JPH08253861A - C/c composite material having high oxidation resistance - Google Patents

C/c composite material having high oxidation resistance

Info

Publication number
JPH08253861A
JPH08253861A JP5757095A JP5757095A JPH08253861A JP H08253861 A JPH08253861 A JP H08253861A JP 5757095 A JP5757095 A JP 5757095A JP 5757095 A JP5757095 A JP 5757095A JP H08253861 A JPH08253861 A JP H08253861A
Authority
JP
Japan
Prior art keywords
composite material
silicon carbide
oxidation resistance
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5757095A
Other languages
Japanese (ja)
Inventor
Osamu Ebato
修 江波戸
Shigeru Takano
高野  茂
Tomoyuki Tawara
知之 田原
Noriyoshi Fukuda
典良 福田
Tomoyuki Uruno
智之 宇留野
Kenpei Shiyu
建平 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5757095A priority Critical patent/JPH08253861A/en
Publication of JPH08253861A publication Critical patent/JPH08253861A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE: To provide a C/C composite material coated with an oxidation resistant coating film, which is improved in adhesiveness of the C/C composite material to a ceramic coating film and has high strength. CONSTITUTION: Oxidation resistance is imparted to the C/C composite material by forming a thermally decomposed carbon 3 with about 30μm film thickness on the surface of a C/C layer 2 by a CVD method, next applying molybdenum 4 with 10μm thickness as a high m.p. metal by sputtering, applying silicon carbide 5 with 100μm thickness by CVD method and providing a vitreous coating film layer 6 thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温大気雰囲気中で長
時間使用可能な高い耐酸化性能を有する炭素繊維強化炭
素(以下C/Cとする)複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced carbon (hereinafter referred to as C / C) composite material which has a high oxidation resistance and can be used for a long time in a high temperature atmosphere.

【0002】[0002]

【従来の技術】C/C複合材料は、炭素繊維を補強材と
し、炭素をマトリックスとした複合材料であって、耐熱
性、耐薬品性、耐摩耗性に優れ、かつ高強度、軽量な材
料である。そのためロケットノズルや航空機のディスク
ブレーキなどに使用されている。しかしながら、C/C
複合材料は酸素雰囲気中では、約500℃から酸化さ
れ、それ自身の持つ優れた物理的、化学的性能が低下す
るため、高温大気中での使用は極く短時間の場合を除き
不可能であった。この現象を防止するために従来から炭
素材料の耐酸化性能を高める方法について種々の検討が
なされてきた。それらの方法の中で、化学気相蒸着法
(以下CVDとする)によるセラミックスの被覆は最も
一般的に行われている方法の一つであり、この方法によ
り緻密な被覆膜を得ることができる。しかしながら、こ
の方法では被覆時に、基材となるC/C複合材料を10
00℃前後の温度まで加熱しなければならない場合が多
く、被覆処理完了後室温まで冷却する際に表面のセラミ
ックス被覆が剥離したり、割れを発生することが多かっ
た。これは、C/C複合材料とセラミックス間の熱膨張
率の差が大きいことが主原因である。C/C複合材料は
その熱膨張率が炭素繊維自体の熱膨張率によって決定さ
れてしまい、また、C/C複合材料と同じ熱膨張率を持
つセラミックス被覆材料も存在しないために、CVD法
によるセラミックスの被覆膜を利用することは困難であ
った。
2. Description of the Related Art A C / C composite material is a composite material in which carbon fiber is used as a reinforcing material and carbon is used as a matrix, and is excellent in heat resistance, chemical resistance, and abrasion resistance, and has high strength and light weight. Is. Therefore, it is used for rocket nozzles and aircraft disc brakes. However, C / C
The composite material is oxidized in an oxygen atmosphere from about 500 ° C, and its excellent physical and chemical performance deteriorates, so use in a high temperature atmosphere is impossible except for an extremely short time. there were. In order to prevent this phenomenon, various studies have hitherto been made on a method of enhancing the oxidation resistance performance of the carbon material. Among these methods, the coating of ceramics by the chemical vapor deposition method (hereinafter referred to as CVD) is one of the most commonly used methods, and it is possible to obtain a dense coating film by this method. it can. However, in this method, the C / C composite material as the base material is not
In many cases, it was necessary to heat up to a temperature of around 00 ° C., and when cooling to room temperature after completion of the coating treatment, the ceramic coating on the surface was often peeled off or cracked. This is mainly due to the large difference in the coefficient of thermal expansion between the C / C composite material and the ceramics. The thermal expansion coefficient of the C / C composite material is determined by the thermal expansion coefficient of the carbon fiber itself, and there is no ceramic coating material having the same thermal expansion coefficient as the C / C composite material. It was difficult to use a ceramic coating film.

