JPH09278567A - Production of heat-resistant, oxidation-resistant carbon material - Google Patents

Production of heat-resistant, oxidation-resistant carbon material

Info

Publication number
JPH09278567A
JPH09278567A JP8090842A JP9084296A JPH09278567A JP H09278567 A JPH09278567 A JP H09278567A JP 8090842 A JP8090842 A JP 8090842A JP 9084296 A JP9084296 A JP 9084296A JP H09278567 A JPH09278567 A JP H09278567A
Authority
JP
Japan
Prior art keywords
layer
silicon carbide
resistant
sio2
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8090842A
Other languages
Japanese (ja)
Other versions
JP3042832B2 (en
Inventor
Tomoyuki Tawara
原 知 之 田
Jiro Hiramoto
本 治 郎 平
Susumu Nakai
井 進 中
Akihito Sakai
井 昭 仁 酒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP8090842A priority Critical patent/JP3042832B2/en
Publication of JPH09278567A publication Critical patent/JPH09278567A/en
Application granted granted Critical
Publication of JP3042832B2 publication Critical patent/JP3042832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an oxidation-resistant carbon material with improved peeling resistance of its oxidation-resistant coating layer due to heat shock by coating a carbon fiber-reinforced carbon composite material through two layers of specific silicon carbide with a SiO2 sol and heat-treating the coated layer. SOLUTION: A silicon carbide layer is formed, as an adhesion layer, on the surface of a base material of carbon fiber-reinforced carbon composite by the diffusion technique and the carbon composite material is further coated with silicon carbide by the vapor-phase chemical vapor deposition. Finally, SiO2 sol is coated as an outermost layer and heat-treated at >=1,400 deg.C in an inert atmosphere whereby the objective carbon material is prepared. This process for producing carbon material enables the densification of the SiO2 coating layer by its heat treatment at a temperature >=1,400 deg.C at which SiO2 begins softening, when the composite material is coated with SiO2 by the sol-gel technique. In addition, almost of the SiO2 remaining in cracks is released to the surface layer and the compression stress due to the solid silica on the heat shock is largely reduced to cause no peeling of the oxidation-resistant coating layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐酸化性被覆炭素
材料に関し、さらに詳述すれば宇宙飛行機等の構造材、
タービンブレードおよび原子炉用部材等、高温酸化雰囲
気において繰り返し使用に耐える材料を提供するための
炭素材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation resistant coated carbon material, and more specifically, a structural material for space vehicles,
The present invention relates to a carbon material for providing a material that can be repeatedly used in a high temperature oxidizing atmosphere, such as a turbine blade and a member for a nuclear reactor.

【0002】[0002]

【従来の技術】炭素材料は、一般に酸化性雰囲気下では
500℃程度から酸化され、それ自身のもつ優れた物理
的、化学的性質が低下するため、高温大気中での使用は
ごく短時間の場合を除き不可能であった。この現象を防
止するため、従来から炭素材料の耐酸化処理方法につい
て種々の検討がなされてきた。
2. Description of the Related Art Generally, a carbon material is oxidized from about 500 ° C. in an oxidizing atmosphere, and its excellent physical and chemical properties are deteriorated. It was impossible except in some cases. In order to prevent this phenomenon, various studies have hitherto been made on oxidation resistant treatment methods for carbon materials.

【0003】それらの方法の中で、化学蒸着法による炭
素材料へのセラミックス被覆は最も一般的な方法の一つ
であり、この方法により緻密な膜を得ることができる。
この方法によれば、SiC、TiC、HfC、TaC等
の炭化物、Si3 4 、TiN、BN、ZrN等の窒化
物、Al2 3 、ZrO2 等の酸化物、その他硼化物等
の被覆を行うことができる。
Among these methods, the ceramic coating of a carbon material by the chemical vapor deposition method is one of the most common methods, and a dense film can be obtained by this method.
According to this method, carbides such as SiC, TiC, HfC and TaC, nitrides such as Si 3 N 4 , TiN, BN and ZrN, oxides such as Al 2 O 3 and ZrO 2 and other boride coatings It can be performed.

