JPH0269382A - Carbon fiber-reinforced (carbon) composite material having oxidation resistance and its production - Google Patents

Carbon fiber-reinforced (carbon) composite material having oxidation resistance and its production

Info

Publication number
JPH0269382A
JPH0269382A JP63216761A JP21676188A JPH0269382A JP H0269382 A JPH0269382 A JP H0269382A JP 63216761 A JP63216761 A JP 63216761A JP 21676188 A JP21676188 A JP 21676188A JP H0269382 A JPH0269382 A JP H0269382A
Authority
JP
Japan
Prior art keywords
silicon carbide
composite material
carbon fiber
silicon
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63216761A
Other languages
Japanese (ja)
Other versions
JPH0725612B2 (en
Inventor
Osamu Fujishima
藤島 治
Masaji Ishihara
正司 石原
Tasuke Nose
太助 野瀬
Motoyasu Taguchi
元康 田口
Masayuki Oshima
大島 正征
Masamoto Yamaguchi
山口 正元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP63216761A priority Critical patent/JPH0725612B2/en
Publication of JPH0269382A publication Critical patent/JPH0269382A/en
Publication of JPH0725612B2 publication Critical patent/JPH0725612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To impart excellent oxidation resistance to the carbon fiber-reinforced composite carbon material by forming a silicon carbide layer by reaction of the carbon of the composite material and metal silicate powder on the outside surface of the composite material, forming a silicon carbide coating film on the surface by a vapor chemical reaction deposition method and impregnating boron oxide into this film. CONSTITUTION:The metal silicate powder is stuck to the outside surface of the carbon fiber-reinforced composite carbon material and is subjected to a heating treatment in an inert atmosphere to bring the metal silicon and the carbon of the composite material into reaction and to form the silicon carbide on the outside surface of the composite material. The coating film consisting of the silicon carbide is then formed on the outside surface of the composite material by the vapor chemical reaction deposition method. The boron oxide or the mixture composed of the boron oxide and silicon oxide is impregnated with this silicon carbide coating film, by which the carbon fiber- reinforced composite carbon material having the oxidation resistance is obtd. The resultant carbon fiber-reinforced composite carbon material is repeatedly usable in an oxygen-contg. atmosphere at a high temp.

Description

【発明の詳細な説明】 (産業上の利用分野ン 本発明は、十分な耐酸化性を有する炭素繊維強化炭素複
合材およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a carbon fiber-reinforced carbon composite material having sufficient oxidation resistance and a method for producing the same.

(従来の技術) 炭素繊維強化炭素複合材は軽量かつ高強度であシ熱衝撃
に強く高温下での耐熱性を有するので、過酷な熱環境下
で開用される分野の部品への応用が期待されている。し
かし、炭素繊維強化炭素複合材はすべて炭素で構成され
ているため、酸化され易く酸素含有雰囲気中での長期間
の使用は5oo−6oo℃までに限られる。
(Prior technology) Carbon fiber-reinforced carbon composite materials are lightweight, have high strength, are resistant to thermal shock, and have heat resistance at high temperatures, so they can be applied to parts used in harsh thermal environments. It is expected. However, since the carbon fiber-reinforced carbon composite material is entirely composed of carbon, it is easily oxidized and its long-term use in an oxygen-containing atmosphere is limited to 5oo-6oooC.

かかる問題点を解決すべくいくつかの努力が払われてい
る。その一つの例として、燐酸系または酸化ほう素糸の
ガラスを含浸する方法がある。これは、含浸されたガラ
スが高温下の使用中に溶融し、炭素質材の外部表面また
は内部表面とを覆い炭素材料の酸化を防ぐものである。
Several efforts have been made to solve these problems. One example is a method of impregnating glass with phosphoric acid or boron oxide threads. This is because the impregnated glass melts during use at high temperatures and covers the external or internal surface of the carbonaceous material to prevent oxidation of the carbonaceous material.

また、炭素繊維強化炭素複合材のマトリックス中に、耐
酸化性物質(例えば、TL Si、 B、W、 Ta。
Additionally, oxidation-resistant substances (e.g., TL Si, B, W, Ta) are present in the matrix of the carbon fiber reinforced carbon composite.

AI)を炭化物あるいは有機物や元素の状態で、分散さ
せる方法が提案されている。さらには、気相化学反応沈
積法(以下CVD法と略す。〕で得られる緻密な炭化珪
素や窒化珪素の膜で炭素繊維強化炭素複合材の外表面を
被覆する方法がある。また、アルミナと炭化珪素と金属
珪素との混合粉体中に炭素材料を埋没させて加熱するパ
ック法や珪素含有物と炭素質基材とを直接反応させる方
法などで、炭素繊維強化炭素複合材の表面に炭化珪素を
生成させる方法なども提案されている。
A method has been proposed in which AI) is dispersed in the form of a carbide, an organic substance, or an element. Furthermore, there is a method of coating the outer surface of the carbon fiber reinforced carbon composite material with a dense film of silicon carbide or silicon nitride obtained by vapor phase chemical reaction deposition method (hereinafter abbreviated as CVD method). Carbonization can be achieved on the surface of carbon fiber-reinforced carbon composite materials by a pack method in which a carbon material is buried in a mixed powder of silicon carbide and metal silicon and heated, or by a method in which a silicon-containing material is directly reacted with a carbonaceous base material. Methods for producing silicon have also been proposed.