【0003】特公平2−54778号公報にはCVD法
によりセラミックス層を被覆する前に、C/C複合材料
の表層にパック拡散法により金属珪素をC/C複合材料
と反応させるSiC化させたSiCの転換被覆を設ける
ことによって、CVD−SiC層との密着性を高める方
法が記載されている。この方法は密着性を高める上では
優れているが、C/C複合材料の表層の補強繊維の一部
をSiC化するためにC/C複合材料の材料強度が低下
してしまうという問題があった。
In Japanese Examined Patent Publication No. 2-54778, before coating the ceramic layer by the CVD method, the surface layer of the C / C composite material is converted to SiC by reacting metallic silicon with the C / C composite material by the pack diffusion method. It describes a method of increasing the adhesion to a CVD-SiC layer by providing a conversion coating of SiC. Although this method is excellent in improving the adhesion, there is a problem that the material strength of the C / C composite material is reduced because a part of the reinforcing fibers in the surface layer of the C / C composite material is converted to SiC. It was

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
技術における先の問題点を解決し、C/C複合材料とセ
ラミックス被覆膜との密着性が優れ、高い強度を有す
る、耐酸化被覆を施したC/C複合材料を提供すること
である。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems in the prior art, to provide excellent adhesion between the C / C composite material and the ceramic coating film, and to provide a high strength, which is resistant to oxidation. The purpose is to provide a coated C / C composite material.

【0005】[0005]

【課題を解決するための手段】本発明者らは、先の問題
点を解決するため、C/C複合材料の面方向と厚さ方向
間における熱膨張率の違いと、C/C複合材料とセラミ
ックス間の熱膨張率の違いに着目し鋭意研究を重ねた結
果、両者の熱膨張率の違いを熱分解炭素ならびに高温に
おいて塑性変形する金属層によって緩和することができ
るとの結論に達した。
SUMMARY OF THE INVENTION In order to solve the above problems, the present inventors have made a difference in the coefficient of thermal expansion between the plane direction and the thickness direction of a C / C composite material and the C / C composite material. As a result of intensive studies focusing on the difference in the coefficient of thermal expansion between ceramics and ceramics, it was concluded that the difference in the coefficient of thermal expansion between the two can be alleviated by pyrolytic carbon and a metal layer that plastically deforms at high temperatures. .

【0006】すなわち、本発明は、C/C複合材料の表
面に熱分解炭素を被覆し、その上にB、Cr、Ir、M
o、Nb、Pt、Ti、V及びWからなる群から選ばれ
た少なくとも一種類の高い融点を持つ金属を被覆し、さ
らにその上に炭化珪素、窒化珪素などのセラミックスを
被覆した耐酸化性C/C複合材料及びその耐酸化性C/
C複合材料にさらに硝子状物質を被覆したC/C複合材
料を提供するものである。
That is, according to the present invention, the surface of the C / C composite material is coated with pyrolytic carbon, and B, Cr, Ir, M are further coated thereon.
O, Nb, Pt, Ti, V and W, at least one kind of metal having a high melting point is coated, and further, a ceramic such as silicon carbide or silicon nitride is coated on the oxidation resistant C. / C composite material and its oxidation resistance C /
It is intended to provide a C / C composite material in which a C composite material is further coated with a glass-like substance.

【0007】本発明のC/C複合材料は、面方向と厚さ
方向の熱膨張率の違いを熱分解炭素で緩和し、さらに高
温において塑性変形する金属層によって熱膨張率の違い
によて生ずる応力を緩和するために、その外層に被覆す
る炭化珪素又は窒化珪素などのセラミックスとC/C複
合材料の密着性が優れ、室温−1000℃間のサイクル
加熱を受けても界面の密着強度がほとんど低下しない。
In the C / C composite material of the present invention, the difference in the thermal expansion coefficient between the plane direction and the thickness direction is alleviated by the pyrolytic carbon, and the difference in the thermal expansion coefficient is caused by the metal layer which is plastically deformed at a high temperature. In order to relieve the generated stress, the ceramics such as silicon carbide or silicon nitride coated on the outer layer have excellent adhesiveness and the C / C composite material has excellent adhesiveness at the interface even when subjected to cycle heating between room temperature and 1000 ° C. Hardly decreases.

