JP2004175605A - Oxidation-resistant c/c composite material and its manufacturing process - Google Patents

Oxidation-resistant c/c composite material and its manufacturing process Download PDF

Info

Publication number
JP2004175605A
JP2004175605A JP2002342173A JP2002342173A JP2004175605A JP 2004175605 A JP2004175605 A JP 2004175605A JP 2002342173 A JP2002342173 A JP 2002342173A JP 2002342173 A JP2002342173 A JP 2002342173A JP 2004175605 A JP2004175605 A JP 2004175605A
Authority
JP
Japan
Prior art keywords
sic
composite
sio
coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002342173A
Other languages
Japanese (ja)
Other versions
JP4539014B2 (en
Inventor
Toshiya Sedaka
俊哉 瀬高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2002342173A priority Critical patent/JP4539014B2/en
Publication of JP2004175605A publication Critical patent/JP2004175605A/en
Application granted granted Critical
Publication of JP4539014B2 publication Critical patent/JP4539014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a C/C composite material which is excellent in oxidation resistance and erosion resistance at an elevated temperature under low pressure, is excellent in durability and shows a self-repairing function, even when cracking occurs in an oxidation-resistant coating film. <P>SOLUTION: In the oxidation-resistant C/C composite material, a first coating layer comprising a functionally gradient SiC coated film and a second coating layer comprising a composite coated film of a high-melting ceramic powder, fibrous SiC and B<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>glass are formed on the surface of a C/C composite substrate in a laminated manner. The composite material is manufactured by successively performing a first coating step wherein a functionally gradient polycrystal SiC coated film is formed on the C/C substrate through conversion method and a subsequent second coating step wherein a mixed slurry of the high-melting ceramic powder, fibrous SiC and B<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>glass precursor solution is applied, dried and heat-treated in a non-oxidative atmosphere to form the composite coated film of the high-melting ceramic powder, fibrous SiC and B<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>glass. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高温、低圧の酸化性雰囲気下において、高度の耐酸化性、耐エロージョン性を示し、かつ、耐酸化性被覆層にクラックが発生しても自己修復性を備え、優れた耐酸化性能を有するC/C複合材(炭素繊維強化炭素複合材)及びその製造方法に関する。
【0002】
【従来の技術】
C/C複合材は、軽量で卓越した比強度、比弾性率を有するうえに優れた耐熱性および化学的安定性を備えているため、航空宇宙用をはじめ多くの用途分野で構造材料として有用されている。しかし、C/C複合材を含め炭素材料は、大気中において500℃付近から酸化を受けて損耗するために、それ自身の持つ優れた物理的、化学的性質が低下する欠点があり、例えば高温大気中での使用は極く短時間の場合を除き不可能である。このため、従来からC/C複合材の表面に耐酸化性の被覆を施して耐酸化性を改善する試みがなされており、例えばSiC、Si、ZrO、Alなどの耐熱セラミックス系物質によって被覆処理する方法が開発されている。このうち、被覆層の形成操作、性状特性など技術的、経済的の面からSiCの被膜形成が最も工業性に適合している。
【0003】
C/C複合基材の表面にSiCの被覆層を形成する方法として、気相反応により生成するSiCを直接沈着させるCVD法(化学的気相蒸着法)と、基材の炭素を反応源に利用してSiOガスと反応させることによりSiCに転化させるコンバージョン法が知られている。
【0004】