【0004】一般にこの方法では蒸着温度が1000℃
前後となるため、基材の冷却時に表面のセラミックス被
膜を剥離したり、クラックの発生を引き起こすことが多
い。これは、基材と析出させるセラミックス間の熱膨張
率の差が大きいことが原因であり、基材の膨張率を析出
させるセラミックスと同程度にすることにより解決する
ことができる。
Generally, in this method, the vapor deposition temperature is 1000 ° C.
Since it is before and after, the ceramic coating on the surface is often peeled off and cracks are often generated when the substrate is cooled. This is because the difference in the coefficient of thermal expansion between the base material and the ceramics to be deposited is large, and can be solved by making the expansion coefficient of the base material approximately the same as that of the ceramics to be deposited.

【0005】そこで、基材とセラミックスの接着性を向
上させるため、基材の表面を拡散法によりセラミックス
に転化し、次いで化学蒸着法により被覆する方法がとら
れている。
Therefore, in order to improve the adhesiveness between the base material and the ceramics, a method is used in which the surface of the base material is converted into ceramics by a diffusion method and then coated by a chemical vapor deposition method.

【0006】被覆セラミックスのうち、炭化珪素、窒化
珪素は、酸化により表面に緻密なSiO2 膜を形成する
ため、耐熱・耐酸化性に優れることから、炭素材料の耐
酸化被覆として広く使用されている。しかし、このよう
な炭化珪素、窒化珪素であっても長時間酸化雰囲気かつ
減圧下に暴露されるとSiO生成による気化が進行し
て、ある程度劣化することから、最外層に酸化物を被覆
する方法が考案されている。特開昭63−307181
号のようにSi(OC2 5 4 (テトラエチルオルソ
シリケート)を基板に加熱浸漬(180℃、4時間)し
たあと空気中で加熱硬化しSiO2 を被覆する方法や特
開平2−106337号、特開平4−285068号の
ように炭化珪素被膜上に珪素を含まない化合物または金
属としてHfC、TaC、ZrC、W2 C、NbC、T
hC、ZrB2 、HfB2 、BN、HfN、ZrN、A
lN、Pt、Ir、Os、Rh、Ruを中間層として被
覆し、最外層にThO2 、ZrO2 、HfO2 、La2
3 、Y2 3 の酸化物を被覆する方法が開示されてい
る。炭化珪素、窒化珪素の保護膜としては酸素透過性が
低く緻密な被膜が得られるSiO2 が好ましいが、熱衝
撃時に炭化珪素、窒化珪素層はクラック内に残留する固
体シリカから大きな圧縮応力を受けるため層の剥離が発
生する問題がある。
Among the coated ceramics, silicon carbide and silicon nitride are widely used as oxidation resistant coatings for carbon materials because they form a dense SiO 2 film on the surface by oxidation and are therefore excellent in heat resistance and oxidation resistance. There is. However, even if such silicon carbide or silicon nitride is exposed to an oxidizing atmosphere and reduced pressure for a long time, vaporization due to SiO formation proceeds and deteriorates to some extent. Has been devised. JP-A-63-307181
In Si (OC 2 H 5) 4 heat soaking (180 ° C., 4 h) to (tetraethylorthosilicate) to the substrate as No. then cured by heating after air method and JP-A 2-106337 which covers the SiO 2 HfC, TaC, ZrC, W 2 C, NbC, T as a compound or metal containing no silicon on the silicon carbide coating as in JP-A-4-285068.
hC, ZrB 2 , HfB 2 , BN, HfN, ZrN, A
1N, Pt, Ir, Os, Rh, Ru are coated as an intermediate layer, and the outermost layer is ThO 2 , ZrO 2 , HfO 2 , La 2
A method of coating an oxide of O 3 or Y 2 O 3 is disclosed. As a protective film for silicon carbide and silicon nitride, SiO 2 is preferable because it has a low oxygen permeability and a dense film can be obtained, but the silicon carbide and silicon nitride layers receive a large compressive stress from the solid silica remaining in the cracks during thermal shock. Therefore, there is a problem that layer peeling occurs.