【0008】[0008]

【作用】以下に本発明をさらに詳細に説明する。C/C
複合材料の補強炭素繊維として、PAN系、レーヨン系
又はタールピッチ系炭素繊維を用いることができ、強度
的にPAN系のものを用いると最も優れたものが得られ
る。例えば東邦レーヨン製“高強度ベスファイト(HT
A)”、“高弾性ベスファイト(HM40)”等の一般
に市販されているものが使用できる。補強繊維の形態と
しては、長繊維 フィラメントを100本〜12000
本束ねたロービングを一方向に引き揃えたもの及び/又
は織物が使用できる。バインダーとしては、フェノール
樹脂、フラン樹脂などの熱硬化性物質、ピッチのような
熱可塑性物質を用いることができる。
The present invention will be described below in more detail. C / C
As the reinforcing carbon fiber of the composite material, PAN-based, rayon-based or tar-pitch-based carbon fiber can be used, and the most excellent one is obtained by using PAN-based one in terms of strength. For example, Toho Rayon's "High Strength Bethfight (HT
A) ”,“ high-elasticity vesphite (HM40) ”, etc. which are generally commercially available can be used. The form of the reinforcing fiber is 100 to 12000 long filaments.
It is possible to use a bundle of rovings aligned in one direction and / or a woven fabric. As the binder, a thermosetting substance such as phenol resin or furan resin, or a thermoplastic substance such as pitch can be used.

【0009】C/C複合材料の製造方法としては、例え
ば炭素繊維にバンダーを含浸、塗布することによってプ
リプレグシートを作り、積層、加熱加圧して成形体と
し、この成形体を窒素、アルゴン等の不活性雰囲気中で
焼成した後、さらに必要に応じて黒鉛化することにより
C/C複合材料とする。その後に要求性能に応じて、熱
硬化性物質や可塑性物質を含浸し焼成を行う含浸法、メ
タン、プロパン等の炭化水素ガスを熱分解して炭素を得
るCVI法などにより緻密化を繰り返し行い、C/C複
合材料の高密度化並びに高強度化を図方法をあげること
ができる。
As a method for producing a C / C composite material, for example, a prepreg sheet is made by impregnating and applying carbon fiber with a bander, laminated, heated and pressed into a molded body, and the molded body is filled with nitrogen, argon or the like. After firing in an inert atmosphere, graphitization is further performed as required to obtain a C / C composite material. Then, depending on the required performance, densification is repeated by an impregnation method in which a thermosetting substance or a plastic substance is impregnated and baked, or a CVI method in which a hydrocarbon gas such as methane or propane is thermally decomposed to obtain carbon, A method of increasing the density and the strength of the C / C composite material can be mentioned.

【0010】前述のようにして得た、C/C複合材料の
表面に熱分解炭素の層を生成する。熱分解炭素はメタ
ン、プロパン等の炭化水素ガスを熱分解するCVD法に
よって得られる。熱分解炭素は処理条件によってその結
晶組織が変化するが、本発明においては、等方性の熱分
解炭素が最も有効に作用する。異方性の熱分解炭素は加
熱冷却の際に層方向に割れを発生しやすい。熱分解炭素
を析出させるときの温度は、C/C複合材料の使用され
る温度がおおむね1500℃以上であることから、15
00℃以上であることが好ましい。使用温度よりも低い
温度で析出させた熱分解炭素では、使用中に組織変化を
起こし、C/C複合材料とセラミックス層の密着性の低
下を引き起こす。また、等方性熱分解炭素の膜厚は1μ
m以上、100μm以下の範囲がよく、当該範囲未満で
は緩和層としての効果が低く、セラミックス層の割れ、
剥離を生じ易くなる。また、当該範囲を越える膜厚で
は、熱分解炭素の剥離を生じ易くなる。
A layer of pyrolytic carbon is produced on the surface of the C / C composite material obtained as described above. Pyrolytic carbon is obtained by a CVD method that thermally decomposes a hydrocarbon gas such as methane or propane. The crystal structure of pyrolytic carbon changes depending on the treatment conditions, but isotropic pyrolytic carbon works most effectively in the present invention. Anisotropic pyrolytic carbon easily causes cracks in the layer direction during heating and cooling. The temperature for depositing pyrolytic carbon is 15 because the temperature at which the C / C composite material is used is approximately 1500 ° C. or higher.
It is preferably 00 ° C. or higher. Pyrolytic carbon deposited at a temperature lower than the use temperature causes a structural change during use and causes a decrease in adhesion between the C / C composite material and the ceramic layer. The film thickness of isotropic pyrolytic carbon is 1μ.
The range of m or more and 100 μm or less is preferable, and if it is less than the range, the effect as a relaxation layer is low and cracks in the ceramic layer
Peeling is likely to occur. If the film thickness exceeds the above range, the pyrolytic carbon is likely to be peeled off.