このうち、前者のCVD法を適用して形成したSiC被覆層は、緻密なSiC被覆層を形成することができるが、基材との界面が明確に分離している関係で、熱衝撃を与えると相互の熱膨張係数の差によってSiC被覆層が剥離したり、クラックが発生し易く、高温酸化性雰囲気下での充分な耐酸化性は望めない。これに対し、後者のコンバージョン法ではC/C複合基材の炭素とSiOガスとが、2C+SiO→SiC+COの反応により、SiC1分子当たり1分子のCOが排出されるので容積変化が抑制され、C/C複合基材の表層部が連続的な傾斜機能組織となるSiC被覆層を形成するため、C/C複合材に内部応力が発生することなく、界面剥離を生じることがない。しかしながら、CVD法に比較して組織の緻密性が劣る上、SiCに転化する反応時に被覆層に微細なクラックが発生し易い欠点がある。
【0005】
そこで、特許文献1には、SiC被覆層上にガラス質としてNaSiO、無機フィラーとしてSiC粉末と繊維状SiC物質との混合物を使用し、これを混合してスラリ状にしたものを塗布して保護膜を形成する耐酸化処理法が提案されている。しかしながら、バインダーとして用いるNaSiOは蒸気圧が高いので、1000℃を越える高温、低圧下ではNaSiOガラスが揮散してコーティング膜が剥離し、SiC被覆層の保護膜として機能しなくなる難点がある。
【0006】
また、本出願人は、C/C基材面にSiOガスを接触させてコンバージョン法によりSiC被覆層を形成する第1被覆工程と、次いでCVD法によりハロゲン化有機珪素化合物を還元熱分解してアモルファス質のSiCを析出沈着させる第2被覆工程とを順次に施す耐酸化処理法(特許文献2)、更に、これを改良して、第2被覆工程でハロゲン化有機珪素化合物を基材組織に間欠的に充填して還元熱分解させるパルスCVI法によってSiCを析出沈着させる耐酸化処理法(特許文献3)を開発、提案した。
【0007】
しかしながら、このような方法により形成した第2被覆層のSiCにも微小なクラックが発生しており、より高度の耐酸化性能を付与するためには、このクラックを充填封止して、目詰めする必要が認められた。そこで、本出願人は、C/C基材面に傾斜機能を有する多結晶質のSiC被膜からなる第1被覆層、アモルファス質または微細多結晶質のSiC被膜からなる第2被覆層、およびB−SiOガラス被膜の第3被覆層が積層形成されてなる耐酸化性C/C複合材(特許文献4)を開発した。
【0008】
更に、上記特許文献4の発明を改良して、C/C複合基材面にコンバージョン法によりSiC被覆層を形成する第1被覆工程、ハロゲン化有機珪素化合物と水素あるいはハロゲン化珪素と炭化水素および水素との混合ガスを用いてCVD法により1400〜1500℃の温度に加熱してSiCを析出被覆する第1段階操作と、不活性雰囲気に保持された加熱炉内で1600〜1900℃の温度に加熱処理する第2段階操作とを順次に施す第2被覆工程、次いでSi、Al、B、Zrの少なくとも一種を含有する金属アルコキシドを加水分解して得られるガラス前駆体溶液を含浸して乾燥したのち500〜1000℃で加熱処理してガラス質被膜を形成する第3被覆工程、からなるC/C複合材の耐酸化処理法(特許文献5)を開発した。
【0009】
これらの発明によれば高温苛酷な酸化性雰囲気においても優れた耐酸化性能を発揮するが、更に詳細な耐酸化性のテストの結果、例えば宇宙往還機のノーズキャップ等の裏面側を想定して実施される高温、低圧下における耐酸化試験(低圧揮散試験)により検討した結果、緊急大気圏突入を想定した酸化条件下では1回のテストにより、特に第2被覆層の酸化消耗が大きく、耐酸化性能が充分でないことが判明した。
【0010】
そこで、本出願人は、これらの欠点を解決するために、C/C複合基材面に、傾斜機能組織の多結晶質SiC被膜からなる第1被覆層、微細多結晶質SiC被膜あるいはこれを加熱処理して得られる高結晶質SiC被膜からなる第2被覆層、B−SiOガラス質被膜からなる第3被覆層、及び繊維状SiCと粉末SiCとZrO−SiOガラスとの複合被膜からなる第4被覆層、が積層形成された耐酸化性C/C複合基材とその製造方法(特許文献6)を開発、提案した。
【0011】
しかしながら、一度、被覆層にクラックが発生すると、ZrSiOの融点が1640℃と高温であるため複合被膜のZrSiOガラスは溶融軟化し難く、被覆層のクラックを自己修復する機能が殆どない。したがって、耐酸化性及び耐久性が急激に低下する問題点があった。
【0012】
更に、特許文献7には、炭化珪素、窒化珪素、炭窒化珪素、及びホウ化珪素の群から選択される1種以上の中間層を形成し、その上にイットリウムを含むランタノイド系希土類元素と珪素を含む複合酸化物の粒子を骨材とし、当該複合酸化物粒子をB−SiO系ガラス質マトリックスに分散させた被膜を形成する耐酸化処理法が提案されている。しかしながら、骨材として粒子状セラミックスを使用しているため、被膜形成時にクラックが生じやすく、高温気流中に曝された場合、被膜が飛散してしまい、耐酸化膜として機能しなくなる難点がある。
【0013】
【特許文献1】
米国特許第4471023号明細書
【特許文献2】
特開平4−12078号公報
【特許文献3】
特開平4−42878号公報
【特許文献4】
特開平4−243989号公報
【特許文献5】
特開平9−188581号公報
【特許文献6】
特開平11−292645号公報
【特許文献7】
特開2002−87896号公報
【0014】
【発明が解決しようとする課題】
本発明は、上記の問題点を解消することを目的とし、高温、低圧の酸化性雰囲気下において、高度の耐酸化性、耐エロージョン性を示し、かつ、耐酸化性被覆層にクラックが発生しても自己修復機能を備え、耐酸化性及び耐久性に優れたC/C複合材及びその製造方法を提供するものである。
【0015】
【課題を解決するための手段】
上記目的を達成するための本発明に係る耐酸化性C/C複合材は、C/C複合基材面に、傾斜機能組織の多結晶質SiC被膜からなる第1被覆層、高融点セラミックス粉末、繊維状SiC、及び、B−SiO系ガラスとの複合被膜からなる第2被覆層、が積層形成されてなることを構成上の特徴とする。
【0016】
また、本発明による上記の耐酸化性C/C複合材の製造方法は、炭素繊維をマトリックス樹脂と共に複合成形し、硬化及び焼成炭化して得られるC/C複合基材に、非酸化性雰囲気中でSiOガスと接触させてコンバージョン法によりSiC被膜を形成する第1被覆工程、次いで、高融点セラミックス粉末と繊維状SiC及びB−SiO系ガラス前駆体溶液との混合スラリーを塗布して乾燥した後、非酸化性雰囲気中で熱処理して高融点セラミックス粉末、繊維状SiC、及び、B−SiO系ガラスとの複合被膜を形成する第2被覆工程、とを順次に施すことを構成上の特徴とする。
【0017】
【発明の実施の形態】
C/C複合材を構成する炭素繊維にはポリアクリロニトリル系、レーヨン系、ピッチ系などの各種原料から製造された平織、朱子織、綾織などの織布を一次元または多次元方向に配向した繊維体、フェルト、トウが使用され、マトリックス樹脂としてはフェノール系、フラン系など高炭化性の液状熱硬化性樹脂が用いられる。炭素繊維は、浸漬、塗布などの手段によりマトリックス樹脂で十分に濡らしたのち、半硬化してプリプレグを形成し、ついで積層加圧成形する。成形体は加熱して樹脂成分を完全に硬化し、引き続き常法に従って焼成炭化または更に黒鉛化してC/C複合材が作製される。また、必要によってはマトリックス樹脂の含浸、硬化、炭化の処理を反復して組織の緻密化を図ることもできる。
