JPH11314985A - Heat resistant/oxidation resistant carbon fiber reinforced carbon material - Google Patents

Heat resistant/oxidation resistant carbon fiber reinforced carbon material

Info

Publication number
JPH11314985A
JPH11314985A JP13595198A JP13595198A JPH11314985A JP H11314985 A JPH11314985 A JP H11314985A JP 13595198 A JP13595198 A JP 13595198A JP 13595198 A JP13595198 A JP 13595198A JP H11314985 A JPH11314985 A JP H11314985A
Authority
JP
Japan
Prior art keywords
silicon carbide
resistant
fiber reinforced
carbon fiber
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13595198A
Other languages
Japanese (ja)
Inventor
Akihito Sakai
昭仁 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP13595198A priority Critical patent/JPH11314985A/en
Publication of JPH11314985A publication Critical patent/JPH11314985A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes

Abstract

PROBLEM TO BE SOLVED: To obtain a heat-resistant/oxidation-resistant material having excellent durability by successively forming a silicon carbide layer by silicon diffusion, a dense silicon carbide-coated layer, and a metal silicate layer on the surface of a base body comprising a carbon fiber reinforced carbon composite material. SOLUTION: On the surface of a C/C base body 1 comprising a carbon fiber reinforced carbon composite material, a porous silicon carbide layer (SiC layer) 2 as a thermal stress relaxing layer is formed by diffusing silicon by diffusing method. Then a dense silicon carbide layer (SiC layer) 3 is formed by chemical vapor phase vapor deposition on the silicon carbide layer 2, and further metal silicide 4 or a mixture 5 of metal silicide and metal boride is applied on the surface of the silicon carbide layer 3. The metal elements which constitute the metal silicide and metal boride are preferably selected from Mo, Zr and W, and the mixing ratio of the metal silicide to metal boride is preferably about 10:1 to 1:10. The porous silicon carbide layer 2 and dense silicon carbide layer 3 are formed preferably to have about 10 to 200 μm and about 100 to 300 μm thickness, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱・耐酸化性炭
素繊維強化炭素材料に係り、詳しくは宇宙飛行機等の構
造材、タービンブレードおよび原子炉用部材等、高温酸
化雰囲気において繰り返し使用に耐える材料としての炭
素材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant and oxidation-resistant carbon fiber reinforced carbon material, and more particularly, to a structure material for a space plane, a turbine blade, a member for a nuclear reactor, and the like, which can withstand repeated use in a high-temperature oxidizing atmosphere. It relates to a carbon material as a material.

【0002】[0002]

【従来の技術】炭素材料は、一般に酸化性雰囲気下では
500℃程度から酸化され、それ自身のもつ優れた物理
的、化学的性質が低下するため、高温大気中での使用は
ごく短時間の場合を除き不可能であった。この現象を防
止するため、従来から炭素材料の耐酸化処理方法につい
て種々の検討がなされてきた。
2. Description of the Related Art Generally, carbon materials are oxidized in an oxidizing atmosphere from about 500 ° C., and their excellent physical and chemical properties are deteriorated. It was not possible unless. In order to prevent this phenomenon, various studies have been made on the oxidation-resistant treatment of carbon materials.

【0003】それらの方法の中で、化学気相蒸着法(C
VD法)による炭素材料へのセラミックス被覆は最も一
般的な方法の一つであり、この方法により緻密な膜を得
ることができる。この方法によれば、SiC,TiC,
HfC,TaC等の炭化物、Si3 4 ,TiN,B
N,ZrN等の窒化物、Al2 3 ,ZrO2 等の酸化
物、その他硼化物等の被覆を行うことができる。
[0003] Among these methods, a chemical vapor deposition method (C
Ceramic coating on a carbon material by the VD method is one of the most common methods, and a dense film can be obtained by this method. According to this method, SiC, TiC,
Carbides such as HfC and TaC, Si 3 N 4 , TiN, B
Nitride such as N and ZrN, oxide such as Al 2 O 3 and ZrO 2 , and other borides can be coated.

【0004】一般にこの方法では蒸着温度が1000℃
前後となるため、基材の冷却時に表面のセラミックス被
膜が剥離したり、クラックの発生を引き起すことが多
い。これは基材と析出させるセラミックス間の熱膨張率
の差が大きいことが原因であり、基材の膨張率を析出さ
せるセラミックスと同程度にすることにより解決するこ
とができる。
Generally, in this method, the deposition temperature is 1000 ° C.
Since it is before and after, the ceramic coating on the surface often peels off or cracks occur when the substrate is cooled. This is because the difference in thermal expansion coefficient between the substrate and the ceramic to be deposited is large, and can be solved by making the expansion coefficient of the substrate approximately equal to that of the ceramic to be deposited.

【0005】そこで基材とセラミックスの接着性を向上
させるため、基材の表面を拡散法によりセラミックスに
転化し、次いで化学気相蒸着法(CVD法)により被覆
する方法が採られている。
Therefore, in order to improve the adhesion between the substrate and the ceramic, a method has been adopted in which the surface of the substrate is converted into ceramics by a diffusion method and then coated by a chemical vapor deposition method (CVD method).