【0011】次に、B、Cr、Ir、Mo、Nb、P
t、Ti、VおよびWより選ばれた1種類以上の金属を
被覆する。前記金属が選ばれる理由は高い融点を有して
いることによる。融点が1500℃以下では、通常C/
C複合材料が使われる1500℃以上の温度において完
全に溶融し最外層の炭化珪素、窒化珪素等のセラミック
ス層を剥離させてしまうため使用することができない。
なお、融点が1500℃以上の金属であっても耐剥離性
能に問題があるHf、Zrは除外される。金属を被覆す
る方法としては、CVD法、スパッタ法など通常金属被
覆に用いられる方法を使用することができる。高融点金
属の膜厚は1μm以上とするのががよく、1μm未満で
は熱応力緩和の効果が乏しくなり、最外層のセラミック
ス層が剥離してしまう。
Next, B, Cr, Ir, Mo, Nb, P
At least one metal selected from t, Ti, V and W is coated. The reason why the metal is selected is that it has a high melting point. When the melting point is 1500 ° C or lower, usually C /
It cannot be used because the C composite material is completely melted at a temperature of 1500 ° C. or higher and the outermost ceramic layers such as silicon carbide and silicon nitride are peeled off.
It should be noted that Hf and Zr, which have a problem in peeling resistance even if the metal has a melting point of 1500 ° C. or higher, are excluded. As a method for coating a metal, a method usually used for metal coating such as a CVD method or a sputtering method can be used. The film thickness of the refractory metal is preferably 1 μm or more, and if it is less than 1 μm, the effect of relaxing the thermal stress becomes poor, and the outermost ceramic layer peels off.

【0012】高融点金属の被覆層上には、炭化珪素又は
窒化珪素のセラミックス層を形成させる。特にこれらが
選ばれる理由は、高温安定性、高温での低い蒸気圧、炭
素との低い反応性、低い酸素透過性による。これらのセ
ラミックス層を被覆する方法としてはCVD法が適して
おり、最も緻密な層が得られる。セラミックス層の厚さ
としては、5μm〜200μmが好ましい。5μm未満
では、酸化雰囲気中での耐酸化性能が低下する。さらに
好ましくは30μm以上とすると耐酸化性能がさらに向
上する。また、200μmを越えるとC/C複合材料と
の熱膨張率の違いから繰り返し加熱を受けると剥離しや
すくなる。さらに好適には150μm以下とするのが好
ましい。
A ceramic layer of silicon carbide or silicon nitride is formed on the coating layer of refractory metal. In particular, these are selected because of their high temperature stability, low vapor pressure at high temperature, low reactivity with carbon, and low oxygen permeability. The CVD method is suitable as a method for coating these ceramic layers, and the densest layer can be obtained. The thickness of the ceramic layer is preferably 5 μm to 200 μm. If it is less than 5 μm, the oxidation resistance in an oxidizing atmosphere is deteriorated. More preferably, when it is 30 μm or more, the oxidation resistance performance is further improved. On the other hand, if the thickness exceeds 200 μm, peeling is likely to occur due to repeated heating due to the difference in thermal expansion coefficient from the C / C composite material. It is more preferably 150 μm or less.

【0013】被覆したセラミックス層には、冷却時に微
細な亀裂等の欠陥が生じ易い。この欠陥を通って進入し
た酸素は、C/C複合材料の酸化が起こり始める約50
0℃から、熱膨張によってセラミックス層の微細な亀裂
が閉じる千数百℃までの温度領域において、著しい酸化
を引き起こす。そのため、例えば、酸化酸素、酸化珪
素、酸化アルミニウム、酸化ジルコニウム等を主成分と
する碍子状物質を塗布する。これらの碍子状物質は50
0℃近傍のC/C複合材料の酸化が始まる温度で溶融し
て亀裂を封止し、セラミックス層の微細な亀裂が熱膨張
によって閉じ始めるときは流動性を有しているので、亀
裂が閉じる際にそれにともなって容易に変形・流動する
ことができ、亀裂を封止し続ける。ガラス状物質を被覆
する方法としては、例えば硼酸トリエチル、珪酸テトラ
エチル、燐酸アルミニウム等の反応により碍子化する溶
液を塗布する方法、アルミニウム−アルコキシド、ジル
コニウム−アルコキシド等の反応によって酸化物を析出
する有機化合物の溶液を塗布する方法をあげることがで
きる。
Defects such as fine cracks are likely to occur in the coated ceramic layer during cooling. Oxygen that has entered through this defect will start oxidation of the C / C composite at about 50
In the temperature range from 0 ° C. to a thousand and several hundreds of degrees Celsius where fine cracks in the ceramic layer are closed by thermal expansion, significant oxidation is caused. Therefore, for example, an insulator material containing oxygen oxide, silicon oxide, aluminum oxide, zirconium oxide as a main component is applied. 50% of these insulators
The crack closes because it melts at a temperature near 0 ° C. where oxidation of the C / C composite material starts and seals the crack, and when the fine crack of the ceramic layer starts to close due to thermal expansion, it has fluidity. At the same time, it can easily deform and flow, and keeps sealing cracks. As a method for coating the glassy material, for example, triethyl borate, tetraethyl silicate, a method of applying a solution which is made into an insulator by a reaction of aluminum phosphate, an aluminum-alkoxide, an organic compound which precipitates an oxide by a reaction of zirconium-alkoxide, etc. The method of applying the solution of can be mentioned.