【0018】
作製したC/C複合材を基材として、その表層をSiCに転化したSiC被膜からなる第1被覆層は、基材表層部の組織が内部から外面に向かうに従って次第にSiC化が進み、SiC濃度が徐々に増える傾斜機能組織の多結晶質SiC被膜からなり、C/C複合基材の表層部に一体的に強固に形成されている。なお、第1被覆層の厚さは50〜100μm に設定することが好ましい。膜厚をこの範囲に設定することにより良好な傾斜機能組織を形成するとともに基材の強度低下を抑制することができ、熱サイクルや熱衝撃が加わってもC/C複合基材と第1被覆層との剥離やクラックの発生を効果的に防止することができる。
【0019】
第1被覆層の上に積層形成される第2被覆層は、高融点セラミックス粉末、繊維状SiC、及び、B−SiO系ガラスとの複合被膜から構成される。第2被覆層をこのような複合被膜で構成する理由は、高融点セラミックスは耐熱性は高いが、B−SiO系ガラスとの複合被膜は被膜に多数のクラックが発生し、被膜強度及び密着性が低いものとなる。しかし、繊維状SiCを添加することにより、被膜強度及び密着性が大幅に改善される。
【0020】
すなわち、第2被覆層を構成する高融点セラミックス粉末は耐熱性向上に機能し、バインダーとなるB−SiO系ガラスは高温に曝された場合に軟化してクラックを充填、目詰めする自己修復機能を発揮する。また、繊維状SiCは第2被覆層の強度向上に機能し、更に、第1被覆層との密着性向上にも機能する。
【0021】
このように、第2被覆層は各成分の有する機能が複合的に機能して、その相乗効果により耐酸化性に優れたクラックフリーの耐酸化保護膜として有効機能することが可能となる。また、B−SiO系ガラスはBとSiOの組成比を変化させることにより軟化温度を制御することができ、第2被覆層にクラックが生じた際にも、B−SiO系ガラスの軟化によりクラックを修復する自己修復作用に優れているため、高い耐酸化性と耐久性を備えた保護膜として優れた機能が発揮される。
【0022】
なお、第2被覆層の複合被膜の膜厚は、50〜200μm であることが好ましく、膜厚が50μm 未満では耐酸化保護膜としての効果が小さく、高温酸化雰囲気における耐久寿命が短くなる。しかし、膜厚が200μm を越えると剥離や脱落が生じ易くなる。
【0023】
このC/C複合基材面に、多結晶質SiC被膜からなる第1被覆層、高融点セラミックス粉末、繊維状SiC、及び、B−SiO系ガラスとの複合被膜からなる第2被覆層、が積層形成された本発明の耐酸化性C/C複合材は、次の方法により製造することができる。
【0024】
第1被覆層の形成は、先ず、常法により炭素繊維をマトリックス樹脂と共に複合成形し、硬化及び焼成炭化して得られるC/C複合材を基材として、このC/C複合基材を、SiO粉末とSiまたは炭素粉末の混合物を密閉加熱系に収納した系内にセットして、非酸化性雰囲気中で加熱処理するコンバージョン法により行われる。加熱処理時にSiOはSiまたは炭素により還元されてSiOガスを発生し、発生したSiOガスはC/C複合基材の表層部から内部に浸透拡散しながら基材を構成する炭素と反応して、基材表層部をSiC濃度が連続的に変化する傾斜機能組織の多結晶質SiCに転化する。第1被覆工程の条件としては、SiOに対するSiまたは炭素の配合量を重量比で2:1に、加熱温度を1600から2000℃に、加熱系内を還元または中性の非酸化性雰囲気に保持した状態で行われる。なお、C/C複合基材の内部組織がSiC化されることによる強度低下を防止するために、第1被覆工程で形成するSiC被膜の第1被覆層は50〜150μm の膜厚に設定することが望ましい。
【0025】
第2被覆工程は、第1被覆工程によりSiC被膜を形成したC/C複合基材に高融点セラミックス粉末と繊維状SiC及びB−SiO系ガラス前駆体溶液との混合スラリーを塗布して乾燥した後、非酸化性雰囲気中で熱処理して高融点セラミックス粉末、繊維状SiC、及び、B−SiO系ガラスとの複合被膜を形成する工程である。
【0026】
高融点セラミックス粉末としては、融点が1800℃以上のY、Al、2Al−3SiOなどの酸化物、あるいは、SiC、Si、MoSiなどの珪化物、から選ばれた1種または2種以上の混合粉末が用いられる。なお、このセラミックス粉末は直径0.5μm 程度のものが好適に用いられる。
【0027】
繊維状SiCとしては短繊維状のものが好ましく、特に複合物の強度向上に有効なウイスカーが好ましく、直径0.3〜1.5μm 、長さ5〜40μm 程度のSiCウイスカーが好適に用いられる。
【0028】
−SiO系ガラス前駆体溶液は、B、Siを含有する金属アルコキシド、例えばトリメトキシボラン〔B(OCH〕、テトラエトキシシラン〔Si(OC〕等の金属アルコキシドにアルコールを加えて攪拌混合した溶液中に,水を滴下して加水分解するアルコキシド法により調製される。
【0029】
この場合、B−SiO系ガラスはBとSiOの組成を変えることにより軟化温度を調節することができるので、適切な軟化温度に調節するために、B/SiOのモル比は0.25〜1.00の範囲に設定することが好ましい。モル比が0.25未満であると軟化温度が上昇して、被覆層に発生したクラックの自己修復性が失われる。しかし、モル比が1.00を越えると
成分が多くなり耐熱性が低下することになる。
【0030】
上記の高融点セラミックス粉末と繊維状SiC及びB−SiO系ガラスを混合して混合スラリーを調製する。この場合、各成分の混合比としては、繊維状SiC/高融点セラミックス粉末の重量比が0.15〜0.35の範囲になるように調節することが好ましい。重量比が0.15未満であると、複合被膜に大きなクラックが発生し易くなり、また複合被膜の密着性も低下する。一方、重量比が0.35を越えると、複合被膜の膜質がポーラス状となり耐熱性が低下することになる。
【0031】
また、(繊維状SiC+高融点セラミックス粉末)/(B−SiO系ガラス)の重量比は0.50〜2.00の範囲に調節することが好ましい。バインダーとなるB−SiO系ガラスに対する、(繊維状SiC+高融点セラミックス粉末)の重量比が0.50未満では、ガラス質のバインダー量が多くなり、耐熱性の低下、複合被膜の強度低下などを招くためである。しかし、重量比が2.00を越えると、ガラスバインダーに対するセラミックスフィラー(繊維状SiC+高融点セラミックス粉末)量が多く、複合被膜形成時に大きなクラックが発生し易く、複合被膜の密着性も低下することになる。
【0032】
なお、上述したようにバインダーとなるB−SiO系ガラスの組成は、軟化温度を調整するためにB/SiOのモル比を0.25〜1.00の範囲に調整することが好ましい。
【0033】
混合スラリーを、コンバージョン法によりC/C複合基材面に形成したSiC被膜の第1被覆層上に、刷毛塗りやスプレーなどの適宜な手段で均一に塗布し、乾燥した後、不活性雰囲気などの非酸化性雰囲気中で、例えば1200〜1400℃の温度で熱処理することにより、高融点セラミックス粉末、繊維状SiC、及び、B−SiO系ガラスの複合被膜からなる第2被覆層が、第1被覆層の上に積層、形成される。
【0034】