(発明が解決しようとする問題点) しかしながらかかる従来の技術では、下記のような問題
点がるる。すなわち、燐酸や酸化ほう素糸のガラスを含
浸する方法では、1000°C程度以上になると、ガラ
スの蒸発が著しく有効な保護膜になシえない。たとえ他
の高融点のガラスと併用しても、高温での燐酸または酸
化ほう素糸のガラスの蒸発が激しく長い寿命は期待でき
ない。またマトリックス中に耐酸化性物質を分散させる
方法におじでは、十分な耐酸化性をうるために多量の耐
酸化性物質が必要であり、炭素繊維強化炭素複合材の強
度低下や特有の擬延性的性質が失われる等の問題がある
(Problems to be Solved by the Invention) However, such conventional techniques have the following problems. That is, in the method of impregnating glass with phosphoric acid or boron oxide thread, when the temperature exceeds about 1000°C, the glass evaporates significantly and cannot be used as an effective protective film. Even if used in combination with other high-melting-point glasses, phosphoric acid or boron oxide glass evaporates rapidly at high temperatures, and a long life cannot be expected. Furthermore, unlike the method of dispersing oxidation-resistant substances in the matrix, a large amount of oxidation-resistant substances is required to obtain sufficient oxidation resistance, resulting in a decrease in the strength of carbon fiber-reinforced carbon composites and the inherent pseudo-ductility. There are problems such as loss of physical characteristics.

CVD法によって緻密な炭化珪素や窒化珪素の被覆膜を
作る方法では、炭化珪素や窒化珪素の熱膨張係数が3・
りxio″″610に程度であるのに対して、炭素繊維
強化炭素複合材の熱膨張係数は一/〜/ X / (f
’/’ Kであシ、熱応力によって緻密な膜にクラック
が発生し、ここから酸素が浸入するため十分な耐酸化性
が得られない。
In the method of creating a dense coating film of silicon carbide or silicon nitride using the CVD method, the coefficient of thermal expansion of silicon carbide or silicon nitride is 3.
The coefficient of thermal expansion of carbon fiber-reinforced carbon composites is 1/~/X/(f
If '/' is K, cracks occur in the dense film due to thermal stress, and oxygen penetrates through the cracks, so sufficient oxidation resistance cannot be obtained.

そこでクラックを酸化珪素で封溝することが試みられた
が、酸化珪素の溶融温度が/7!;0℃と高いために、
酸化珪素の溶融温度以下で酸素の浸入が防げず十分な結
果が得られていない。
Therefore, an attempt was made to seal the crack with silicon oxide, but the melting temperature of silicon oxide was 7! ; Because the temperature is as high as 0℃,
Sufficient results have not been obtained because oxygen intrusion cannot be prevented below the melting temperature of silicon oxide.

さらにCVD法による膜は基材と物理的に接合している
だけなので、熱衝撃などで剥がれ易く信頼性に欠ける。
Furthermore, since the film produced by the CVD method is only physically bonded to the base material, it tends to peel off due to thermal shock and lacks reliability.

また、パック法や珪素含有物と炭素材料を直接反応させ
て作られる炭化珪素の膜は、緻密性に欠は有効な酸素拡
散防止膜にならない。
Furthermore, silicon carbide films produced by the pack method or by directly reacting silicon-containing materials with carbon materials lack denseness and cannot be effective oxygen diffusion prevention films.