【0014】[0014]

【実施例】図1は実施例のC/C複合材料の模式的な部
分断面図である。実施例のC/C複合材料1は、C/C
層2の上に熱分解炭素3の層が形成されており、高融点
金属4を介して炭化珪素又は窒化珪素5の層を有してい
る。また最上部の表面には硝子質の被覆層6が形成され
ている。
EXAMPLE FIG. 1 is a schematic partial sectional view of a C / C composite material of an example. The C / C composite material 1 of the example is C / C.
A layer of pyrolytic carbon 3 is formed on layer 2 and has a layer of silicon carbide or silicon nitride 5 with refractory metal 4 interposed. Further, a glassy coating layer 6 is formed on the uppermost surface.

【0015】以下、本発明を実施例及び比較例に基づき
具体的に説明する。 〔実施例1〕アルゴンをキャリア−ガスとしてプロパン
を1%の分圧で約1600℃に加熱された炉内に導入す
るCVD法によって、熱分解炭素をC/C複合材料表面
に約30μmの膜厚で形成した。その後、スパッタ法に
てモリブデンを10μm被覆した。しかる後に、四塩化
炭素、メタン、水素、アルゴン混合ガスを、約1100
℃に加熱された炉内に導入するCVD法にて炭化珪素を
100μm被覆しC/C複合材料に耐酸化性能を付与し
た。このC/C複合材料を、大気雰囲気で1400℃に
加熱した炉内に挿入し、6分間保持した後に取り出し急
冷する酸化試験を行ったところ、30回の繰り返し加熱
冷却を受けても炭化珪素被膜の剥離はみられず、C/C
複合材料の酸化による重量減少は0.8%であった。
The present invention will be specifically described below based on Examples and Comparative Examples. Example 1 A film of about 30 μm of pyrolytic carbon was formed on the surface of a C / C composite material by a CVD method in which propane was introduced into a furnace heated to about 1600 ° C. with argon as a carrier gas at a partial pressure of 1%. Formed thick. Then, molybdenum was coated to a thickness of 10 μm by a sputtering method. Thereafter, a mixed gas of carbon tetrachloride, methane, hydrogen and argon was added to about 1100.
The C / C composite material was coated with 100 μm of silicon carbide by the CVD method introduced into the furnace heated to 0 ° C. to impart oxidation resistance to the C / C composite material. The C / C composite material was inserted into a furnace heated to 1400 ° C. in an air atmosphere, held for 6 minutes, taken out, and then rapidly cooled. An oxidation test was conducted. The silicon carbide coating film was repeatedly heated and cooled 30 times. No peeling was observed, C / C
The weight loss due to oxidation of the composite material was 0.8%.

【0016】〔実施例2〕実施例1の高融点金属をチタ
ン15μmに変えた他は全く同様にしてC/C複合材料
に耐酸化性能を付与した。当該C/C複合材料を実施例
1と同様に、酸化試験を行ったところ、炭化珪素被膜の
剥離はみられず、重量減少は0.9%であった。
Example 2 Oxidation resistance was imparted to a C / C composite material in exactly the same manner as in Example 1 except that the refractory metal was changed to titanium 15 μm. When the C / C composite material was subjected to an oxidation test in the same manner as in Example 1, no peeling of the silicon carbide coating was observed and the weight loss was 0.9%.

【0017】〔実施例3〕実施例1の高融点金属を硼素
20μmに変え、炭化珪素被膜を窒化珪素150μmに
変えてC/C複合材料に耐酸化性能を付与した。このC
/C複合材料を実施例1と同様に、酸化試験を行ったと
ころ、炭化珪素被膜の剥離は見られず、重量減少は0.
6%であった。
Example 3 The refractory metal of Example 1 was changed to boron 20 μm and the silicon carbide coating was changed to silicon nitride 150 μm to impart oxidation resistance to the C / C composite material. This C
An oxidation test was conducted on the C / C composite material in the same manner as in Example 1. As a result, no peeling of the silicon carbide coating film was observed and the weight loss was 0.
It was 6%.