第2被覆層の膜厚は50〜200μm 程度が好適である。膜厚が50μm を下回ると酸化に対する保護効果が小さく、C/C複合材の耐酸化寿命が短くなる。しかし、200μm を越える膜厚になると、剥離や脱落が生じ易くなるためである。
【0035】
このようにして形成された第2被覆層は、高融点セラミックス粉末と繊維状SiC及びB−SiO系ガラスの各成分が複合的に作用して、1500℃程度の高温酸化性雰囲気においても耐酸化保護膜として効果的に機能することができる。更に、第2被覆層にクラックが発生した場合にもB−SiO系ガラス成分の軟化によりクラックが充填、目詰めされ、クラックが修復される。すなわち、優れた自己修復機能を有している。その結果、コンバージョン法による第1被覆層とともに機能して、耐酸化性及び耐久性に優れたC/C複合材を製造することができる。
【0036】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。
【0037】
実施例1〜12
(1)C/C複合基材の作製
ポリアクリロニトリル系高強度高弾性タイプの平織炭素繊維布に、フェノール樹脂初期縮合物をマトリックス樹脂として十分に塗布し、48時間風乾してプリプレグシートを得た。このプリプレグシート16枚を積層してモールドに入れ、温度110℃、圧力20Kg/cmの条件で熱圧成形した。この成形体を250℃の温度に加熱してマトリックス樹脂を硬化した後、窒素雰囲気に保持された焼成炉内に移し、5℃/hr の昇温速度で2000℃まで加熱し、5時間保持して焼成炭化した。このようにして、炭素繊維の体積含有率(Vf)が65%、嵩密度が1.65 g/cmのC/C複合基材(試料サイズ縦横30mm、厚さ4mm)を作製した。
【0038】
(2)第1被覆層の形成
SiO粉末とSi粉末を2:1(重量比)の割合で混合し、混合粉末を黒鉛坩堝に入れて、上部に上記のC/C複合基材をセットした。この黒鉛坩堝を電気炉内に移し、内部をアルゴンガスで十分に置換した後、50℃/hr の昇温速度で1850℃まで昇温させ、1時間保持してC/C複合基材の表層部に傾斜機能組織を有する多結晶質SiC被膜からなる第1被覆層を形成した。形成したSiC被覆層の厚さは約100μm で、その表面には幅数μm の微細なクラックが発生しているのが認められた。
【0039】
(3)第2被覆層の形成
高融点セラミックス粉末として、平均粒径0.4μm のY粉末、繊維状SiCとして、直径1.0〜1.4μm 、長さ20〜30μm のSiCウイスカーを用いて、B/SiOのモル比が異なるB−SiO系ガラス前駆体溶液に重量比を変えて混合し、ボールミルで攪拌して混合スラリーを調製した。
【0040】
この混合スラリーを、C/C複合基材面に形成した第1被覆層上に塗布して、大気中500℃で熱処理して乾燥した後、窒素雰囲気中1400℃の温度により熱処理した。このようにして、Y粉末、SiCウイスカー及びB−SiOガラスとの複合被膜からなる第2被覆層を、第1被覆層の上に積層形成した。なお、第2被覆層の厚さは約100μm となるように制御した。
【0041】
比較例1〜2
実施例において、Y粉末あるいはSiCウイスカーのうち、いずれか1つの成分を含まない混合スラリーを調製して第1被覆層上に塗布した他は、実施例と同じ方法により第2被覆層を積層形成した。
【0042】
このようにして、C/C複合基材面に第1被覆層及び第2被覆層を積層形成した耐酸化性C/C複合材を製造した。表1に混合スラリーの組成、表2に第2被覆層の被膜の状況を示した。
【0043】
【表1】

Figure 2004175605
【0044】
【表2】
Figure 2004175605
【0045】
(4)耐酸化性能の評価
第1被覆層及び第2被覆層を積層形成した、これらの耐酸化性C/C複合材について、下記の方法により試験を行って、耐酸化性能を評価した。その結果を、表3に示した。
【0046】
▲1▼耐エロージョン性の評価;
プラズマアーク試験装置により、反応室内の圧力を1000Paに減圧し、温度を1350℃と1550℃の2水準で1200秒間アークプラズマを照射し、耐酸化被膜の重量減少量を測定して耐エロージョン性を評価した。
【0047】
▲2▼耐熱衝撃性の評価;
急速加熱試験装置を用いて、反応室内の圧力を5Paに減圧し、室温から1500℃まで60秒間で昇温して、耐酸化被膜の剥離状況を観察し、被膜の密着性を評価した。また、予め、カッターにより第2被覆層にクラックを想定した傷を入れておき、加熱試験後の傷の消失状況を観察して、被膜の自己修復機能を評価した。
【0048】
【表3】
Figure 2004175605
【0049】
表1〜3の結果から、本発明の第1被覆層、及び、第2被覆層を積層形成した実施例では、1000Pa−1350℃、或いは1550℃という低圧、高温下のエロージョン試験において、被覆層の減耗が少なく安定に維持され、優れた耐久性を保持していることが分かる。また、熱衝撃試験では下地のSiC層との密着性が良好であり、更に、クラックを想定した傷が加熱試験後に消失していることから、耐酸化性に優れた自己修復性被覆層が形成されていることが分かる。これに対して、比較例1、2では被覆層の劣化が著しいこと、下地のSiC層との密着性が低いこと、自己修復性の機能を持たないこと等によりC/C材の損傷が進み、耐酸化性、耐熱衝撃性とも十分でないことが認められた。
【0050】
【発明の効果】
以上のとおり、本発明によれば、傾斜機能組織の多結晶質SiC被膜からなる第1被覆層と、高融点セラミックス粉末、繊維状SiC及びB−SiO系ガラスとの複合被膜からなる第2被覆層が積層形成され、高度の耐酸化性能を備え、耐久性に優れたC/C複合材、及び、その製造方法を提供することが可能となる。特に、高温、低圧下において優れた耐エロージョン性と密着性を示し、また、第2被覆層にクラックが発生しても自己修復機能が高く、高度の耐久性を有するので、苛酷な高温酸化性雰囲気に曝される宇宙往還機等の構造部材をはじめとして各種工業分野における構造部材として極めて有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has a high degree of oxidation resistance and erosion resistance in a high-temperature, low-pressure oxidizing atmosphere, and has a self-healing property even if a crack occurs in the oxidation-resistant coating layer, and has excellent oxidation resistance. The present invention relates to a C / C composite material having performance (carbon fiber reinforced carbon composite material) and a method for producing the same.