(問題点を解決するだめの手段〕 そこで本発明者等は、これらの問題を解決すべく鋭意検
討した結果、特定の化合物で処理した炭化珪素被覆膜を
炭素繊維強化炭素複合材の外表面に設けることによ)、
上記の問題点が解決できることを見い出し本発明に至っ
た。すなわち本発明の目的は、高温下酸素含有雰囲気中
で繰返し使用ができる炭素繊維強化炭素複合材を提供す
ることにある。そしてかかる目的は、炭素繊維強化炭素
複合材の外表面に炭化珪素被覆膜が形成され、かつ、該
炭化珪素被覆膜と炭素繊維強化炭素複合材との間に、炭
素繊維強化炭素複合材の炭素と反応して得られる炭化珪
素層を有し、かつ、該炭化珪素被覆膜が酸化ほう素と酸
化珪素の混合物で封溝処理されたものであることを特徴
とする炭素繊維強化炭素複合材および、炭素繊維強化炭
素複合材の外表面に金属珪素粉末を付着させ、不活性雰
囲気下で加熱処理し、予め該外表面に炭化珪素を生成さ
せた後、CVD法により炭化珪素からなる被覆膜を該外
表面上に形成し、次いで該被覆膜に酸化ほう素または酸
化ほう素と酸化珪素の混合物を含浸することを特徴とす
る炭素繊維強化炭素複合材の製造方法によって容易に達
成される。
(Means to Solve the Problems) Therefore, as a result of intensive studies to solve these problems, the present inventors applied a silicon carbide coating film treated with a specific compound to the outer surface of carbon fiber-reinforced carbon composite materials. ),
The inventors have discovered that the above problems can be solved, leading to the present invention. That is, an object of the present invention is to provide a carbon fiber-reinforced carbon composite material that can be used repeatedly in an oxygen-containing atmosphere at high temperatures. This purpose is such that a silicon carbide coating film is formed on the outer surface of the carbon fiber reinforced carbon composite material, and a silicon carbide coating film is formed on the outer surface of the carbon fiber reinforced carbon composite material, and between the silicon carbide coating film and the carbon fiber reinforced carbon composite material, a silicon carbide coating film is formed on the outer surface of the carbon fiber reinforced carbon composite material. carbon fiber-reinforced carbon, characterized in that it has a silicon carbide layer obtained by reacting with carbon, and the silicon carbide coating film is groove-sealed with a mixture of boron oxide and silicon oxide. Metallic silicon powder is attached to the outer surface of the composite material and the carbon fiber reinforced carbon composite material, heat-treated in an inert atmosphere to generate silicon carbide on the outer surface in advance, and then silicon carbide is formed by CVD method. A method for producing a carbon fiber-reinforced carbon composite material comprising forming a coating film on the outer surface, and then impregnating the coating film with boron oxide or a mixture of boron oxide and silicon oxide. achieved.

以下に本発明について説明する。本発明における炭素繊
維強化炭素複合材は、炭素繊維を補強材としマトリック
スに炭素を用いた複合材であれば、特に限定されるもの
ではない。例えば、炭素繊維(黒鉛化繊維を含む)をフ
ェノール樹脂などの熱硬化性樹脂やピンチを用いて成形
し、炭化あるいは黒鉛化して作られる。また、熱硬化性
樹脂あるいはピッチ等で含浸と炭化または黒鉛化を繰返
すか、熱分解炭素を沈積させることによって緻密化処理
した炭素繊維強化炭素複合材でも良い。また、使用され
る炭素繊維としては、ポリアクリロニトリル系炭素繊維
、ピッチ系炭素繊維やレイヨン系炭素繊維などの一般に
炭素繊維と言われる繊維もしくは、その前駆体が用いら
れる。炭素繊維の補強形態としては特に限定されるもの
ではなく、クロス積層や三次元織物や短繊維状などいず
れの形態でも良い。
The present invention will be explained below. The carbon fiber-reinforced carbon composite material in the present invention is not particularly limited as long as it is a composite material using carbon fiber as a reinforcing material and carbon as a matrix. For example, it is made by molding carbon fiber (including graphitized fiber) using a thermosetting resin such as phenolic resin or a pinch, and then carbonizing or graphitizing it. It may also be a carbon fiber-reinforced carbon composite material that has been densified by repeating impregnation and carbonization or graphitization with a thermosetting resin or pitch, or by depositing pyrolytic carbon. Further, as the carbon fibers used, fibers generally referred to as carbon fibers, such as polyacrylonitrile carbon fibers, pitch carbon fibers, and rayon carbon fibers, or their precursors are used. The reinforcing form of the carbon fibers is not particularly limited, and may be any form such as cross lamination, three-dimensional fabric, short fiber form, etc.

本発明ではかかる炭素繊維強化炭素複合材(第1図にお
けるl)に、CVD法により炭化珪素被覆膜(2)を形
成する。具体的な方法として、例えば四塩化珪素を水素
で還元しメタンのような炭化水素を反応させる方法や、
メチルトリクロロシランを熱分解する方法などが使用で
きる。CVD法による炭化珪素膜の厚さは、IOμm程
度以上あれば良いが望ましくは100μm程度がよく、
通常!;0−1000μmである。
In the present invention, a silicon carbide coating film (2) is formed on such a carbon fiber-reinforced carbon composite material (l in FIG. 1) by a CVD method. Specific methods include, for example, reducing silicon tetrachloride with hydrogen and reacting with a hydrocarbon such as methane;
A method such as thermally decomposing methyltrichlorosilane can be used. The thickness of the silicon carbide film formed by the CVD method may be about IO μm or more, but preferably about 100 μm.
usually! ;0-1000 μm.