【0006】CVD被覆セラミックスのうち、炭化珪
素、窒化珪素は、耐熱・耐酸化性に優れているため、炭
素繊維強化炭素材料の耐熱・耐酸化被覆として広く使用
されているが、宇宙機のノーズコーン、リーディングエ
ッジ等のように、1400〜1700℃の高温で1〜4
000Paの減圧環境下に暴露される場合、炭化珪素、
窒化珪素は、活性(active)酸化によりSiOガスとな
って激しく消耗する。
[0006] Among the CVD coated ceramics, silicon carbide and silicon nitride are widely used as heat and oxidation resistant coatings of carbon fiber reinforced carbon materials because of their excellent heat and oxidation resistance. 1 to 4 at a high temperature of 1400 to 1700 ° C, such as cones and leading edges
When exposed under a reduced pressure environment of 000 Pa, silicon carbide;
Silicon nitride becomes SiO gas due to active oxidation and is severely consumed.

【0007】active酸化を防止する方法として、従来は
炭化珪素被膜上に珪素を含まない化合物または金属を中
間層として被覆し、最外層に酸化物を被覆する方法が開
発され、特開平2−106337号、特開平4−285
068号のように中間層にHfC,TaC,ZrC,W
2 C,NbC,ThC,ZrB,HfB2 ,BN,Hf
N,ZrN,AlN,Pt,Ir,Os,Rh,Ru、
最外層に酸化物としてThO,ZrO2 ,HfO2 ,L
2 3 ,Y2 3 を被覆する方法や最外層に酸化物の
SiO2 系ガラスを被覆する方法が開示されている。
As a method for preventing active oxidation, a method has conventionally been developed in which a compound or metal containing no silicon is coated as an intermediate layer on a silicon carbide film, and an outermost layer is coated with an oxide. No., JP-A-4-285
No. 068, HfC, TaC, ZrC, W
2 C, NbC, ThC, ZrB, HfB 2 , BN, Hf
N, ZrN, AlN, Pt, Ir, Os, Rh, Ru,
ThO, ZrO 2 , HfO 2 , L
A method of coating a 2 O 3 and Y 2 O 3 and a method of coating an outermost layer with an oxide SiO 2 glass are disclosed.

【0008】しかし、これらは被覆層の酸化やSiO2
系ガラスと炭化珪素の反応によりライフタイムが短く、
実用性に欠ける。また、active酸化防止膜として金属被
覆も開発されているが、単独の金属例えば金属珪素を使
用する場合は、炭化珪素の侵食や被覆した金属珪素自身
の耐酸化性が悪いので、あまり耐久性がない。しかも金
属珪素は融点が約1400℃であるので、宇宙機での使
用中に溶融し、空気流があると流されて移動してしまう
という欠点がある。
However, these include oxidation of the coating layer and SiO 2
The life time is short due to the reaction between the base glass and silicon carbide,
Lack of practicality. A metal coating has also been developed as an active antioxidant film. However, when a single metal such as metal silicon is used, the durability is not so high because the corrosion resistance of silicon carbide and the oxidation resistance of the coated metal silicon itself are poor. Absent. Moreover, since metallic silicon has a melting point of about 1400 ° C., it has the drawback that it melts during use in a spacecraft and moves when it is flowed by air.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明は、炭素
繊維強化炭素材料の耐酸化バリアである炭化珪素層のac
tive酸化を防止することのできる耐久性に優れる耐熱・
耐酸化性炭素繊維強化炭素材料を提供しようとするもの
である。
SUMMARY OF THE INVENTION Accordingly, the present invention relates to a method of forming a silicon carbide layer, which is an oxidation-resistant barrier of carbon fiber reinforced carbon material, on the basis of the ac content.
Heat resistance with excellent durability that can prevent tive oxidation
An object of the present invention is to provide an oxidation-resistant carbon fiber reinforced carbon material.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明の耐熱・耐酸化性炭素繊維強化炭素材料は、基
材となる炭素繊維強化炭素複合材料の表面に、珪素の拡
散によって多孔質の炭化珪素層が形成され、その炭化珪
素層の上に、緻密な炭化珪素被覆層が形成され、その炭
化珪素被覆層の表面に、金属珪化物又は金属珪化物と金
属硼化物との混合物が被覆されていることを特徴とする
ものである。
The heat- and oxidation-resistant carbon fiber-reinforced carbon material of the present invention for solving the above-mentioned problems is characterized in that the surface of a carbon fiber-reinforced carbon composite material as a base material is porous by diffusion of silicon. Silicon carbide layer, a dense silicon carbide coating layer is formed on the silicon carbide layer, and a metal silicide or a mixture of a metal silicide and a metal boride is formed on the surface of the silicon carbide coating layer. Is coated.

【0011】上記本発明の耐熱・耐酸化性炭素繊維強化
炭素材料に於いて、緻密な炭化珪素被覆層は、化学気相
蒸着法によって形成されたもの、又は有機珪素樹脂中に
炭化珪素粉末を分散させたものを塗布後熱処理して有機
珪素樹脂を炭化珪素に転化せしめることによって形成し
たものであることが好ましい。
In the above heat-resistant and oxidation-resistant carbon fiber reinforced carbon material of the present invention, the dense silicon carbide coating layer is formed by a chemical vapor deposition method or a silicon carbide powder in an organic silicon resin. It is preferable that the dispersion is formed by applying a heat treatment after application to convert the organic silicon resin into silicon carbide.