【0007】[0007]

【発明が解決しようとする課題】炭素材料の主耐酸化バ
リアである炭化珪素または窒化珪素層を酸化による劣化
から保護するためにSiO2 を被覆する際、1400℃
以上の熱処理を施すことで熱衝撃に対する耐酸化被膜の
耐剥離性を向上させた耐酸化性炭素材料の製造方法を提
供することを目的とする。
When coating SiO 2 to protect the silicon carbide or silicon nitride layer, which is the main oxidation resistant barrier of the carbon material, from oxidative degradation, 1400 ° C.
It is an object of the present invention to provide a method for producing an oxidation resistant carbon material in which the peel resistance of the oxidation resistant film against thermal shock is improved by performing the above heat treatment.

【0008】[0008]

【課題を解決するための手段】本発明は、ゾルゲル法で
SiO2 を被覆する際、SiO2 が軟化し始める140
0℃以上で加熱処理することにより、SiO2 膜の緻密
化を可能とし、さらにクラック内に残留する大部分のS
iO2 が表層に放出されるため熱衝撃時に固体シリカか
ら受ける圧縮応力が大幅に軽減されて耐酸化被覆層の剥
離が発生しないことを知見し本発明に至った。
SUMMARY OF THE INVENTION The present invention, when coating the SiO 2 by a sol-gel method, SiO 2 begins to soften 140
The heat treatment at 0 ° C. or higher enables the SiO 2 film to be densified, and most of the S that remains in the cracks.
Since the iO 2 is released to the surface layer, it was found that the compressive stress received from the solid silica at the time of thermal shock is remarkably reduced and the peeling of the oxidation resistant coating layer does not occur, which led to the present invention.

【0009】すなわち、本発明は、拡散法により基材と
なる炭素材料の表面を炭化珪素層に転化したのち、気相
化学蒸着法により炭化珪素層を形成させた炭化珪素被覆
炭素材料に、SiO2 ゾルを塗布したあと不活性雰囲気
下で1400℃以上の熱処理を行うことを特徴とする耐
熱・耐酸化性炭素材料の製造方法を提供する。
That is, according to the present invention, the surface of a carbon material as a base material is converted into a silicon carbide layer by a diffusion method, and then a silicon carbide-coated carbon material having a silicon carbide layer formed by a vapor phase chemical vapor deposition method (2) A method for producing a heat-resistant and oxidation-resistant carbon material, which comprises applying a sol and then performing heat treatment at 1400 ° C or higher in an inert atmosphere.

【0010】[0010]