炭素繊維強化炭素複合材上に直接炭化珪素膜を形成する
と、炭素繊維強化炭素複合材と炭化珪素膜の接着性が十
分でないので、予め炭素繊維強化炭素複合材の表面に、
炭素繊維強化炭素複合材の炭素と珪素を反応させて、炭
素繊維強化炭素複合材とよく接着した炭化珪素の下地層
(3)をつくる。具体的には、金属珪素と反応しない液
体、例えば、イングロビルアルコールに、金属珪素粉末
を分散させたけん濁液を、炭素繊維強化炭素複合材の表
面に塗布し、液体を蒸発させて、金属珪素粉末を炭素繊
維強化炭素複合材に付着させる。これを不活性雰囲気中
で/700−.2JOO℃に加熱し、炭素繊維強化炭素
複合材の炭素と金属珪素とを反応させて炭化珪素の下地
層をつくる。
If a silicon carbide film is formed directly on a carbon fiber-reinforced carbon composite material, the adhesion between the carbon fiber-reinforced carbon composite material and the silicon carbide film will not be sufficient.
The carbon and silicon of the carbon fiber-reinforced carbon composite material are reacted to form a silicon carbide base layer (3) that is well bonded to the carbon fiber-reinforced carbon composite material. Specifically, a suspension of metal silicon powder dispersed in a liquid that does not react with metal silicon, such as Inglobil alcohol, is applied to the surface of the carbon fiber reinforced carbon composite material, and the liquid is evaporated to form metal silicon. The powder is deposited on the carbon fiber reinforced carbon composite. This was carried out in an inert atmosphere at a temperature of /700-. The material is heated to 2JOO°C to react the carbon of the carbon fiber-reinforced carbon composite material with metal silicon to form a silicon carbide base layer.

得られる炭化珪素の下地層は、二つの層からなる。外層
は、粒径が3−70μmのSiCが、粒子同士の接雌点
でわずかに一体化した、厚さが20−.10μmの多孔
質な層である。この多孔質の下には、あたかも炭化珪素
のくさびを炭素繊維強化炭素複合材へ打ち込んだような
、炭化珪素と炭素の混合物層が生成する。これは、溶融
状態の金属珪素が、基材である炭素繊維強化炭素複合材
の気孔内部に、浸入して反応するためである。この混合
物層の厚さは、反応前に付着させる金属珪素の量によっ
て制御することができ、望ましくは1oo−200μm
が良い。
The resulting silicon carbide base layer consists of two layers. The outer layer is made of SiC with a particle size of 3 to 70 μm, slightly integrated at the contact points between the particles, and has a thickness of 20 μm. It is a porous layer of 10 μm. Under this porous material, a layer of a mixture of silicon carbide and carbon is generated, as if a wedge of silicon carbide had been driven into the carbon fiber-reinforced carbon composite material. This is because metal silicon in a molten state penetrates into the pores of the carbon fiber-reinforced carbon composite material, which is the base material, and reacts therewith. The thickness of this mixture layer can be controlled by the amount of metallic silicon deposited before the reaction, and is preferably 1oo-200μm.
is good.

ただし、該混合物層中に未反応の珪素が残っても良い。However, unreacted silicon may remain in the mixture layer.

この下地層の上にCVD法による炭化珪素を沈積させる
と、CVD法による炭化珪素が多孔質炭化珪素層の気孔
内にも沈積するため、CVD法による炭化珪素膜の基材
への接着力が向上する。炭化珪素と炭素の混合物層は、
この接着をよシ確かなものにする。さらに、該混合物層
の炭化珪素は、炭素繊維強化炭素複合材の気孔内に生成
しやすく、炭素繊維強化炭素複合材表面付近の気孔を塞
ぎ、よシ内部への酸素の浸透を低減することが期待され
る。また、混合物層内では、炭化珪素の炭素に対する比
が、基材内部に向かって減少するので、組成の傾斜化よ
ってCVD法による炭化珪素膜に発生する熱応力が緩和
されることが期待される。
When silicon carbide is deposited on this base layer by the CVD method, the silicon carbide by the CVD method is also deposited in the pores of the porous silicon carbide layer, so the adhesion of the silicon carbide film to the base material by the CVD method is reduced. improves. The silicon carbide and carbon mixture layer is
Make this adhesion more reliable. Furthermore, silicon carbide in the mixture layer easily forms within the pores of the carbon fiber-reinforced carbon composite material, and can block the pores near the surface of the carbon fiber-reinforced carbon composite material, thereby reducing the penetration of oxygen into the interior of the material. Be expected. In addition, within the mixture layer, the ratio of silicon carbide to carbon decreases toward the inside of the base material, so it is expected that the thermal stress generated in the silicon carbide film by CVD method will be alleviated by grading the composition. .

また、CVD法によって炭化珪素被覆膜を形成する前、
あるいは炭化珪素の下地層を形成する前に、炭素繊維強
化炭素複合材の表面を凹凸処理すると炭素繊維強化炭素
複合材と炭化珪素被覆膜の接着性が向上する。具体的に
は、圧縮空気などで炭化珪素などの硬い粒子を、炭素繊
維強化炭素複合材の表面に吹き付けるなどの方法が筐用
できる。
In addition, before forming the silicon carbide coating film by the CVD method,
Alternatively, if the surface of the carbon fiber-reinforced carbon composite material is subjected to roughening treatment before forming the silicon carbide base layer, the adhesion between the carbon fiber-reinforced carbon composite material and the silicon carbide coating film is improved. Specifically, a method such as blowing hard particles such as silicon carbide onto the surface of the carbon fiber-reinforced carbon composite material using compressed air or the like can be used for the casing.