【0012】上記本発明の耐熱・耐酸化性炭素繊維強化
炭素材料に於いて、金属珪化物を構成する金属元素は、
Mo,Zr,Wから選択されていることが好ましい。
In the above heat-resistant and oxidation-resistant carbon fiber reinforced carbon material of the present invention, the metal element constituting the metal silicide is:
Preferably, it is selected from Mo, Zr, and W.

【0013】上記本発明の耐熱・耐酸化性炭素繊維強化
炭素材料に於いて、金属珪化物と金属硼化物との混合物
は、Mo,Zr,Wから選択される金属元素で構成され
る金属珪化物中に、1〜20%のTiB2 ,TaB2
ZrB2 から選択される金属硼化物が混合されたもので
あることが好ましい。
In the heat-resistant and oxidation-resistant carbon fiber reinforced carbon material of the present invention, the mixture of the metal silicide and the metal boride is a metal silicide composed of a metal element selected from Mo, Zr and W. 1-20% of TiB 2 , TaB 2 ,
It is preferable that a metal boride selected from ZrB 2 is mixed.

【0014】上記本発明の耐熱・耐酸化性炭素繊維強化
炭素材料に於いて、金属珪化物又は金属珪化物と金属硼
化物との混合物の被覆は、プラズマ溶射法によって形成
されたもの、又は有機珪素樹脂或いはガラス成分と混合
スラリー化して塗布後熱処理により形成されたものであ
ることが好ましい。
In the heat-resistant and oxidation-resistant carbon fiber reinforced carbon material of the present invention, the coating of a metal silicide or a mixture of a metal silicide and a metal boride may be formed by a plasma spraying method or an organic coating. It is preferably formed by applying a heat treatment after forming a slurry mixed with a silicon resin or a glass component.

【0015】[0015]

【発明の実施の形態】本発明の耐熱・耐酸化性炭素繊維
強化炭素材料の実施形態を説明する。図1に示すよう
に、炭素繊維強化炭素複合材料からなるC/C基材1の
表面に、珪素を拡散法により拡散して熱応力緩和層とな
る炭化珪素層(SiC層)2が形成され、その炭化珪素
層(SiC層)2の上に、緻密な炭化珪素層(SiC
層)3が形成され、その炭化珪素層(SiC層)3の表
面に、金属珪化物4又は金属珪化物と金属硼化物との混
合物5が被覆されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the heat-resistant and oxidation-resistant carbon fiber reinforced carbon material of the present invention will be described. As shown in FIG. 1, a silicon carbide layer (SiC layer) 2 serving as a thermal stress relaxation layer is formed on a surface of a C / C substrate 1 made of a carbon fiber reinforced carbon composite material by diffusing silicon by a diffusion method. A dense silicon carbide layer (SiC layer) on the silicon carbide layer (SiC layer) 2.
Layer 3 is formed, and the surface of silicon carbide layer (SiC layer) 3 is coated with metal silicide 4 or a mixture 5 of metal silicide and metal boride.

【0016】前記炭素繊維強化炭素複合材料を構成する
炭素繊維としては、平織り、朱子織り、綾織りなどの二
方向敷布、一方向敷布、三方向敷布、n方向配方材、フ
ェルト、トウ等が用いられ、バインダーとしてはフェノ
ール樹脂、フラン樹脂等の熱硬化性樹脂、タール、ピッ
チ等の熱可塑性樹脂が用いられる。炭素繊維強化炭素複
合材料の製造方法としては、例えば前記炭素繊維をバイ
ンダーの含浸、塗布などによりプリプレグ化し、加圧加
熱して成形体とする。この成形体は熱処理によってバイ
ンダーを完全に硬化させ、その後焼成し、さらに必要に
応じて黒鉛化することにより、炭素繊維強化炭素複合材
料とする。その後は、用途に応じて、熱硬化性物質、ピ
ッチ類などを含浸、再炭化を行う含浸法、例えばメタ
ン、プロパンなどの炭化水素ガスを熱分解して炭素を得
るCVD法などにより緻密化を繰り返し行い、さらに高
強度の炭素繊維強化炭素複合材料とすることができる。
As the carbon fibers constituting the carbon fiber reinforced carbon composite material, use is made of two-way laying such as plain weave, satin weave, twill weave, one-way laying, three-way laying, n-direction laying material, felt, tow and the like. As the binder, a thermosetting resin such as a phenol resin and a furan resin, and a thermoplastic resin such as tar and pitch are used. As a method for producing a carbon fiber reinforced carbon composite material, for example, the carbon fiber is prepreg by impregnation with a binder, coating, or the like, and is then heated under pressure to form a molded body. The molded body is cured by heat to completely cure the binder, then fired, and if necessary, graphitized to obtain a carbon fiber reinforced carbon composite material. After that, depending on the application, the thermosetting substance, pitches, etc. are impregnated and densified by an impregnation method of recarburizing, for example, a CVD method of thermally decomposing a hydrocarbon gas such as methane or propane to obtain carbon. By repeating the process, a carbon fiber reinforced carbon composite material having higher strength can be obtained.