【発明の実施の形態】以下に本発明をさらに詳細に説明
する。基材となる炭素繊維強化炭素複合材料を構成する
炭素繊維としては、平織り、朱子織り、綾織りなどの二
方向敷布、一方向敷布、三方向敷布、n方向配向材、フ
ェルト、トウ等が用いられ、バインダーとしてはフェノ
ール樹脂、フラン樹脂等の熱硬化性樹脂、タール、ピッ
チ等の熱可塑性樹脂を用いることができる。炭素繊維強
化炭素複合材料の製造方法としては、例えば、前記炭素
繊維をバインダーの含浸、塗布などの方法によりプリプ
レグ化し、加圧加熱して成形体とする。この成形体は熱
処理によってバインダーを完全に硬化させ、その後常法
によって焼成し、さらに必要に応じて黒鉛化することに
より炭素繊維強化炭素複合材料とする。その後、用途に
応じて熱硬化性物質、ピッチ類などを含浸、再炭化を行
う含浸法、例えばメタン、プロパンなどの炭化水素ガス
を熱分解して炭素を得るCVD法などにより緻密化を繰
り返し行い、さらに高強度の炭素繊維強化炭素複合材料
とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. As the carbon fiber constituting the carbon fiber reinforced carbon composite material as a base material, a bidirectional woven fabric such as a plain weave, a satin weave, and a twill weave, a unidirectional laid fabric, a three-directional laid fabric, an n-direction oriented material, felt, toe, etc. are used. As the binder, thermosetting resins such as phenol resin and furan resin, and thermoplastic resins such as tar and pitch can be used. As a method for producing the carbon fiber-reinforced carbon composite material, for example, the carbon fibers are prepreg-prepared by a method such as impregnation of a binder or coating, and heated under pressure to obtain a molded body. The binder is completely cured by heat treatment in this molded body, and thereafter, it is fired by an ordinary method, and further graphitized as required to obtain a carbon fiber-reinforced carbon composite material. Then, densification is repeatedly performed by an impregnation method in which a thermosetting substance, pitches, etc. are impregnated and re-carbonized according to the application, for example, a CVD method in which a hydrocarbon gas such as methane or propane is thermally decomposed to obtain carbon. Further, the carbon fiber reinforced carbon composite material having higher strength can be obtained.

【0011】前記材料への拡散法による炭化珪素被覆と
しては、珪素/炭化珪素/アルミナ=15〜50/25
〜85/3〜25重量%の混合粉末中に前記材料を埋没
させ、1500〜1800℃の加熱処理により上記材料
の表層をSiCに転化させる。反応時間は所望の被覆膜
厚に応じて選択することができる。膜厚は、1μm以上
あればよく、好ましくは10〜200μmがよい。
As a silicon carbide coating on the above material by a diffusion method, silicon / silicon carbide / alumina = 15 to 50/25
The material is embedded in a mixed powder of 85/3 to 25% by weight, and the surface layer of the material is converted to SiC by heat treatment at 1500 to 1800 ° C. The reaction time can be selected according to the desired coating film thickness. The film thickness may be 1 μm or more, preferably 10 to 200 μm.

【0012】CVDによる炭化珪素被覆としては、例え
ば、原料ガスにCH3SiCl3、SiCl 4 +CH4 等、キャ
リアガスにはH2 またはH2 +Arの混合ガス等を用い
て、反応温度900〜1700℃、反応圧力760To
rr以下で前記原料ガスとキャリアガスの流量比が(原
料ガスの流量)/(キャリアガスの流量)=1/100
〜50/100の条件で行うのが好ましい。膜厚は、1
μm以上あればよく、好ましくは10〜300μmがよ
い。
As a silicon carbide coating by CVD, for example,
For example, CH in the source gasThreeSiClThree, SiCl Four+ CHFourEtc.
H for rear gasTwoOr HTwoUsing a mixed gas such as + Ar
Reaction temperature 900 to 1700 ° C., reaction pressure 760To
Below rr, the flow rate ratio of the source gas to the carrier gas is (original)
Flow rate of raw gas) / (flow rate of carrier gas) = 1/100
It is preferably carried out under the condition of -50/100. The film thickness is 1
It is sufficient if it is at least μm, preferably 10 to 300 μm.
Yes.