そして単に炭化珪素被覆膜を形成したのみでは、炭化珪
素膜にクラックが生じ易く耐酸化性が劣るため、本発明
ではかかる炭化珪素膜を形成した後に、酸化ほう素ある
いは酸化ほう素と酸化珪素の混合物(りで封溝処理する
ことが重要である。これは、酸化ほう素の融点かりざO
°Cであシ、炭素繊維強化炭素複合材が酸化を始める温
度(!;00−600’0.)で酸化ほう素は液体にな
シ、効果的に炭化珪素膜のクラックを耐構する為であシ
、また、酸化ほう素と酸化珪素の二成分系ではその全て
の組成領域で、約500℃から液相が現れるからである
。酸化ほう素または酸化ほう素と酸化珪素の混合物は、
CVD法による炭化珪素膜のクラックの中(第1図(a
))にあればよく、炭化珪素膜の上(第1図(b))に
、または炭素繊維強化炭素複合材の気孔内部に存在して
もなんら問題はない。部材の一部にプラズマフレームが
当たるなどで局所が、酸化ほう素が著しく蒸発するよう
な高温になる場合には、酸化ほう素に酸化珪素を共存さ
せるとよい。これは、かかる高温では酸化ほう素の蒸発
が激しく耐構効果が減少するが、酸化珪素が共存すると
酸化珪素またはほう珪酸ガラスが液体となって、これら
が酸化ほう素に代わってクラックを耐構するからである
If only a silicon carbide coating film is formed, the silicon carbide film is likely to crack and its oxidation resistance is poor. Therefore, in the present invention, after forming such a silicon carbide film, boron oxide or boron oxide and silicon oxide It is important to seal the groove with a mixture of
°C, boron oxide does not become liquid at the temperature at which carbon fiber reinforced carbon composite material starts to oxidize (! ; 00-600'0.), so it effectively prevents cracks in the silicon carbide film. Furthermore, in a two-component system of boron oxide and silicon oxide, a liquid phase appears at about 500° C. in all the composition ranges. Boron oxide or a mixture of boron oxide and silicon oxide is
Inside a crack in a silicon carbide film produced by the CVD method (Fig. 1 (a)
)), and there is no problem even if it exists on the silicon carbide film (FIG. 1(b)) or inside the pores of the carbon fiber-reinforced carbon composite material. If a part of the member is exposed to a plasma flame and the temperature locally becomes high enough to cause significant evaporation of boron oxide, it is preferable to make silicon oxide coexist with boron oxide. This is because boron oxide evaporates rapidly at such high temperatures, reducing the structural resistance effect, but when silicon oxide coexists, silicon oxide or borosilicate glass becomes liquid, and these replace boron oxide and prevent cracks. Because it does.

酸化ほう素は、CVD法による炭化珪素を被覆した炭素
繊維強化炭素複合材の単位表面積当シ、0.2〜/ 0
0 m9 / (yd含浸されていればよく、好ましく
はO,S〜10m9/crl含浸されていればよい。酸
化ほう素と酸化珪素の混合物の場合には、酸化ほう素の
含浸漬が前記酸化ほう素の量に見合う量でありかつ、酸
化珪素が酸化ほう素と酸化珪素の合計重量の70wt%
以上、好ましくはjOwtチ以上あればよい。
Boron oxide is 0.2 to 0 per unit surface area of carbon fiber reinforced carbon composite material coated with silicon carbide by CVD method.
0 m9/(yd impregnation, preferably O, S to 10 m9/crl impregnation. In the case of a mixture of boron oxide and silicon oxide, the impregnation with boron oxide is the same as the oxidation. The amount is commensurate with the amount of boron, and the silicon oxide is 70 wt% of the total weight of boron oxide and silicon oxide.
It is preferable that the amount is equal to or more than jOwt.

酸化ほう素あるいは酸化珪素を直接含浸しても良いが、
CVD法による炭化珪素の膜のクラックの幅が狭いので
、直接含浸するには、高温高圧の設備が必要であり経済
的でない。従って、低粘度で炭化珪素と濡れの良い有機
前駆体を含浸して、その後、酸化ほう素あるいは酸化珪
素に変換する方法が適している。かかる条件を満たす有
機前駆体の一つは、ほう素あるいは珪素のアルコオキサ
イドと、水及び、両者を溶解し得る溶剤との溶液である
It is also possible to directly impregnate boron oxide or silicon oxide, but
Since the width of cracks in the silicon carbide film produced by the CVD method is narrow, direct impregnation requires high temperature and high pressure equipment, which is not economical. Therefore, a method is suitable in which silicon carbide is impregnated with an organic precursor that has good wettability and is then converted into boron oxide or silicon oxide. One of the organic precursors that satisfies these conditions is a solution of boron or silicon alkoxide, water, and a solvent that can dissolve both.