【0017】前記炭素繊維強化炭素複合材料への拡散法
による多孔質の炭化珪素層(SiC層)の形成方法とし
ては、珪素/炭化珪素/アルミナ=15〜50/28〜
85/3〜25重量%の混合粉末中に炭素繊維強化炭素
複合材料を埋没させ、1500〜1800℃の加熱処理
により上記材料の表層を炭化珪素(SiC)に転化させ
る。反応時間は所望の被覆膜厚に応じて選択することが
できる。膜厚は、1μm以上あればよく、好ましくは1
0〜200μmがよい。この多孔質の炭化珪素層(Si
C層)は熱応力緩和層となる。
As a method for forming a porous silicon carbide layer (SiC layer) by the diffusion method into the carbon fiber reinforced carbon composite material, silicon / silicon carbide / alumina = 15 to 50/28 to
The carbon fiber reinforced carbon composite material is buried in the mixed powder of 85/3 to 25% by weight, and the surface layer of the material is converted into silicon carbide (SiC) by a heat treatment at 1500 to 1800 ° C. The reaction time can be selected according to the desired coating film thickness. The film thickness may be 1 μm or more, preferably 1 μm.
It is preferably from 0 to 200 μm. This porous silicon carbide layer (Si
C layer) becomes a thermal stress relaxation layer.

【0018】上記の多孔質の炭化珪素層(SiC層)の
上に形成される緻密な炭化珪素被覆層としては、例えば
原料ガスにCH3 SiCl3 ,CiCl+CH4 等、キ
ャリアガスにはH2 又はH2 +Arの混合ガス等を用い
て、反応温度900〜1700℃、反応圧力760Torr
以下で前記原料ガスとキャリャガスの流量比が(原料ガ
スの流量)/(キャリヤガスの流量)=1/5〜10の
条件で化学気相蒸着を行うのが好ましく、また、有機珪
素樹脂、例えば、ポリカルボシランの20%キシレン溶
液に粒径0.1〜0.5μmの炭化珪素粉末を1:1の
重量比で分散させたものを、多孔質の炭化珪素層(Si
C層)の上に塗布した後、1000〜1400℃の加熱
処理により前記有機珪素樹脂を炭化珪素(SiC)に転
化せしめて形成することも好ましい。このようにして形
成される緻密な炭化珪素被覆層の膜厚は、50μm以上
あればよく、好ましくは100〜300μmがよい。
As the dense silicon carbide coating layer formed on the porous silicon carbide layer (SiC layer), for example, CH 3 SiCl 3 , CiCl + CH 4 or the like as a source gas, or H 2 or a carrier gas as a carrier gas Using a mixed gas of H 2 + Ar or the like, a reaction temperature of 900 to 1700 ° C. and a reaction pressure of 760 Torr
In the following, it is preferable to perform the chemical vapor deposition under the condition that the flow ratio of the raw material gas and the carrier gas is (the flow rate of the raw material gas) / (the flow rate of the carrier gas) = 1/5 to 10, and the organic silicon resin, for example, A silicon carbide powder having a particle size of 0.1 to 0.5 μm dispersed in a 20% xylene solution of polycarbosilane at a weight ratio of 1: 1 is coated with a porous silicon carbide layer (Si
It is also preferable that the organic silicon resin is converted into silicon carbide (SiC) by heat treatment at 1000 to 1400 ° C. after application on the (C layer). The film thickness of the dense silicon carbide coating layer formed in this manner may be 50 μm or more, and preferably 100 to 300 μm.

【0019】上記の緻密な炭化珪素被覆層の表面に被覆
される金属珪化物は、それを構成する金属元素がMo,
Zr,Wから選択されることが好ましく、これら金属元
素から構成される例えばMoSi2 (融点2020
℃),Mo5 Si3 (融点2190℃),ZrSi(融
点2095℃),Zr5 Si3 (融点2110℃),W
Si2 (融点2160℃),W5 Si3 (融点2350
℃)は、高融点金属珪化物である。
In the metal silicide coated on the surface of the dense silicon carbide coating layer, the metal element constituting the metal silicide is Mo,
It is preferable to select from Zr and W. For example, MoSi 2 (melting point 2020) composed of these metal elements
° C), Mo 5 Si 3 (melting point 2190 ° C), ZrSi (melting point 2095 ° C), Zr 5 Si 3 (melting point 2110 ° C), W
Si 2 (melting point 2160 ° C.), W 5 Si 3 (melting point 2350)
C) is a high melting point metal silicide.

【0020】上記の緻密な炭化珪素被覆層の表面に被覆
される金属珪化物と金属硼化物との混合物は、Mo,Z
r,Wから選択される金属元素で構成されるMoS
2 ,ZrSi2 ,WSi2 の金属珪化物中に、1〜2
0%のTiB2 ,TaB2 ,ZrB2 から選択される金
属硼化物が混合されたものであることが好ましい。金属
珪化物と金属硼化物との混合比は、10:1〜1:1が
好ましい。
The mixture of the metal silicide and the metal boride coated on the surface of the dense silicon carbide coating layer is Mo, Z
MoS composed of a metal element selected from r and W
In metal silicides of i 2 , ZrSi 2 and WSi 2 , 1 to 2
Preferably, it is a mixture of 0% of a metal boride selected from TiB 2 , TaB 2 , and ZrB 2 . The mixing ratio between the metal silicide and the metal boride is preferably from 10: 1 to 1: 1.