【0018】〔実施例4〕実施例1の耐酸化性を付与し
たC/C複合材料に、予め酸触媒のもとで重合反応させ
高分子化した珪酸テトラエチルの溶液を塗布した後、5
00℃で30分乾燥した後に、1000℃まで加熱し一
度ガラスを溶融させて、C/C複合材料表面をガラス質
で被覆した。このC/C複合材料を実施例1と同様に酸
化試験を行ったところ、炭化珪素被膜の剥離は見られ
ず、剥離によって生ずるC/C複合材料の酸化による重
量減少は0.5%と好性能であった。
Example 4 A solution of tetraethyl silicate polymerized by polymerization reaction in advance under an acid catalyst was applied to the C / C composite material having the oxidation resistance of Example 1 and then 5
After drying at 00 ° C for 30 minutes, the glass was once melted by heating to 1000 ° C, and the surface of the C / C composite material was coated with glass. When this C / C composite material was subjected to an oxidation test in the same manner as in Example 1, no peeling of the silicon carbide coating was observed, and the weight loss due to oxidation of the C / C composite material caused by peeling was 0.5%, which is favorable. It was performance.

【0019】〔実施例5〕実施例4の高融点金属をクロ
ム7μmに変えてガラス質で被覆したC/C複合材料を
実施例1と同様に酸化試験を行ったところ、炭化珪素被
膜の剥離は見られず、重量減少は0.5%であった。 〔実施例6〕実施例1の高融点金属を厚さ5μmのNb
に変えた他は全く同様にしてC/C複合材料に耐酸化性
能を付与した。当該C/C複合材料を実施例1と同様
に、酸化試験を行ったところ、炭化珪素被膜の剥離はみ
られず、重量減少は1.1%であった。
Example 5 A C / C composite material in which the refractory metal of Example 4 was changed to 7 μm of chromium and coated with glass was subjected to an oxidation test in the same manner as in Example 1, and the silicon carbide coating was peeled off. Was not observed, and the weight loss was 0.5%. [Embodiment 6] The refractory metal of Embodiment 1 is replaced with Nb having a thickness of 5 μm.
The oxidation resistance was imparted to the C / C composite material in exactly the same manner except that it was changed to. When the C / C composite material was subjected to an oxidation test in the same manner as in Example 1, no peeling of the silicon carbide coating film was observed and the weight loss was 1.1%.

【0020】〔実施例7〕実施例1の高融点金属を厚さ
5μmのPtに変えた他は全く同様にしてC/C複合材
料に耐酸化性能を付与した。当該C/C複合材料を実施
例1と同様に、酸化試験を行ったところ、炭化珪素被膜
の剥離はみられず、重量減少は1.0%であった。
[Embodiment 7] The C / C composite material was provided with oxidation resistance in the same manner except that the refractory metal of Example 1 was changed to Pt having a thickness of 5 μm. When the C / C composite material was subjected to an oxidation test in the same manner as in Example 1, no peeling of the silicon carbide coating was observed and the weight loss was 1.0%.

【0021】〔実施例8〕実施例1の高融点金属を厚さ
10μmのVに変えた他は全く同様にしてC/C複合材
料に耐酸化性能を付与した。このC/C複合材料を実施
例1と同様に、酸化試験を行ったところ、炭化珪素被膜
の剥離はみられず、重量減少は0.9%であった。
[Embodiment 8] The C / C composite material was provided with oxidation resistance in exactly the same manner as in Embodiment 1 except that the refractory metal was changed to V having a thickness of 10 μm. When this C / C composite material was subjected to an oxidation test in the same manner as in Example 1, no peeling of the silicon carbide coating film was observed and the weight loss was 0.9%.

【0022】〔実施例9〕実施例1の高融点金属を厚さ
3μmのWに変えた他は全く同様にしてC/C複合材料
に耐酸化性能を付与した。このC/C複合材料を実施例
1と同様に、酸化試験を行ったところ、炭化珪素被膜の
剥離はみられず、重量減少は1.1%であった。
[Example 9] The C / C composite material was provided with oxidation resistance in exactly the same manner as in Example 1 except that the refractory metal was changed to W having a thickness of 3 µm. When this C / C composite material was subjected to an oxidation test in the same manner as in Example 1, no peeling of the silicon carbide coating film was observed and the weight loss was 1.1%.