具体的には、ほう素のアルコオキサイドとしテハ、トリ
エチルオルツボレイ) B (OC2H5)3(以下、
TEOBと略す。9を、珪素のアルコオキサイドとして
はテトラエチルオルンシリケイトS i (OC2H5
)4  (以下、TE01と略す。ンを、共通溶媒とし
てはエチルアルコールやメチルアルコールを、それぞれ
使用することができる。また、TE01やTEOBは、
溶液の粘度が約/pを越えないTEOB/水/エタノー
ル溶液は、被処理物に含浸した後、大気中で約/20℃
で熱処理(以後、硬化処理という。)することで、約g
Owt%の酸化ほう素または酸化珪素を含む化合物にな
る。酸化珪素と酸化ほう素を共存させる場合には、それ
ぞれの有機前駆体を別々に含浸、硬化処理しても良く、
二つの有機前、駆体の混合液を含浸して硬化処理しても
良い。含浸法としては、被処理物をいれた容器を減圧に
し、つづいて、減圧下で有機前駆体を導入した後に常圧
に戻す真空含浸法や、真空含没後さらに圧力を加える真
空加圧含浸法や、被処理物を有機前駆体溶液に浸すだけ
のディッピング含浸法などが利用できる。
Specifically, as an alkoxide of boron, Teha, triethyl orthoborei) B (OC2H5)3 (hereinafter,
It is abbreviated as TEOB. 9, tetraethylorne silicate S i (OC2H5
) 4 (hereinafter abbreviated as TE01), ethyl alcohol or methyl alcohol can be used as a common solvent. Also, TE01 and TEOB are
A TEOB/water/ethanol solution whose viscosity does not exceed about /20°C in the atmosphere after being impregnated into the object to be treated is
By heat treatment (hereinafter referred to as hardening treatment) with
It becomes a compound containing Owt% of boron oxide or silicon oxide. When silicon oxide and boron oxide coexist, each organic precursor may be impregnated and hardened separately.
A mixture of two organic precursors may be impregnated and cured. Impregnation methods include a vacuum impregnation method in which the container containing the object to be treated is reduced in pressure, an organic precursor is introduced under reduced pressure, and the pressure is then returned to normal pressure, and a vacuum pressure impregnation method in which further pressure is applied after vacuum impregnation. Alternatively, a dipping impregnation method in which the object to be treated is simply immersed in an organic precursor solution can be used.

所定の有機前駆体の含浸硬化処理が終了したのち、使用
前に5oo−iooo℃で熱処理して、酸化ほう素を溶
融させて酸化ほう素によるクランクの耐構をより確かな
ものとしても良い。
After completion of the impregnation and hardening treatment with a predetermined organic precursor, heat treatment may be performed at 500° C. to 500° C. to melt the boron oxide and make the crank more resistant to boron oxide.

しかし、これらの処理は、実間用中の加熱によって行わ
れても何等問題はない。
However, there is no problem even if these treatments are performed by heating during actual use.

(実施例9 以下、実施例により本発明をさらに詳しく説明する。(Example 9 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1は、圧縮空気で炭化珪素粉末を基材となる炭素
繊維強化炭素複合材の表面に吹き付けて、炭素繊維強化
炭素複合材の表面を凹凸にした。つづいて、金属珪素粉
末ioo部をイングロビルアルコールyo部に分散した
けん濁液を、炭素繊維強化炭素複合材の表面に塗布し、
イングロビルアルコールを蒸発させた後に、アルゴン中
で2000 ’Cに加熱して、基材炭素繊維強化炭素複
合材に良く接着した炭化珪素の下地層を作った。ついで
、メチルトリクロロシランを用いCVD法によって、S
iCを100μm沈積させた。つぎに、TE01  /
 00部、エタノール60部、水26部の混合溶液と、
TEOB100部、エタノール100部、水20部の混
合溶液を、交互にそれぞれ9回と2回含浸した。
In Example 1, silicon carbide powder was sprayed onto the surface of a carbon fiber-reinforced carbon composite material serving as a base material using compressed air to make the surface of the carbon fiber-reinforced carbon composite material uneven. Next, a suspension of ioo parts of metal silicon powder dispersed in yo parts of inglobil alcohol is applied to the surface of the carbon fiber reinforced carbon composite material,
After evaporating the Inglobil alcohol, it was heated to 2000'C in argon to create a silicon carbide underlayer that adhered well to the base carbon fiber reinforced carbon composite. Then, by CVD method using methyltrichlorosilane, S
100 μm of iC was deposited. Next, TE01 /
A mixed solution of 00 parts, 60 parts of ethanol, and 26 parts of water,
A mixed solution of 100 parts of TEOB, 100 parts of ethanol, and 20 parts of water was impregnated alternately 9 times and 2 times, respectively.

TEO8溶液あるいはTEOB溶液含没後は、それぞれ
乾燥後/20℃で硬化させた。最後に、アルゴン中でg
oo℃に加熱した。実施例コは凹凸処理を行わず、かつ
酸化珪素と酸化ほう素をそれぞれ交互に3回ずつ含浸し
た以外は、実施例/と同じ方法で作製したサンプルであ
る。
After impregnation with the TEO8 solution or the TEOB solution, each was dried and cured at 20°C. Finally, g in argon
Heated to oo°C. Example A is a sample prepared in the same manner as in Example 1, except that no roughening treatment was performed and silicon oxide and boron oxide were alternately impregnated three times each.