【0013】本発明においては、上記のようにして得ら
れた炭化珪素を被覆した炭素材料に対して耐酸化バリア
としてSiO2 を被覆する。このSiO2 層の形成は、
はじめに一般式Si(OR)4 (Rはアルキル基)で表
されるアルコキシドとH2 Oをアルコール中で加熱混合
してゾル溶液を合成する。H2 Oは珪素アルコキシドに
対しモル比で1(=[H2 O]/[Si])以上添加す
ればよく、好ましくは1〜10がよい。また、加水分解
を促進させるため酸触媒を添加するのが好ましい。本発
明で用いられる珪素アルコキシドとしてはSi(OCH3)4
Si(OC2H5)4、Si(OC3H7)4、Si(OC4H9)4等が挙げられ、酸
触媒としては塩酸、硫酸、硝酸、酢酸等が挙げられる。
アルコールとしては、メタノール、エタノール、プロパ
ノール、ブタノール、メチルセロソルブ、エチルセロソ
ルブ等が挙げられるが、アルコキシド、H2 Oおよび酸
触媒を溶解させるものであればこれらに限定されるもの
ではない。次に合成したゾル溶液を上記の炭化珪素層上
に塗布する。塗布方法は、浸漬、刷毛塗り、スプレー等
により行うことができ、またこれらの方法を組み合わせ
てもよい。塗布したゾルは空気中の水分を利用してゲル
化させ、次いで空気中または酸化性雰囲気中、300℃
以上で加熱処理してゲル層を硬化させる。この塗布操作
を所定の回数だけ繰り返し、最後に不活性雰囲気中で1
400℃以上の温度で、好ましくは1400〜1500
℃の間の温度で熱処理をする。SiO 2 の膜厚は1μm
以上であればよく、好ましくは5〜100μmがよい。
不活性雰囲気としては、窒素、アルゴン、ヘリウムまた
はこれらの混合ガス雰囲気を用いることができる。
In the present invention, it is obtained as described above.
-Resistant barrier against carbon materials coated with ablated silicon carbide
As SiOTwoTo cover. This SiOTwoThe formation of layers
Introduction General formula Si (OR)Four(R is an alkyl group)
Alkoxide and HTwoHeat mix O in alcohol
Then, a sol solution is synthesized. HTwoO is silicon alkoxide
The molar ratio is 1 (= [HTwoO] / [Si]) or more
It suffices, and preferably 1 to 10. Also hydrolysis
It is preferable to add an acid catalyst to accelerate the reaction. Departure
The silicon alkoxide used in theThree)Four,
Si (OCTwoHFive)Four, Si (OCThreeH7)Four, Si (OCFourH9)FourEtc., acid
Examples of the catalyst include hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like.
As alcohol, methanol, ethanol,
Nol, butanol, methyl cellosolve, ethyl cello
And alkoxide, HTwoO and acid
Limited to these as long as it can dissolve the catalyst
is not. Next, the synthesized sol solution was placed on the above-mentioned silicon carbide layer.
Apply to. The application method is dipping, brush application, spraying, etc.
Can also be done by combining these methods
May be. The applied sol is a gel using the moisture in the air
And then in air or oxidizing atmosphere at 300 ° C
As described above, the heat treatment is performed to cure the gel layer. This application operation
Repeat for a predetermined number of times, and finally 1 in an inert atmosphere
At a temperature of 400 ° C. or higher, preferably 1400 to 1500
Heat treatment is performed at a temperature between ℃. SiO TwoThickness is 1 μm
The above is sufficient, and preferably 5 to 100 μm.
As an inert atmosphere, nitrogen, argon, helium or
Can use a mixed gas atmosphere of these.

【0014】本発明によれば、炭化珪素を被覆した炭素
材料にSiO2 を被覆する際1400℃以上の熱処理を
施すことで炭化珪素層のクラック内に残留するSiO2
量を減少させることができるため、耐酸化被覆層は大気
圏再突入時等の環境下で発生する熱衝撃に対してクラッ
ク内の異物から受ける圧縮応力が著しく軽減され、耐酸
化被覆層の耐剥離性に優れた耐熱・耐酸化炭素材料を得
ることができる。
According to the present invention, when a carbon material coated with silicon carbide is coated with SiO 2 by a heat treatment at 1400 ° C. or higher, SiO 2 remaining in the cracks in the silicon carbide layer.
Since the amount of the oxidation-resistant coating layer can be reduced, the compressive stress received from the foreign matter in the crack is significantly reduced due to the thermal shock generated under the environment such as re-entry into the atmosphere, and the oxidation-resistant coating layer is resistant to peeling. It is possible to obtain a heat-resistant and oxidation-resistant carbon material having excellent properties.