【0023】〔実施例10〕実施例1の高融点金属を厚
さ5μmのIrに変えた他は全く同様にしてC/C複合
材料に耐酸化性能を付与した。このC/C複合材料を実
施例1と同様に、酸化試験を行ったところ、炭化珪素被
膜の剥離はみられず、重量減少は1.0%であった。
[Embodiment 10] Oxidation resistance was imparted to a C / C composite material in exactly the same manner as in Embodiment 1 except that the refractory metal was changed to Ir having a thickness of 5 μm. When this C / C composite material was subjected to an oxidation test in the same manner as in Example 1, no peeling of the silicon carbide coating film was observed and the weight loss was 1.0%.

【0024】〔比較例1〕C/C複合材料に実施例1に
示した方法にて、炭化珪素を厚さ100μm被覆した。
この材料を実施例1と同様に、酸化試験を行ったとこ
ろ、1回目の加熱冷却時に炭化珪素被膜が剥離した。 〔比較例2〕C/C複合材料に実施例1に示した方法に
て、窒化珪素を厚さ150μm被覆した。この材料を実
施例1と同様に、酸化試験を行ったところ、1回目の加
熱冷却時に窒化珪素被膜が剥離した。
Comparative Example 1 A C / C composite material was coated with silicon carbide to a thickness of 100 μm by the method shown in Example 1.
When this material was subjected to an oxidation test in the same manner as in Example 1, the silicon carbide coating film was peeled off during the first heating and cooling. [Comparative Example 2] The C / C composite material was coated with silicon nitride to a thickness of 150 µm by the method described in Example 1. When this material was subjected to an oxidation test in the same manner as in Example 1, the silicon nitride film was peeled off during the first heating and cooling.

【0025】〔比較例3〕高融点金属の被覆を行わなか
ったほかは、実施例1と全く同様にしてCVD法によっ
て炭化珪素の被覆処理をしたところ、熱分解炭素と共に
炭化珪素が剥離し良好な被膜を作ることができなかっ
た。 〔比較例4〕熱分解炭素の被覆を行わなかった他は、実
施例1と全く同様にして炭化珪素を厚さ100μm被覆
した。この材料を実施例1と同様に、酸化試験を行った
ところ、炭化珪素被膜の剥離が認められ、重量減少は
1.5%であった。
[Comparative Example 3] A coating of silicon carbide was performed by the CVD method in exactly the same manner as in Example 1 except that the coating of the refractory metal was not carried out. It was not possible to make a proper film. [Comparative Example 4] Silicon carbide was coated in a thickness of 100 µm in the same manner as in Example 1 except that the pyrolytic carbon was not coated. When this material was subjected to an oxidation test in the same manner as in Example 1, peeling of the silicon carbide coating was observed and the weight loss was 1.5%.

【0026】〔比較例5〕実施例1の高融点金属を厚さ
3μmのZrに変えた他は全く同様に製造したC/C複
合材料を実施例1と同様に、酸化試験を行ったところ、
炭化珪素被膜が剥離した。 〔比較例6〕実施例1の高融点金属を厚さ7μmのHf
に変えた他は全く同様に製造したC/C複合材料を実施
例1と同様に酸化試験を行ったところ、炭化珪素被膜が
剥離した。
Comparative Example 5 An oxidation test was conducted on a C / C composite material produced in exactly the same manner as in Example 1 except that the refractory metal of Example 1 was changed to Zr having a thickness of 3 μm. ,
The silicon carbide coating was peeled off. [Comparative Example 6] The refractory metal of Example 1 was added to Hf having a thickness of 7 μm.
The C / C composite material manufactured in exactly the same manner except that the above was subjected to the same oxidation test as in Example 1, but the silicon carbide coating film was peeled off.

【0027】[0027]

【発明の効果】本発明は以上説明したように構成されて
いるので、本発明のC/C複合材料は高い耐酸化性能を
有し宇宙往還機の耐熱部材として使用することができ
る。
Since the present invention is constructed as described above, the C / C composite material of the present invention has high oxidation resistance and can be used as a heat resistant member of a space shuttle.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のC/C複合材料の模式的断面図であ
る。
FIG. 1 is a schematic cross-sectional view of a C / C composite material of an example.

【符号の説明】[Explanation of symbols]

1 C/C複合材料 2 C/C層 3 熱分解炭素 4 高融点金属 5 炭化珪素又は窒化珪素 6 硝子質の被
覆層
1 C / C composite material 2 C / C layer 3 Pyrolytic carbon 4 Refractory metal 5 Silicon carbide or silicon nitride 6 Vitreous coating layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // D06M 101:40 (72)発明者 田原 知之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 福田 典良 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 宇留野 智之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 朱 建平 台湾台南市大學路1号 国立成功大學工學 院 材料工程學系─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location // D06M 101: 40 (72) Inventor Tomoyuki Tahara 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made by Kawasaki Iron Technology Co., Ltd. (72) Inventor Noriyoshi Fukuda 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Steel (72) Inventor Tomoyuki Uruno 1 Kawasaki-cho, Chuo-ku, Chiba Prefecture Kawasaki Iron Co., Ltd. Chiba Steel Works (72) Inventor Zhu Jianping No. 1 Daegu Road, Tainan City, Taiwan National Succeeding University of Technology, Materials Engineering