【0021】上記最外層の金属珪化物の被覆層、又は金
属珪化物と金属硼化物との混合物の被覆層は、プラズマ
溶射法によって形成するか、又は金属珪素よりも耐酸化
性が高く、且つ熱処理後は溶融しない有機珪素樹脂例え
ばポリカルボシランのキシレン溶液或いは軟化して流動
しはじめる温度が高温(1700℃に近い)のガラス成
分例えばシリカゾルと、金属珪化物の粉末又はそれと高
融点の金属硼化物との混合物粉末と混合スラリー化し
て、緻密な炭化珪素被覆層の表面に塗布した後、100
0〜1700℃の加熱処理により形成する。この膜厚は
10μm以上あればよく、好ましくは50〜200μm
がよい。プラズマ溶射法によって、金属珪化物と金属硼
化物との混合物を被覆するときは、所定の混合比とした
混合物を溶射するが、予め混合物とせずに行うこともで
きる。
The outermost metal silicide coating layer or the mixture layer of the metal silicide and the metal boride is formed by a plasma spraying method or has a higher oxidation resistance than metal silicon, and An organic silicon resin that does not melt after heat treatment, such as a xylene solution of polycarbosilane or a glass component such as silica sol, which has a high temperature (close to 1700 ° C.) at which it begins to soften and flow, and a metal silicide powder or a high melting point metal boron Slurry with a mixture powder with a compound, and apply it to the surface of a dense silicon carbide coating layer.
It is formed by a heat treatment at 0 to 1700 ° C. This film thickness may be 10 μm or more, preferably 50 to 200 μm.
Is good. When a mixture of a metal silicide and a metal boride is coated by the plasma spraying method, a mixture having a predetermined mixing ratio is sprayed, but it may be performed without forming the mixture in advance.

【0022】上記のように構成された本発明の耐熱・耐
酸化性炭素繊維強化炭素材料は、化学気相蒸着法により
緻密な炭化珪素被覆層が被覆された炭素繊維強化炭素複
合材料に、炭化珪素との化学的相互作用が極めて小さ
く、耐熱・耐酸化性に優れた高融点金属珪化物、又はそ
れと炭化珪素及び高融点金属珪化物と化学的相互作用が
極めて小さく、耐熱・耐酸化性に優れた金属硼化物との
混合物が被覆されているので、この被覆層は強靱で且つ
極めて緻密で、下地の炭化珪素との熱膨張差に起因する
剥離や気孔の発生を抑制でき、主たる耐酸化バリアであ
る炭化珪素のactive酸化を抑えることができる。しか
も、高融点金属珪化物自身も酸素との接触が遮断されて
酸化から保護される。上記被覆層における高融点金属珪
化物の融点は、宇宙機材の予想到達温度である1700
℃よりも高温であるから、本発明の炭素材料を宇宙機材
に用い、宇宙飛行機が大気圏再突入時等の環境下で発生
する炭化珪素のactive酸化は有効に防止される。しか
も、上記被覆層は従来の非酸化物の被覆に比べてライフ
タイムが著しく増長するので、耐久性に優れた耐熱・耐
酸化性炭素繊維強化炭素材料を実現できる。
The heat-resistant and oxidation-resistant carbon fiber reinforced carbon material of the present invention having the above-described structure is used to form a carbon fiber reinforced carbon composite material coated with a dense silicon carbide coating layer by a chemical vapor deposition method. High melting point metal silicide with extremely low chemical interaction with silicon and excellent heat resistance and oxidation resistance, or extremely low chemical interaction with silicon carbide and high melting point metal silicide, Since the coating with the excellent metal boride is coated, this coating layer is tough and extremely dense, and can suppress the occurrence of peeling and pores due to the difference in thermal expansion from the underlying silicon carbide. Active oxidation of silicon carbide as a barrier can be suppressed. In addition, the refractory metal silicide itself is protected from oxidation by cutting off the contact with oxygen. The melting point of the refractory metal silicide in the coating layer is 1700, which is the expected temperature of space equipment.
Since the temperature is higher than ℃, the carbon material of the present invention is used for spacecraft, and active oxidation of silicon carbide generated in an environment such as when a spacecraft reenters the atmosphere is effectively prevented. In addition, the life time of the coating layer is significantly increased as compared with the conventional non-oxide coating, so that a heat-resistant and oxidation-resistant carbon fiber reinforced carbon material having excellent durability can be realized.

【0023】[0023]