【0015】[0015]

【実施例】炭素繊維織布にフェノール樹脂を染み込ませ
たプリプレグを10枚積層し、圧力1kg/cm2 、1
50℃、60分の条件で加圧加熱成形した後、不活性雰
囲気中、1000℃、60分の条件で焼成し、その後コ
ールタールピッチを用いて緻密化処理を4回行い炭素繊
維強化炭素複合材料を得た。得られた炭素繊維強化炭素
複合材料を所定の寸法に加工したあと、該炭素繊維強化
炭素複合材料を組成比が珪素/炭化珪素/アルミナ=2
5/75/5重量%の混合粉末中に埋没し、不活性雰囲
気下で1700℃、240分拡散反応させ、炭素繊維強
化炭素複合材料の表面を炭化珪素化した。この炭化珪素
の膜厚は、20μmであった。次に、拡散法による炭化
珪素被膜を施した炭素繊維強化炭素複合材料の表面に、
気相化学蒸着法(CVD)により緻密な炭化珪素被覆を
施した。ガス組成は CH3SiCl3/H2 =25/100と
なるようにし、ガス流量3リットル/分、圧力30Tor
r、反応温度1600℃の条件で150分間反応させ
た。この炭化珪素の膜厚は、100μmであった。
[Example] Ten prepregs impregnated with a phenol resin were laminated on a carbon fiber woven cloth, and the pressure was 1 kg / cm 2 , 1
After pressure heat molding under conditions of 50 ° C. for 60 minutes, baking is performed under conditions of 1000 ° C. for 60 minutes in an inert atmosphere, and then densification treatment is carried out four times using coal tar pitch. Got the material. After processing the obtained carbon fiber reinforced carbon composite material to a predetermined size, the composition ratio of the carbon fiber reinforced carbon composite material is silicon / silicon carbide / alumina = 2.
The carbon fiber-reinforced carbon composite material was immersed in a mixed powder of 5/75/5 wt% and subjected to a diffusion reaction at 1700 ° C. for 240 minutes in an inert atmosphere to convert the surface of the carbon fiber-reinforced carbon composite material into silicon carbide. The film thickness of this silicon carbide was 20 μm. Next, on the surface of the carbon fiber reinforced carbon composite material coated with the silicon carbide film by the diffusion method,
A dense silicon carbide coating was applied by vapor phase chemical vapor deposition (CVD). The gas composition is CH 3 SiCl 3 / H 2 = 25/100, the gas flow rate is 3 liters / minute, and the pressure is 30 Tor.
The reaction was carried out for 150 minutes at r and a reaction temperature of 1600 ° C. The film thickness of this silicon carbide was 100 μm.

【0016】SiO2 ゾルの合成は、組成比がSi(OC
2H5)4/H2 O/エタノール/塩酸=1/4/10/
0.01モル比となるようにSi(OC2H5)4、H2 Oおよび
塩酸をエタノール中で加熱混合し、丸底フラスコ内で5
時間還流して行った。SiO2 ゾルの塗布は前記の供試
体をゾル溶液中に5分間浸漬して行い、取り出し後3時
間以上室内に放置し、次いで空気中で500℃で60分
間加熱硬化を行った。この操作を10回繰り返したあ
と、アルゴン中1400℃または1500℃で30分の
熱処理を行った。
In the synthesis of SiO 2 sol, the composition ratio is Si (OC
2 H 5 ) 4 / H 2 O / ethanol / hydrochloric acid = 1/4/10 /
Si (OC 2 H 5 ) 4 , H 2 O and hydrochloric acid were heated and mixed in ethanol so that the molar ratio was 0.01, and the mixture was mixed in a round bottom flask with 5
It was refluxed for an hour. The application of the SiO 2 sol was carried out by immersing the above specimen in the sol solution for 5 minutes, leaving it in the room for 3 hours or more, and then heat-curing it in air at 500 ° C. for 60 minutes. After repeating this operation 10 times, heat treatment was performed at 1400 ° C. or 1500 ° C. for 30 minutes in argon.