[0002]
[Prior art]
C / C composite materials are lightweight, have excellent specific strength and specific elastic modulus, and have excellent heat resistance and chemical stability, making them useful as structural materials in many application fields including aerospace. Have been. However, carbon materials, including C / C composites, are oxidized in the atmosphere at around 500 ° C. and are worn away, and therefore have the disadvantage that their excellent physical and chemical properties are reduced. Use in the atmosphere is not possible except in very short periods of time. For this reason, conventionally, an attempt has been made to improve the oxidation resistance by applying an oxidation-resistant coating to the surface of the C / C composite material. For example, SiC, Si 3 N 4 , ZrO 2 , Al 2 O 3, etc. A method of coating with a heat-resistant ceramic material has been developed. Among them, the formation of a SiC film is most suitable for industrial applications from the technical and economical aspects such as the operation of forming the coating layer and the properties.
[0003]
As a method of forming a SiC coating layer on the surface of a C / C composite substrate, a CVD method (chemical vapor deposition method) in which SiC generated by a gas phase reaction is directly deposited, and carbon of the substrate is used as a reaction source. There is known a conversion method in which the SiC is converted into SiC by utilizing the SiO2 gas to react with SiO gas.
[0004]
Among them, the SiC coating layer formed by applying the former CVD method can form a dense SiC coating layer, but gives a thermal shock because the interface with the substrate is clearly separated. The SiC coating layer is liable to peel off or crack due to a difference in thermal expansion coefficient between the SiC coating layer and the SiC coating layer, and sufficient oxidation resistance in a high-temperature oxidizing atmosphere cannot be expected. On the other hand, in the latter conversion method, the carbon of the C / C composite base material and the SiO gas are discharged by the reaction of 2C + SiO → SiC + CO, whereby one molecule of CO is discharged per one molecule of SiC. Since the surface layer portion of the C composite base material forms the SiC coating layer having a continuous functionally graded structure, no internal stress occurs in the C / C composite material, and no interfacial delamination occurs. However, compared with the CVD method, the structure is inferior in compactness, and there is a disadvantage that a fine crack is easily generated in the coating layer during the reaction of converting to SiC.
[0005]
Therefore, Patent Document 1 discloses a method in which Na 2 SiO 3 is used as a vitreous material, and a mixture of SiC powder and a fibrous SiC material is used as an inorganic filler on a SiC coating layer. There has been proposed an oxidation-resistant treatment method for forming a protective film. However, since Na 2 SiO 3 used as a binder has a high vapor pressure, the Na 2 SiO 3 glass is volatilized at a high temperature exceeding 1000 ° C. and under a low pressure, and the coating film is peeled off, and does not function as a protective film of the SiC coating layer. There are difficulties.
[0006]
In addition, the present applicant has a first coating step of forming a SiC coating layer by a conversion method by bringing SiO gas into contact with a C / C substrate surface, and then reducing and pyrolyzing a halogenated organosilicon compound by a CVD method. An oxidation-resistant treatment method in which a second coating step of depositing and depositing amorphous SiC is sequentially performed (Patent Document 2), and the method is further improved to convert a halogenated organosilicon compound into a substrate structure in the second coating step. An oxidation-resistant treatment method (Patent Document 3) for depositing and depositing SiC by a pulse CVI method of intermittently filling and reducing and thermally decomposing has been developed and proposed.
[0007]
However, minute cracks are also generated in the SiC of the second coating layer formed by such a method, and in order to impart higher oxidation resistance, the cracks are filled and sealed to form a plug. The need to do was recognized. Accordingly, the present applicant has proposed a first coating layer made of a polycrystalline SiC coating having a gradient function on the C / C substrate surface, a second coating layer made of an amorphous or fine polycrystalline SiC coating, and B An oxidation-resistant C / C composite material (Patent Document 4) in which a third coating layer of a 2 O 3 —SiO 2 glass coating is laminated is developed.
[0008]
Further, a first coating step of forming a SiC coating layer on a C / C composite base material surface by a conversion method by improving the invention of Patent Document 4 described above, a halogenated organosilicon compound and hydrogen or a silicon halide and hydrocarbon and The first stage operation of depositing and coating SiC by heating to a temperature of 1400 to 1500 ° C. by a CVD method using a mixed gas with hydrogen and a temperature of 1600 to 1900 ° C. in a heating furnace maintained in an inert atmosphere. A second coating step of sequentially performing a second step operation of heat treatment, and then impregnating and drying a glass precursor solution obtained by hydrolyzing a metal alkoxide containing at least one of Si, Al, B, and Zr. Then, a third coating step of forming a glassy film by heat treatment at 500 to 1000 ° C. was developed (see Patent Document 5).
[0009]
According to these inventions, excellent oxidation resistance is exhibited even in a high-temperature and severe oxidizing atmosphere, but as a result of a more detailed oxidation resistance test, for example, assuming the back side of a nose cap of a space shuttle, etc. As a result of conducting an oxidation resistance test (low-pressure volatilization test) under high temperature and low pressure, the oxidation resistance of the second coating layer was particularly large under the oxidation condition assuming emergency entry into the atmosphere. It turned out that the performance was not enough.
[0010]
In order to solve these drawbacks, the present applicant has applied a first coating layer composed of a polycrystalline SiC coating having a functionally graded structure, a fine polycrystalline SiC coating or a fine polycrystalline SiC coating on the C / C composite substrate surface. A second coating layer made of a highly crystalline SiC coating obtained by heat treatment, a third coating layer made of a B 2 O 3 —SiO 2 glassy coating, and fibrous SiC, powdered SiC, and ZrO 2 —SiO 2 glass. An oxidation-resistant C / C composite substrate on which a fourth coating layer composed of a composite coating of the above is laminated and a method for producing the same (Patent Document 6).
[0011]
However, once cracks occur in the coating layer, the melting point of ZrSiO 4 is as high as 1640 ° C., so that the ZrSiO 4 glass of the composite coating hardly melts and softens and has almost no function of self-repairing cracks in the coating layer. Therefore, there is a problem that the oxidation resistance and the durability are rapidly reduced.
[0012]
Further, Patent Document 7 discloses that at least one intermediate layer selected from the group consisting of silicon carbide, silicon nitride, silicon carbonitride, and silicon boride is formed, and a lanthanoid-based rare earth element containing yttrium and silicon are formed thereon. the particles of the composite oxide containing an aggregate, the composite oxide particles B 2 O 3 oxidation treatment to form a coating film dispersed in -SiO 2 based glassy matrix it has been proposed. However, since the particulate ceramic is used as the aggregate, cracks are likely to occur during the formation of the coating, and when exposed to a high-temperature airflow, the coating is scattered, and thus does not function as an oxidation-resistant film.