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面に熱分解炭素の被覆層、その上に高
融点金属の被覆層、さらにその上に炭化珪素又は窒化珪
素の被覆層を有することを特徴とする高い耐酸化性能を
有するC/C複合材料。
1. A C having a high oxidation resistance characterized by having a pyrolytic carbon coating layer on the surface thereof, a refractory metal coating layer thereon, and a silicon carbide or silicon nitride coating layer thereon. / C composite material.
【請求項2】 前記高融点金属がB、Cr、Ir、M
o、Nb、Pt、Ti、V及びWよりなる群から選ばれ
た少なくとも1種類の金属であることを特徴とする高い
耐酸化性能を有する請求項1記載のC/C複合材料。
2. The refractory metal is B, Cr, Ir, M
The C / C composite material according to claim 1, which has a high oxidation resistance, characterized by being at least one kind of metal selected from the group consisting of o, Nb, Pt, Ti, V and W.
【請求項3】 前記炭化珪素又は窒化珪素上に少なくと
も1種類の珪素、アルミニウム、ジルコニウムの酸化物
からなる碍子質の被覆層を有することを特徴とする請求
項1記載の高い耐酸化性能を有するC/C複合材料。
3. A high oxidation resistance performance according to claim 1, further comprising an insulator coating layer made of at least one kind of oxide of silicon, aluminum and zirconium on the silicon carbide or silicon nitride. C / C composite material.
JP5757095A 1995-03-16 1995-03-16 C/c composite material having high oxidation resistance Withdrawn JPH08253861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5757095A JPH08253861A (en) 1995-03-16 1995-03-16 C/c composite material having high oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5757095A JPH08253861A (en) 1995-03-16 1995-03-16 C/c composite material having high oxidation resistance

Publications (1)

Publication Number Publication Date
JPH08253861A true JPH08253861A (en) 1996-10-01

Family

ID=13059511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5757095A Withdrawn JPH08253861A (en) 1995-03-16 1995-03-16 C/c composite material having high oxidation resistance

Country Status (1)

Country Link
JP (1) JPH08253861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970155A (en) * 2015-12-24 2016-09-28 北京浩运盛跃新材料科技有限公司 Method for coating carbon nanotube fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970155A (en) * 2015-12-24 2016-09-28 北京浩运盛跃新材料科技有限公司 Method for coating carbon nanotube fibers

Similar Documents

Publication Publication Date Title
DK172031B1 (en) Composite material with matrix and carbon reinforcing fibers as well as process for its manufacture
US7374709B2 (en) Method of making carbon/ceramic matrix composites
US6291058B1 (en) Composite material with ceramic matrix and SiC fiber reinforcement, method for making same
JP4046350B2 (en) Composite material protected from oxidation by self-healing matrix and method for producing the same
JP2680439B2 (en) Composite material containing carbon reinforcing fibers and method for producing the same
US6068930A (en) High-temperature composite materials with carbon or carbon-coated fibre reinforcements and enhanced oxidation resistance
US6737120B1 (en) Oxidation-protective coatings for carbon-carbon components
JP2007535461A (en) Process for producing carbon fiber reinforced ceramic composites
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
US5284685A (en) Composite material with carbon reinforced fibers and its production
Park et al. Carbon/carbon composites
JPH08253861A (en) C/c composite material having high oxidation resistance
JPH08253874A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
US5695830A (en) Process for improving the oxidative stability of a composite material having a fibrous reinforcement and a glass, glass-ceramic or ceramic matrix
JP2867536B2 (en) Corrosion and oxidation resistant materials
JPH069269A (en) Carbon fiber-reinforced carbon composite material excellent in oxidation resistance
JPH08253876A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JPH09278567A (en) Production of heat-resistant, oxidation-resistant carbon material
Buckley Carbon-carbon composites
JP2827388B2 (en) Corrosion-resistant and oxidation-resistant material and method for producing the same
JPH06183863A (en) Production of oxidation-resistant carbon fiber-reinforced carbon composite material
JPS63307181A (en) Surface-treatment of carbon/carbon composite material
JPH11130553A (en) Carbon/carbon composite material
JPH0269382A (en) Carbon fiber-reinforced (carbon) composite material having oxidation resistance and its production
JP2000351683A (en) Carbonaceous material having oxidation-resistant protective layer and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604