【0017】このようにして得られた耐熱・耐酸化炭素
材料について、大気中で1500℃の熱衝撃試験を行っ
た。加熱方法は、1500℃に加熱した管状炉内に直接
サンプルを挿入し10分間保持する操作を20回繰り返
した。評価は、重量減少と炭化珪素層の剥離を観察する
ことで行った。また、比較として熱処理温度が500
℃、1200℃のサンプルについても同様に試験を行っ
た。結果を表1および図1に示す。なお、重量変化量χ
n は次式により求めた。 χn =(Wn −Wo )/S mg/cm2o :サンプルの初期重量 Wn :熱衝撃試験n回後のサンプル重量 S :サンプルの表面積
The heat-resistant and oxidation-resistant carbon material thus obtained was subjected to a thermal shock test at 1500 ° C. in the atmosphere. As a heating method, an operation of directly inserting the sample into a tubular furnace heated to 1500 ° C. and holding it for 10 minutes was repeated 20 times. The evaluation was performed by observing weight reduction and peeling of the silicon carbide layer. For comparison, the heat treatment temperature is 500
The same test was carried out for samples at 1200C and 1200C. The results are shown in Table 1 and FIG. Note that the weight change χ
n was calculated by the following equation. χ n = (W n −W o ) / S mg / cm 2 W o : initial weight of sample W n : sample weight after n thermal shock tests S: surface area of sample

【0018】 [0018]

【0019】[0019]

【発明の効果】本発明の製造方法によれば、炭化珪素層
のクラック内に残留するSiO2 量を減少させることが
できるため、熱衝撃に対する炭化珪素層の耐剥離性が著
しく向上した耐熱・耐酸化性炭素材料を得ることができ
る。
According to the manufacturing method of the present invention, the amount of SiO 2 remaining in the cracks of the silicon carbide layer can be reduced, so that the peeling resistance of the silicon carbide layer against thermal shock is remarkably improved. An oxidation resistant carbon material can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】各熱処理温度のサンプルについて、1500℃
熱衝撃試験の回数と重量変化量との関係を示す図であ
る。
FIG. 1 1500 ° C. for each heat treatment temperature sample
It is a figure which shows the relationship between the number of times of a thermal shock test, and the amount of weight changes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中 井 進 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 酒 井 昭 仁 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Susumu Nakai 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Inside the Chiba Steel Works, Kawasaki Steel Co., Ltd. Kawasaki Heavy Industries Gifu factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基材となる炭素繊維強化炭素複合材料(以
下C/Cと記す)の表面に拡散法により接着層としての
炭化珪素層を形成し、次いで気相化学蒸着法(以下CV
Dと記す)により炭化珪素を被覆し、最外層にSiO2
ゾルを塗布したあと不活性雰囲気下で1400℃以上の
熱処理を行うことを特徴とする耐熱・耐酸化性炭素材料
の製造方法。
1. A silicon carbide layer as an adhesive layer is formed on a surface of a carbon fiber reinforced carbon composite material (hereinafter referred to as C / C) as a base material by a diffusion method, and then a vapor phase chemical vapor deposition method (hereinafter referred to as CV).
D) is used to coat silicon carbide, and the outermost layer is covered with SiO 2
A method for producing a heat-resistant and oxidation-resistant carbon material, which comprises subjecting a sol to heat treatment at 1400 ° C. or higher in an inert atmosphere.
JP8090842A 1996-04-12 1996-04-12 Heat and oxidation resistant carbon material manufacturing method Expired - Fee Related JP3042832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8090842A JP3042832B2 (en) 1996-04-12 1996-04-12 Heat and oxidation resistant carbon material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8090842A JP3042832B2 (en) 1996-04-12 1996-04-12 Heat and oxidation resistant carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JPH09278567A true JPH09278567A (en) 1997-10-28
JP3042832B2 JP3042832B2 (en) 2000-05-22