実施例3は、酸化ほう素のみを6回含浸した以外は実施
例コと同じ方法で作製したサンプルである。
Example 3 is a sample prepared in the same manner as Example 3, except that only boron oxide was impregnated six times.

比較例1は、炭化珪素の下地処理を行わず、かつ酸化珪
素と酸化ほう素をそれぞれ交互に3回ずつ含浸した以外
は、実施例1と同じ方法で作製したサンプルである。比
較例コは、凹凸処理を行なわなかった以外は、比較例1
と同じ方法で作製したサンプルである。比較例3は、酸
化珪素のみを6回含浸した以外は比較例コと同じ方法で
製作したサンプルである。比較例弘は凹凸処理と炭化珪
素の下地処理を行なわず、かつCVD法による炭化珪素
被覆膜を形成しない未処理の炭素繊維強化炭素複合材に
、実施例1と同じ方法で酸化ほう素と酸化珪素を3回づ
つ交互に含浸したのみのサンプルである。
Comparative Example 1 is a sample prepared in the same manner as Example 1, except that no surface treatment of silicon carbide was performed and silicon oxide and boron oxide were impregnated alternately three times each. Comparative Example 1 is the same as Comparative Example 1 except that the uneven treatment was not performed.
This is a sample prepared using the same method as above. Comparative Example 3 is a sample manufactured in the same manner as Comparative Example 3, except that only silicon oxide was impregnated six times. Comparative Example Hiroshi applied boron oxide to an untreated carbon fiber-reinforced carbon composite material that was not subjected to roughening treatment or surface treatment of silicon carbide, and which did not form a silicon carbide coating film by CVD method, using the same method as in Example 1. This sample was only impregnated with silicon oxide three times alternately.

これらのサンプルを大気と通気がよい電気炉中で酸化試
験を行った。予め所定の温度(1,00゜too、ya
oo、1tioo、1soo℃)に加熱した電気炉にサ
ンプルをいれ、30分間放置した後電気炉よシ取シ出し
室温まで冷却させ重量を測定した。試験は同じ゛サンプ
ルについて順次低い温度から行った(条件A)。
Oxidation tests were conducted on these samples in an electric furnace with good air circulation. Predetermined temperature (1,00° too, ya
The sample was placed in an electric furnace heated to 100°C, 100°C, 10°C), left for 30 minutes, taken out from the electric furnace, cooled to room temperature, and weighed. Tests were conducted on the same sample starting from lower temperatures (condition A).

試験後重量の100℃の試験前重量に対する割合を、重
量変化として表1に示した。また、一部のサンプルにつ
いては、さらに1soo℃で9部分間酸化試験を行った
(条件B)。
Table 1 shows the ratio of the weight after the test to the weight before the test at 100°C as a change in weight. Further, some samples were further subjected to a 9-part oxidation test at 1 soo C. (Condition B).

試験終了後重量の1.00℃試験前の重量に対する割合
を、表1に示した。
Table 1 shows the ratio of the weight after the test to the weight before the 1.00°C test.

グ (発明の効果) 本発明によれば、高温下酸素含有雰囲気中で繰り返し使
用ができる炭素繊維強化炭素複合材を容易に得ることが
できる。
(Effects of the Invention) According to the present invention, it is possible to easily obtain a carbon fiber-reinforced carbon composite material that can be used repeatedly in an oxygen-containing atmosphere at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Ca)、Cb)は本発明における耐酸化性を有す
る炭素繊維強化炭素複合材の概略断面図である。 l:炭素繊維強化炭素複合材 2:炭化珪素被覆膜 J:炭化珪素下地層 り二酸化ほう素、または酸化ほう素と酸化珪素の混合物 出 願 人  三菱重工業株式会社 ほか7名 代 理 人  弁理士 長谷用 ほか1名
FIGS. 1 Ca) and 1Cb) are schematic cross-sectional views of a carbon fiber-reinforced carbon composite material having oxidation resistance in the present invention. L: Carbon fiber reinforced carbon composite material 2: Silicon carbide coating film J: Silicon carbide base layer boron dioxide or a mixture of boron oxide and silicon oxide Applicant: Mitsubishi Heavy Industries, Ltd. and 7 other representatives Attorney: Patent attorney Haseyo and 1 other person

Claims (4)