【実施例】炭素繊維織布にフェノール樹脂を浸み込ませ
たプリプレグを10枚積層し、加圧加熱成形した後、不
活性雰囲気中で焼成し、その後コールタールピッチを用
いて緻密化処理を4回行い、炭素繊維強化複合材料を得
た。この得られた炭素繊維強化複合材料を所定の寸法に
加圧したあと、該炭素繊維強化炭素複合材料を組成比が
珪素/炭化珪素/アルミナ=25/75/5重量%の混
合粉末中に埋没し、不活性雰囲気下で1700℃、24
0分拡散反応させ、炭素繊維強化炭素複合材料の表面に
多孔質の炭化珪素層を形成した。この炭化珪素層の層厚
は20μmであった。次に、この炭化珪素層の表面に、
化学気相蒸着法により緻密な炭化珪素被覆層を形成し
た。ガス組成はCH3 SiCl3 /H2 =25/100
となるようにし、ガス流量3リットル/分、圧力30To
rr、反応温度1300℃の条件で150分間反応させ
た。この緻密な炭化珪素被覆層の層厚は、100μmで
あった。次いで、複数の炭素繊維強化炭素複合材料の緻
密な炭化珪素被覆層の表面に、各々金属珪化物の被覆層
と、金属珪化物と金属硼化物との混合物の被覆層を形成
した。金属珪化物の被覆層は、各々MoSi2 ,ZrS
2 ,WSi2 のプラズマ溶射により層厚20μmに形
成した。金属珪化物と金属硼化物との混合物の被覆層
は、次のように形成した。即ち、MoSi2 ,ZrS
i,WSi2 の金属珪化物とTiB2 ,TaB2 ,Zr
2 の金属硼化物との混合粉末(混合比はモル比で5:
1とした)を、各々ポリカルボシランの20%キシレン
溶液に混合してスラリーとした。混合比は重量比で混合
粉末:ポリカルボシラン:キシレン=5:1:4とし
た。このスラリーを緻密な炭化珪素被覆層の表面に塗布
し、室温で12時間以上乾燥した後アルゴン雰囲気下で
1400℃,120分の熱処理を行って、金属珪化物と
金属硼化物との混合物の被覆層を形成した。この被覆層
の層厚は30μmであった。
[Example] Ten prepregs in which a phenolic resin was impregnated in a carbon fiber woven fabric were laminated, pressed and heated, fired in an inert atmosphere, and then densified using a coal tar pitch. Four times, a carbon fiber reinforced composite material was obtained. After pressurizing the obtained carbon fiber reinforced composite material to a predetermined size, the carbon fiber reinforced carbon composite material is embedded in a mixed powder having a composition ratio of silicon / silicon carbide / alumina = 25/75/5% by weight. And 1700 ° C., 24
A diffusion reaction was performed for 0 minutes to form a porous silicon carbide layer on the surface of the carbon fiber reinforced carbon composite material. The thickness of this silicon carbide layer was 20 μm. Next, on the surface of the silicon carbide layer,
A dense silicon carbide coating layer was formed by a chemical vapor deposition method. The gas composition was CH 3 SiCl 3 / H 2 = 25/100
Gas flow rate 3 liter / min, pressure 30 To
The reaction was performed at a reaction temperature of 1300 ° C. for 150 minutes. The layer thickness of this dense silicon carbide coating layer was 100 μm. Next, a coating layer of a metal silicide and a coating layer of a mixture of a metal silicide and a metal boride were formed on the surfaces of the dense silicon carbide coating layers of the plurality of carbon fiber reinforced carbon composite materials. The metal silicide coating layers are MoSi 2 and ZrS, respectively.
It was formed to a layer thickness of 20 μm by plasma spraying of i 2 and WSi 2 . The coating layer of the mixture of the metal silicide and the metal boride was formed as follows. That is, MoSi 2 , ZrS
i, metal silicide of WSi 2 and TiB 2 , TaB 2 , Zr
Mixed powder (mixture ratio of the metal boride B 2 in a molar ratio of 5:
1) were mixed with a 20% xylene solution of polycarbosilane to form a slurry. The mixing ratio was a mixed powder: polycarbosilane: xylene = 5: 1: 4 by weight. This slurry is applied to the surface of a dense silicon carbide coating layer, dried at room temperature for 12 hours or more, and then heat-treated at 1400 ° C. for 120 minutes in an argon atmosphere to coat a mixture of a metal silicide and a metal boride. A layer was formed. The thickness of this coating layer was 30 μm.

【0024】評価方法 前述のようにして得られた実施例1〜6の耐熱・耐酸化
炭素繊維強化炭素材料6種を、1000Paの大気中で
1700℃の加熱を行った。温度履歴は、室温から設定
温度までが約3分、設定温度で18分20秒、設定温度
から室温までが10分であった。評価は、下地の緻密な
炭化珪素層の消耗と、表面,断面観察により行った。ま
た、比較例として最外側に金属珪化物の被覆層が無く、
緻密な炭化珪素層が露出しているサンプルの評価を行っ
た。その結果を下記の表1に示す。
Evaluation Method Six kinds of the heat-resistant and oxidation-resistant carbon fiber reinforced carbon materials of Examples 1 to 6 obtained as described above were heated at 1700 ° C. in the atmosphere of 1000 Pa. The temperature history was about 3 minutes from room temperature to the set temperature, 18 minutes and 20 seconds at the set temperature, and 10 minutes from the set temperature to room temperature. The evaluation was carried out based on the consumption of the underlying dense silicon carbide layer and the observation of the surface and cross section. As a comparative example, there is no metal silicide coating layer on the outermost side,
The sample in which the dense silicon carbide layer was exposed was evaluated. The results are shown in Table 1 below.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上の説明で判るように本発明の耐熱・
耐酸化性炭素繊維強化炭素材料は、最外側の金属珪化物
の被覆層又は金属珪化物と金属硼化物との混合物の被覆
層が極めて緻密で下地の炭化珪素との熱膨張差に起因す
る剥離や気孔の発生を抑制でき、主たる耐酸化バリアで
ある炭化珪素のactive酸化を抑えることができる。しか
も本発明の炭素材料は、最外層の上記被覆層が宇宙機材
の予想到達温度である1700℃よりも高い融点を有す
るので、宇宙機材に用い、宇宙飛行機が大気圏突入時等
の環境下でも十分に使用でき、従来の非酸化物の被覆層
を有する炭素材料に比べてライフタイムが著しく増長
し、耐久性に優れた耐熱・耐酸化性の炭素材料が実現す
る。
As can be seen from the above description, the heat resistance of the present invention
Oxidation-resistant carbon fiber reinforced carbon material has a very dense outermost metal silicide coating layer or a mixture of metal silicide and metal boride coating layers, and peeling due to the difference in thermal expansion between the underlying silicon carbide and the silicon carbide. Generation and pores can be suppressed, and active oxidation of silicon carbide, which is the main oxidation-resistant barrier, can be suppressed. Moreover, the carbon material of the present invention has a melting point higher than the expected attainment temperature of space equipment of 1700 ° C., so that the outermost coating layer can be used in space equipment and can be sufficiently used even in an environment such as when a space plane enters the atmosphere. In addition, a heat-resistant and oxidation-resistant carbon material having a significantly increased life time as compared with a conventional carbon material having a non-oxide coating layer and having excellent durability is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐熱・耐酸化性炭素繊維強化炭素材料
の構造を示す断面図である。
FIG. 1 is a sectional view showing a structure of a heat-resistant and oxidation-resistant carbon fiber reinforced carbon material of the present invention.