[0013]
[Patent Document 1]
US Pat. No. 4,471,023 [Patent Document 2]
JP-A-4-12078 [Patent Document 3]
JP-A-4-42878 [Patent Document 4]
Japanese Patent Application Laid-Open No. H4-224389 [Patent Document 5]
JP-A-9-188581 [Patent Document 6]
JP-A-11-292645 [Patent Document 7]
JP 2002-87896 A
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems, and in a high-temperature, low-pressure oxidizing atmosphere, exhibit a high degree of oxidation resistance and erosion resistance, and cracks are generated in the oxidation-resistant coating layer. Another object of the present invention is to provide a C / C composite material having a self-healing function, excellent in oxidation resistance and durability, and a method for producing the same.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, an oxidation-resistant C / C composite material according to the present invention comprises a C / C composite base material surface, a first coating layer comprising a functionally graded polycrystalline SiC coating, and a high melting point ceramic powder. , A second coating layer composed of a composite coating with fibrous SiC and B 2 O 3 —SiO 2 -based glass.
[0016]
Further, in the method for producing an oxidation-resistant C / C composite material according to the present invention, a C / C composite substrate obtained by molding a carbon fiber together with a matrix resin, and curing and calcining and carbonizing the carbon fiber is added to a non-oxidizing atmosphere. first coating step of forming a SiC film by conversion method in contact with the SiO gas at medium, then applying a mixed slurry of a refractory ceramic powder and the fibrous SiC and B 2 O 3 -SiO 2 glass precursor solution after to dry, refractory ceramic powder by heat-treating in a non-oxidizing atmosphere, fibrous SiC, and, second coating step of forming a composite coating with B 2 O 3 -SiO 2 -based glass, the capital sequentially Is a structural feature.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The carbon fiber constituting the C / C composite material is a fiber in which a woven fabric such as a plain weave, a satin weave, a twill weave or the like manufactured from various raw materials such as polyacrylonitrile, rayon, and pitch is oriented in one-dimensional or multi-dimensional directions. Body, felt, and tow are used, and as the matrix resin, a highly carbonizable liquid thermosetting resin such as a phenol-based or furan-based resin is used. The carbon fiber is sufficiently wetted with a matrix resin by means of dipping, coating, or the like, and then semi-cured to form a prepreg, and then laminated and pressed. The molded body is heated to completely cure the resin component, and subsequently calcined and carbonized or further graphitized according to a conventional method to produce a C / C composite material. If necessary, the process of impregnation, hardening and carbonization of the matrix resin can be repeated to densify the structure.
[0018]
The first coating layer made of a SiC coating whose surface layer is converted to SiC using the produced C / C composite material as a base material, the formation of SiC gradually progresses as the structure of the surface layer portion of the base material goes from the inside to the outside, and the SiC concentration increases. Are gradually increased, and are integrally and firmly formed on the surface layer of the C / C composite base material. Note that the thickness of the first coating layer is preferably set to 50 to 100 μm. By setting the film thickness in this range, a good gradient functional structure can be formed and the strength of the substrate can be suppressed from being reduced. Even if a thermal cycle or thermal shock is applied, the C / C composite substrate and the first coating can be used. Separation from the layer and generation of cracks can be effectively prevented.
[0019]
The second coating layer is laminated on the first coating layer, a high melting point ceramic powder, fibrous SiC, and composed of a composite film of B 2 O 3 -SiO 2 glass. The reason why the second coating layer is formed of such a composite coating is that high-melting ceramics have high heat resistance, but a composite coating with B 2 O 3 —SiO 2 -based glass causes a large number of cracks in the coating. The strength and adhesion are low. However, by adding the fibrous SiC, the coating strength and adhesion are greatly improved.
[0020]
That is, the high melting point ceramic powder constituting the second coating layer functions to improve heat resistance, and the B 2 O 3 —SiO 2 system glass serving as a binder softens when exposed to a high temperature to fill and crack. Demonstrate self-healing function. Further, the fibrous SiC functions to improve the strength of the second coating layer, and also functions to improve the adhesion to the first coating layer.
[0021]
As described above, the function of each component in the second coating layer functions in a complex manner, and the second coating layer can effectively function as a crack-free oxidation-resistant protective film having excellent oxidation resistance due to a synergistic effect. Further, in the B 2 O 3 —SiO 2 glass, the softening temperature can be controlled by changing the composition ratio of B 2 O 3 and SiO 2 , and even when cracks occur in the second coating layer, excellent for use in self-repairing function of repairing cracks due to softening of the 2 O 3 -SiO 2 -based glass, excellent functions as a protective film having a high oxidation resistance and durability can be exhibited.
[0022]
The thickness of the composite coating of the second coating layer is preferably 50 to 200 μm. If the thickness is less than 50 μm, the effect as an oxidation-resistant protective film is small, and the durability life in a high-temperature oxidation atmosphere is shortened. However, if the film thickness exceeds 200 μm, peeling or falling off tends to occur.
[0023]
On the C / C composite base material surface, a first coating layer composed of a polycrystalline SiC coating, a high melting point ceramic powder, a fibrous SiC, and a second coating composed of a composite coating with B 2 O 3 —SiO 2 glass. The oxidation-resistant C / C composite material of the present invention in which the coating layer is formed by lamination can be produced by the following method.
[0024]
The first coating layer is formed by first forming a carbon fiber composite with a matrix resin by a conventional method, curing and calcining and carbonizing the C / C composite material, This is performed by a conversion method in which a mixture of SiO 2 powder and Si or carbon powder is set in a system containing a closed heating system, and heat-treated in a non-oxidizing atmosphere. During the heat treatment, SiO 2 is reduced by Si or carbon to generate SiO gas, and the generated SiO gas reacts with carbon constituting the base material while penetrating and diffusing from the surface layer portion of the C / C composite base material to the inside. Then, the surface layer portion of the base material is converted into polycrystalline SiC having a functionally graded structure in which the SiC concentration changes continuously. The conditions of the first coating step were as follows: the weight ratio of Si or carbon to SiO 2 was 2: 1; the heating temperature was 1600 to 2000 ° C .; and the heating system was reduced or neutralized to a non-oxidizing atmosphere. It is performed in a state where it is held. The first coating layer of the SiC coating formed in the first coating step is set to have a thickness of 50 to 150 μm in order to prevent the internal structure of the C / C composite base material from being reduced in strength due to SiC. It is desirable.