【特許請求の範囲】[Claims] (1)炭素繊維強化炭素複合材の外表面に炭化珪素被覆
膜が形成され、かつ、該炭化珪素被覆膜と炭素繊維強化
炭素複合材との間に、炭素繊維強化炭素複合材の炭素と
反応して得られる炭化珪素層を有し、かつ、該炭化珪素
被覆膜が酸化ほう素または酸化ほう素と酸化珪素の混合
物で封溝処理されたものであることを特徴とする炭素繊
維強化炭素複合材。
(1) A silicon carbide coating film is formed on the outer surface of the carbon fiber reinforced carbon composite material, and between the silicon carbide coating film and the carbon fiber reinforced carbon composite material, the carbon A carbon fiber having a silicon carbide layer obtained by reacting with a silicon carbide layer, the silicon carbide coating film being treated with boron oxide or a mixture of boron oxide and silicon oxide. Reinforced carbon composite.
(2)炭素繊維強化炭素複合材の外表面に金属珪素粉末
を付着させ、不活性雰囲気下で加熱処理し、予め該外表
面に炭化珪素を生成させた後、気相化学反応沈積法によ
り炭化珪素からなる被覆膜を該外表面上に形成し、次い
で該被覆膜に酸化ほう素または酸化ほう素と酸化珪素の
混合物を含浸することを特徴とする炭素繊維強化炭素複
合材の製造方法。
(2) Metallic silicon powder is attached to the outer surface of the carbon fiber-reinforced carbon composite material, heat treated in an inert atmosphere to generate silicon carbide on the outer surface in advance, and then carbonized by a vapor phase chemical reaction deposition method. A method for producing a carbon fiber-reinforced carbon composite material, comprising forming a coating film made of silicon on the outer surface, and then impregnating the coating film with boron oxide or a mixture of boron oxide and silicon oxide. .
(3)炭素繊維強化炭素複合材の外表面に金属珪素粉末
を付着させる前に、炭素繊維強化炭素複合材の表面を凹
凸処理することを特徴とする請求項2記載の方法。
(3) The method according to claim 2, wherein the surface of the carbon fiber-reinforced carbon composite material is subjected to an uneven treatment before the metal silicon powder is attached to the outer surface of the carbon fiber-reinforced carbon composite material.
(4)酸化ほう素または酸化珪素を含浸するに際して、
酸化ほう素の有機前駆体または酸化珪素の有機前駆体を
含浸した後、加熱処理することにより有機前駆体を酸化
ほう素または酸化珪素に変換することを特徴とする請求
項2記載の方法。
(4) When impregnating with boron oxide or silicon oxide,
The method according to claim 2, characterized in that after impregnating with an organic precursor of boron oxide or an organic precursor of silicon oxide, the organic precursor is converted into boron oxide or silicon oxide by heat treatment.
JP63216761A 1988-08-31 1988-08-31 Carbon fiber reinforced carbon composite material having oxidation resistance and method for producing the same Expired - Lifetime JPH0725612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216761A JPH0725612B2 (en) 1988-08-31 1988-08-31 Carbon fiber reinforced carbon composite material having oxidation resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216761A JPH0725612B2 (en) 1988-08-31 1988-08-31 Carbon fiber reinforced carbon composite material having oxidation resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0269382A true JPH0269382A (en) 1990-03-08
JPH0725612B2 JPH0725612B2 (en) 1995-03-22

Family

ID=16693496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216761A Expired - Lifetime JPH0725612B2 (en) 1988-08-31 1988-08-31 Carbon fiber reinforced carbon composite material having oxidation resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0725612B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470717A1 (en) * 1990-07-30 1992-02-12 Toyo Tanso Co., Ltd. Method for producing composite material mainly composed of carbon and boron
EP1043290A1 (en) * 1999-04-08 2000-10-11 Ngk Insulators, Ltd. Carbonaceous material having oxidation-resistant protective layer and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470717A1 (en) * 1990-07-30 1992-02-12 Toyo Tanso Co., Ltd. Method for producing composite material mainly composed of carbon and boron
EP1043290A1 (en) * 1999-04-08 2000-10-11 Ngk Insulators, Ltd. Carbonaceous material having oxidation-resistant protective layer and method for producing the same

Also Published As

Publication number Publication date
JPH0725612B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
Morimoto et al. Multilayer coating for carbon-carbon composites
WO1986003165A1 (en) Oxidation-inhibited carbon-carbon composites
KR20020025875A (en) Composite Carbonaceous Heat Insulator
GB2130567A (en) Oxidation resistant carbon-carbon composites
JPH0543364A (en) Oxidation-resistant corbon fiber-reinforced carbon composite material and its production
JPH0242790B2 (en)
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
JPH06345572A (en) Oxidation resistant coating layer of c/c composite material
JPH0269382A (en) Carbon fiber-reinforced (carbon) composite material having oxidation resistance and its production
JPH0585513B2 (en)
JPH11292645A (en) Oxidation resistant c/c composite material and its production
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH03252363A (en) Carbon-fiber reinforced carbon composite material having oxidation resistance and production thereof
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH03252362A (en) Carbon-fiber reinforced carbon composite material having oxidation resistance and production thereof
JPH05124884A (en) Carbon fiber/carbon composite material
JPH0648867A (en) Production of boron carbide-coated carbon material
JPH03253499A (en) Manufacture of thermal protecting member for space shuttle
JPH03252361A (en) Carbon-fiber reinforced carbon composite material having oxidation resistance and production thereof
JP3461424B2 (en) Method for producing oxidation resistant C / C composite
JP2651386B2 (en) Thermal protection structure for space equipment
JPH0826859A (en) Oxidation-resistant c/c composite material and method for producing the same
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof
JPH0274670A (en) Oxidation-resistant carbon fiber-reinforced material and production thereof
JP2827388B2 (en) Corrosion-resistant and oxidation-resistant material and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 14