【符号の説明】[Explanation of symbols]

1 C/C基材(炭素繊維強化炭素複合材料) 2 多孔質の炭化珪素層 3 緻密な炭化珪素層 4 金属珪化物 5 金属珪化物と金属硼化物との混合物 DESCRIPTION OF SYMBOLS 1 C / C base material (carbon fiber reinforced carbon composite material) 2 Porous silicon carbide layer 3 Dense silicon carbide layer 4 Metal silicide 5 Mixture of metal silicide and metal boride

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基材となる炭素繊維強化炭素複合材料の
表面に、珪素の拡散によって炭化珪素層が形成され、そ
の炭化珪素層の上に緻密な炭化珪素被覆層が形成され、
その炭化珪素被覆層の表面に、金属珪化物又は金属珪化
物と金属硼化物との混合物が被覆されていることを特徴
とする耐熱・耐酸化性炭素繊維強化炭素材料。
1. A silicon carbide layer is formed on a surface of a carbon fiber reinforced carbon composite material serving as a base material by diffusion of silicon, and a dense silicon carbide coating layer is formed on the silicon carbide layer.
A heat-resistant and oxidation-resistant carbon fiber reinforced carbon material, wherein the surface of the silicon carbide coating layer is coated with a metal silicide or a mixture of a metal silicide and a metal boride.
【請求項2】 請求項1記載の耐熱・耐酸化性炭素繊維
強化炭素材料に於いて、緻密な炭化珪素被覆層が、化学
気相蒸着法によって形成されたもの、又は有機珪素樹脂
中に炭化珪素粉末を分散させたものを塗布後熱処理して
有機珪素樹脂を炭化珪素に転化せしめることによって形
成されたものであることを特徴とする耐熱・耐酸化性炭
素繊維強化炭素材料。
2. The heat-resistant and oxidation-resistant carbon fiber reinforced carbon material according to claim 1, wherein the dense silicon carbide coating layer is formed by a chemical vapor deposition method, or carbonized in an organic silicon resin. A heat-resistant and oxidation-resistant carbon fiber reinforced carbon material, which is formed by applying a material in which silicon powder is dispersed and applying heat treatment to convert an organic silicon resin into silicon carbide.
【請求項3】 請求項1又は2記載の耐熱・耐酸化性炭
素繊維強化炭素材料に於いて、金属珪化物を構成する金
属元素がMo,Zr,Wから選択されていることを特徴
とする耐熱・耐酸化性炭素繊維強化炭素材料。
3. The heat-resistant and oxidation-resistant carbon fiber reinforced carbon material according to claim 1, wherein a metal element constituting the metal silicide is selected from Mo, Zr, and W. Heat and oxidation resistant carbon fiber reinforced carbon material.
【請求項4】 請求項1又は2記載の耐熱・耐酸化性炭
素繊維強化炭素材料に於いて、金属珪化物と金属硼化物
との混合物が、Mo,Zr,Wから選択される金属元素
で構成される金属珪化物中に、1〜20%のTiB2
TaB2 ,ZrB2 から選択される金属硼化物が混合さ
れたものであることを特徴とする耐熱・耐酸化性炭素繊
維強化炭素材料。
4. The heat- and oxidation-resistant carbon fiber reinforced carbon material according to claim 1, wherein the mixture of a metal silicide and a metal boride is a metal element selected from Mo, Zr, and W. 1-20% of TiB 2 ,
A heat-resistant and oxidation-resistant carbon fiber reinforced carbon material characterized by being mixed with a metal boride selected from TaB 2 and ZrB 2 .
【請求項5】 請求項1〜4のいずれかに記載の耐熱・
耐酸化性炭素繊維強化炭素材料に於いて、金属珪化物又
は金属珪化物と金属硼化物との混合物の被覆が、プラズ
マ溶射法によって形成されたもの、又は有機珪素樹脂或
いはガラス成分と混合スラリー化して塗布後熱処理によ
り形成されたものであることを特徴とする耐熱・耐酸化
性炭素繊維強化炭素材料。
5. The heat resistance according to claim 1,
In the oxidation-resistant carbon fiber reinforced carbon material, a coating of a metal silicide or a mixture of a metal silicide and a metal boride is formed by a plasma spraying method, or a slurry is mixed with an organic silicon resin or a glass component. A heat- and oxidation-resistant carbon fiber reinforced carbon material formed by heat treatment after application.
JP13595198A 1998-04-30 1998-04-30 Heat resistant/oxidation resistant carbon fiber reinforced carbon material Pending JPH11314985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13595198A JPH11314985A (en) 1998-04-30 1998-04-30 Heat resistant/oxidation resistant carbon fiber reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13595198A JPH11314985A (en) 1998-04-30 1998-04-30 Heat resistant/oxidation resistant carbon fiber reinforced carbon material