[0025]
The second coating step, coating a mixed slurry of a refractory ceramic powder and the fibrous SiC and B 2 O 3 -SiO 2 glass precursor solution C / C composite base material forming the SiC film by the first coating step after to dry, refractory ceramic powder by heat-treating in a non-oxidizing atmosphere, fibrous SiC, and a step of forming a composite coating with B 2 O 3 -SiO 2 glass.
[0026]
Examples of the high melting point ceramic powder include oxides such as Y 2 O 3 , Al 2 O 3 , 2Al 2 O 3 -3SiO 2 having a melting point of 1800 ° C. or higher, or silicides such as SiC, Si 3 N 4 , and MoSi 2 . And one or more mixed powders selected from the group consisting of The ceramic powder preferably has a diameter of about 0.5 μm.
[0027]
The fibrous SiC is preferably a short fibrous one, particularly a whisker effective for improving the strength of the composite, and a SiC whisker having a diameter of about 0.3 to 1.5 μm and a length of about 5 to 40 μm is suitably used.
[0028]
B 2 O 3 -SiO 2 glass precursor solution, B, a metal alkoxide containing Si, for example, trimethoxy borane [B (OCH 3) 3], tetraethoxysilane [Si (OC 2 H 5) 4] and the like It is prepared by an alkoxide method in which water is added dropwise to a solution obtained by adding an alcohol to a metal alkoxide and stirring and mixing the mixture, followed by hydrolysis.
[0029]
In this case, since the B 2 O 3 -SiO 2 glass can be adjusted to the softening temperature by changing the composition of B 2 O 3 and SiO 2, in order to adjust to a suitable softening temperature, B 2 O 3 / SiO 2 molar ratio is preferably set in a range of 0.25 to 1.00. If the molar ratio is less than 0.25, the softening temperature rises, and the self-healing property of cracks generated in the coating layer is lost. However, when the molar ratio exceeds 1.00, the amount of B 2 O 3 component increases and the heat resistance decreases.
[0030]
The mixed slurry is prepared by mixing a high-melting ceramic powder and the fibrous SiC and B 2 O 3 -SiO 2 glass of the above. In this case, the mixing ratio of each component is preferably adjusted so that the weight ratio of fibrous SiC / high melting point ceramic powder is in the range of 0.15 to 0.35. If the weight ratio is less than 0.15, large cracks are likely to occur in the composite coating, and the adhesion of the composite coating also decreases. On the other hand, when the weight ratio exceeds 0.35, the film quality of the composite coating becomes porous, and the heat resistance is reduced.
[0031]
The weight ratio of (fibrous SiC + refractory ceramic powder) / (B 2 O 3 -SiO 2 based glass) is preferably controlled to a range of 0.50 to 2.00. If the weight ratio of (fibrous SiC + high-melting-point ceramic powder) to B 2 O 3 —SiO 2 -based glass serving as a binder is less than 0.50, the amount of vitreous binder increases, heat resistance is reduced, and the composite coating is not sufficiently coated. This is to cause a decrease in strength and the like. However, if the weight ratio exceeds 2.00, the amount of the ceramic filler (fibrous SiC + high-melting ceramic powder) with respect to the glass binder is large, so that large cracks are likely to be generated at the time of forming the composite film, and the adhesion of the composite film is reduced. become.
[0032]
As described above, the composition of the B 2 O 3 —SiO 2 glass serving as a binder has a molar ratio of B 2 O 3 / SiO 2 in the range of 0.25 to 1.00 in order to adjust the softening temperature. Adjustment is preferred.
[0033]
The mixed slurry is uniformly applied on the first coating layer of the SiC coating formed on the surface of the C / C composite base material by a conversion method by an appropriate means such as brushing or spraying, dried, and then dried in an inert atmosphere. Heat treatment at a temperature of, for example, 1200 to 1400 ° C. in a non-oxidizing atmosphere, thereby forming a second coating layer comprising a composite coating of a high melting point ceramic powder, fibrous SiC, and B 2 O 3 —SiO 2 glass. Are laminated and formed on the first coating layer.
[0034]
The thickness of the second coating layer is preferably about 50 to 200 μm. When the film thickness is less than 50 μm, the protection effect against oxidation is small, and the oxidation life of the C / C composite material is short. However, when the film thickness exceeds 200 μm, peeling or falling off tends to occur.
[0035]
The second coating layer formed in this manner is a high-temperature oxidizing atmosphere of about 1500 ° C. due to the combination of the high melting point ceramic powder and the components of fibrous SiC and B 2 O 3 —SiO 2 glass. Can effectively function as an oxidation-resistant protective film. Further, cracks due to softening of even B 2 O 3 -SiO 2 glass component if the crack in the second coating layer has occurred filled, clogged, cracks are repaired. That is, it has an excellent self-healing function. As a result, it is possible to produce a C / C composite material having excellent oxidation resistance and durability, functioning together with the first coating layer formed by the conversion method.
[0036]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples.
[0037]
Examples 1 to 12
(1) Preparation of C / C Composite Substrate A phenol resin precondensate was sufficiently applied as a matrix resin to a polyacrylonitrile-based high-strength high-elastic type plain-woven carbon fiber cloth, and air-dried for 48 hours to obtain a prepreg sheet. . Sixteen of these prepreg sheets were stacked and placed in a mold, and were subjected to hot press molding under the conditions of a temperature of 110 ° C. and a pressure of 20 kg / cm 2 . After heating the molded body to a temperature of 250 ° C. to cure the matrix resin, the molded body was transferred into a firing furnace maintained in a nitrogen atmosphere, heated to 2000 ° C. at a rate of 5 ° C./hr, and maintained for 5 hours. And calcined. In this way, a C / C composite base material (sample size 30 mm in length, 4 mm in thickness) having a carbon fiber volume content (Vf) of 65% and a bulk density of 1.65 g / cm 3 was prepared.
[0038]
(2) Formation of First Coating Layer SiO 2 powder and Si powder are mixed at a ratio of 2: 1 (weight ratio), the mixed powder is put in a graphite crucible, and the above C / C composite base material is set on the upper part. did. The graphite crucible was transferred into an electric furnace, and the inside thereof was sufficiently replaced with argon gas. Then, the temperature was raised to 1850 ° C. at a heating rate of 50 ° C./hr, and the temperature was maintained for 1 hour to keep the surface layer of the C / C composite base material. A first coating layer made of a polycrystalline SiC coating having a functionally graded structure in the portion was formed. The thickness of the formed SiC coating layer was about 100 μm, and fine cracks having a width of several μm were observed on the surface.
