carbide fiber reinforced carbon composites
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JPH08253874A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
US5695830A (en) Process for improving the oxidative stability of a composite material having a fibrous reinforcement and a glass, glass-ceramic or ceramic matrix
JPH08253861A (en) C/c composite material having high oxidation resistance
JPH08253876A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JP2867536B2 (en) Corrosion and oxidation resistant materials
JP2642604B2 (en) Manufacturing method of fiber reinforced ceramics
JP4616442B2 (en) Carbonaceous material having oxidation-resistant protective layer and method for producing the same
JPH09278567A (en) Production of heat-resistant, oxidation-resistant carbon material
JPH069269A (en) Carbon fiber-reinforced carbon composite material excellent in oxidation resistance
JP2976369B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material
JPH03253499A (en) Manufacture of thermal protecting member for space shuttle
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH06183863A (en) Production of oxidation-resistant carbon fiber-reinforced carbon composite material
JPH0291270A (en) Oxidation-resistant carbon fiber-reinforced carbon material and production thereof
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof
JPH11130553A (en) Carbon/carbon composite material
JPH0274670A (en) Oxidation-resistant carbon fiber-reinforced material and production thereof
JPH01320152A (en) Carbon fiber reinforced carbon material
JPH04305082A (en) Method for coating carbon fiber reinforced carbon composite material with oxidation resistant film by application

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604