Publications (1)

Publication Number Publication Date
JPH11314985A true JPH11314985A (en) 1999-11-16

Family

ID=15163664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13595198A Pending JPH11314985A (en) 1998-04-30 1998-04-30 Heat resistant/oxidation resistant carbon fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JPH11314985A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127275A (en) * 2006-11-21 2008-06-05 United Technol Corp <Utc> Method for applying oxidation resistant coating and coated article
KR20140089335A (en) * 2011-08-31 2014-07-14 헤라클레스 Ultra-refractory material that is stable in a wet environment and process for manufacturing same
KR102026866B1 (en) * 2019-04-12 2019-09-30 국방과학연구소 Forming method of ceramic coating layer having high melting and heat-resistant material comprising the ceramic coating layer having high melting
CN112501613A (en) * 2020-11-30 2021-03-16 西安工业大学 Full-temperature-range oxidation-resistant ablation coating and preparation method thereof
CN116082065A (en) * 2023-01-16 2023-05-09 中国科学院金属研究所 Method for improving sintering density of antioxidant coating on surface of carbon-based or ceramic-based composite material and composite antioxidant coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127275A (en) * 2006-11-21 2008-06-05 United Technol Corp <Utc> Method for applying oxidation resistant coating and coated article
US7951459B2 (en) 2006-11-21 2011-05-31 United Technologies Corporation Oxidation resistant coatings, processes for coating articles, and their coated articles
KR20140089335A (en) * 2011-08-31 2014-07-14 헤라클레스 Ultra-refractory material that is stable in a wet environment and process for manufacturing same
JP2014525386A (en) * 2011-08-31 2014-09-29 エラクレス Super heat resistant material stable in wet environment and method for producing the same
KR102026866B1 (en) * 2019-04-12 2019-09-30 국방과학연구소 Forming method of ceramic coating layer having high melting and heat-resistant material comprising the ceramic coating layer having high melting
CN112501613A (en) * 2020-11-30 2021-03-16 西安工业大学 Full-temperature-range oxidation-resistant ablation coating and preparation method thereof
CN112501613B (en) * 2020-11-30 2022-11-15 西安工业大学 Full-temperature-range oxidation-resistant ablative coating and preparation method thereof
CN116082065A (en) * 2023-01-16 2023-05-09 中国科学院金属研究所 Method for improving sintering density of antioxidant coating on surface of carbon-based or ceramic-based composite material and composite antioxidant coating
CN116082065B (en) * 2023-01-16 2024-03-26 中国科学院金属研究所 Method for improving sintering density of antioxidant coating on surface of ceramic matrix composite material and composite antioxidant coating

Similar Documents

Publication Publication Date Title
US6632762B1 (en) Oxidation resistant coating for carbon
CN107226706B (en) Ceramic matrix composites having unimodal pore size distribution and low fiber volume fraction
JP2680439B2 (en) Composite material containing carbon reinforcing fibers and method for producing the same
US20100179045A1 (en) Methods and apparatus relating to a composite material
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH11314985A (en) Heat resistant/oxidation resistant carbon fiber reinforced carbon material
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material
JP2976369B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material
US6485791B1 (en) Method for improving the performance of oxidizable ceramic materials in oxidizing environments
JPH03199172A (en) Coated carbon fiber reinforced composite material
JP3031853B2 (en) Heat and oxidation resistant carbon materials
JP3042832B2 (en) Heat and oxidation resistant carbon material manufacturing method
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP2812019B2 (en) Carbon fiber / carbon composite
EP0576626A1 (en) Coatings for composite articles.
JP3310538B2 (en) Heat and oxidation resistant carbon materials
JP3042821B2 (en) Heat-resistant and oxidation-resistant carbon material and method for producing the same
JPH05170577A (en) Method for anti-oxidizing coating of carbon fiber reinforced carbon composite material using coating method
JP3060589B2 (en) High temperature heat resistant material
JP2504341B2 (en) High temperature heat resistant member manufacturing method
JP2827388B2 (en) Corrosion-resistant and oxidation-resistant material and method for producing the same
JPH0725612B2 (en) Carbon fiber reinforced carbon composite material having oxidation resistance and method for producing the same
JPH08253876A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production