Family

ID=14009846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8090842A Expired - Fee Related JP3042832B2 (en) 1996-04-12 1996-04-12 Heat and oxidation resistant carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JP3042832B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506248A (en) * 2007-12-13 2011-03-03 スネクマ・プロピュルシオン・ソリド How to make a refractory carbide layer on a C / C composite part
WO2013172286A1 (en) * 2012-05-15 2013-11-21 東洋炭素株式会社 Method for producing (carbon material)-(ceramic material) joint, and (carbon material)-(ceramic material) joint
JP2014065651A (en) * 2012-05-15 2014-04-17 Toyo Tanso Kk Method for manufacturing carbon material-inorganic material joint and carbon material-inorganic material joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102746032B (en) * 2012-06-25 2013-11-06 西北工业大学 Method for repairing medium temperature coating (1000 to 1400 DEG C) of silicon carbide base composite material toughened by carbon fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506248A (en) * 2007-12-13 2011-03-03 スネクマ・プロピュルシオン・ソリド How to make a refractory carbide layer on a C / C composite part
WO2013172286A1 (en) * 2012-05-15 2013-11-21 東洋炭素株式会社 Method for producing (carbon material)-(ceramic material) joint, and (carbon material)-(ceramic material) joint
JP2014065651A (en) * 2012-05-15 2014-04-17 Toyo Tanso Kk Method for manufacturing carbon material-inorganic material joint and carbon material-inorganic material joint
CN104203870A (en) * 2012-05-15 2014-12-10 东洋炭素株式会社 Method for producing (carbon material)-(ceramic material) joint, and (carbon material)-(ceramic material) joint
JPWO2013172286A1 (en) * 2012-05-15 2016-01-12 東洋炭素株式会社 Method for producing carbon material-ceramic material assembly, and carbon material-ceramic material assembly

Also Published As

Publication number Publication date
JP3042832B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
US5051300A (en) Composite material with carbon reinforcing fibers and its production process
US4976899A (en) Process for the production of a composite material with matrix and reinforcing fibers of carbon
US5441762A (en) Coating a composite article by applying a porous particulate layer and densifying the layer by subsequently applying a ceramic layer
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
US5284685A (en) Composite material with carbon reinforced fibers and its production
JPH03187989A (en) Process for forming composite material protected against oxidation and material obtained by said process
JP2003252694A (en) SiC-FIBER-COMPOSITED SiC COMPOSITE MATERIAL
JPH09278567A (en) Production of heat-resistant, oxidation-resistant carbon material
CZ341595A3 (en) Abrasion-resistant protective layer against oxidation of bodies made of silicon carbide
EP0576626B1 (en) Coatings for composite articles
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH11314985A (en) Heat resistant/oxidation resistant carbon fiber reinforced carbon material
JP2976369B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material
US5523035A (en) Process for producing carbonaceous material
JP4616442B2 (en) Carbonaceous material having oxidation-resistant protective layer and method for producing the same
JP3310538B2 (en) Heat and oxidation resistant carbon materials
JP3042821B2 (en) Heat-resistant and oxidation-resistant carbon material and method for producing the same
JP3031853B2 (en) Heat and oxidation resistant carbon materials
JPH08253874A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JP3060589B2 (en) High temperature heat resistant material
JP2504341B2 (en) High temperature heat resistant member manufacturing method
JPH08253876A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JPH05306187A (en) Carbon fiber reinforced carbon material excellent in oxidation resistance
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000208

LAPS Cancellation because of no payment of annual fees