[0039]
(3) Formation refractory ceramic powder of the second coating layer, Y 2 O 3 powder having an average particle size of 0.4 .mu.m, a fibrous SiC, diameter 1.0~1.4μm, SiC whiskers length 20~30μm Was mixed with B 2 O 3 -SiO 2 -based glass precursor solutions having different molar ratios of B 2 O 3 / SiO 2 at different weight ratios, followed by stirring with a ball mill to prepare a mixed slurry.
[0040]
This mixed slurry was applied on the first coating layer formed on the surface of the C / C composite base material, heat-treated at 500 ° C. in the atmosphere, dried, and then heat-treated at 1400 ° C. in a nitrogen atmosphere. In this way, Y 2 O 3 powder, a second covering layer composed of a composite film of SiC whiskers and B 2 O 3 -SiO 2 glass, was laminated on the first coating layer. The thickness of the second coating layer was controlled to be about 100 μm.
[0041]
Comparative Examples 1-2
In the example, the second coating layer was prepared in the same manner as in the example, except that a mixed slurry not containing any one of the Y 2 O 3 powder and the SiC whisker was prepared and applied on the first coating layer. Was laminated.
[0042]
In this way, an oxidation-resistant C / C composite material in which the first coating layer and the second coating layer were formed on the C / C composite substrate surface was manufactured. Table 1 shows the composition of the mixed slurry, and Table 2 shows the state of the coating of the second coating layer.
[0043]
[Table 1]
Figure 2004175605
[0044]
[Table 2]
Figure 2004175605
[0045]
(4) Evaluation of Oxidation Resistance The oxidation resistance C / C composite material having the first coating layer and the second coating layer laminated thereon was tested by the following method to evaluate the oxidation resistance. The results are shown in Table 3.
[0046]
(1) Evaluation of erosion resistance;
The pressure in the reaction chamber was reduced to 1000 Pa by a plasma arc test apparatus, and the plasma was irradiated with the arc plasma at a temperature of 1350 ° C. and 1550 ° C. for 1200 seconds, and the weight loss of the oxidation-resistant film was measured to evaluate the erosion resistance. evaluated.
[0047]
(2) Evaluation of thermal shock resistance;
Using a rapid heating test apparatus, the pressure in the reaction chamber was reduced to 5 Pa, the temperature was raised from room temperature to 1500 ° C. for 60 seconds, the state of peeling of the oxidation-resistant film was observed, and the adhesion of the film was evaluated. In addition, a scratch assuming a crack was previously made in the second coating layer by a cutter, and the disappearance of the scratch after the heating test was observed to evaluate the self-healing function of the coating.
[0048]
[Table 3]
Figure 2004175605
[0049]
From the results of Tables 1 to 3, the first coating layer of the present invention and the second coating layer of the embodiment in which the second coating layer is formed by lamination, in the erosion test under a low pressure and high temperature of 1000 Pa-1350 ° C. or 1550 ° C. It can be seen that there is little wear and the material is stably maintained and has excellent durability. In the thermal shock test, the adhesiveness to the underlying SiC layer was good, and the scratch assuming cracks disappeared after the heating test, so that a self-healing coating layer excellent in oxidation resistance was formed. You can see that it is done. On the other hand, in Comparative Examples 1 and 2, the damage of the C / C material progressed due to remarkable deterioration of the coating layer, low adhesion to the underlying SiC layer, and lack of a self-healing function. , Oxidation resistance and thermal shock resistance were not sufficient.
[0050]
【The invention's effect】
As described above, according to the present invention, a first coating layer composed of a polycrystalline SiC coating having a functionally graded structure and a composite coating of a high melting point ceramic powder, fibrous SiC, and a B 2 O 3 —SiO 2 system glass are used. It is possible to provide a C / C composite material having a high degree of oxidation resistance and excellent durability, in which a second coating layer is formed by lamination, and a method for producing the same. In particular, it exhibits excellent erosion resistance and adhesion at high temperatures and low pressures, and has a high self-healing function even when cracks occur in the second coating layer, and has a high degree of durability. It is extremely useful as a structural member in various industrial fields including a structural member such as a spacecraft that is exposed to the atmosphere.

Claims (5)

C/C複合基材面に、傾斜機能組織の多結晶質SiC被膜からなる第1被覆層、高融点セラミックス粉末、繊維状SiC、及び、B−SiO系ガラスとの複合被膜からなる第2被覆層、が積層形成されてなることを特徴とする耐酸化性C/C複合材。A first coating layer composed of a polycrystalline SiC film having a functionally graded structure, a high-melting ceramic powder, a fibrous SiC, and a composite coating with a B 2 O 3 —SiO 2 glass on a C / C composite substrate surface. An oxidation-resistant C / C composite material comprising a second coating layer formed by lamination. 炭素繊維をマトリックス樹脂と共に複合成形し、硬化及び焼成炭化して得られるC/C複合基材に、非酸化性雰囲気中でSiOガスと接触させてコンバージョン法によりSiC被膜を形成する第1被覆工程、次いで、高融点セラミックス粉末と繊維状SiC及びB−SiO系ガラス前駆体溶液との混合スラリーを塗布して乾燥した後、非酸化性雰囲気中で熱処理して高融点セラミックス粉末、繊維状SiC、及び、B−SiO系ガラスとの複合被膜を形成する第2被覆工程、とを順次に施すことを特徴とする耐酸化性C/C複合材の製造方法。First coating step of forming a SiC coating on a C / C composite base material obtained by subjecting a carbon fiber to composite molding with a matrix resin, and curing and calcining and carbonizing to contact a SiO gas in a non-oxidizing atmosphere by a conversion method. , then was dried by applying a mixed slurry of a refractory ceramic powder and the fibrous SiC and B 2 O 3 -SiO 2 glass precursor solution, refractory ceramic powder by heat-treating in a non-oxidizing atmosphere, A second coating step of forming a composite coating with fibrous SiC and B 2 O 3 —SiO 2 -based glass. 高融点セラミックス粉末がY、Al、2Al−3SiOなどの酸化物、あるいは、SiC、Si、MoSiなどの珪化物、から選ばれた1種または2種以上の混合物である請求項2記載の耐酸化性C/C複合材の製造方法。The high melting point ceramic powder is one selected from oxides such as Y 2 O 3 , Al 2 O 3 , 2Al 2 O 3 -3SiO 2 , or silicides such as SiC, Si 3 N 4 , MoSi 2 or the like. The method for producing an oxidation-resistant C / C composite according to claim 2, which is a mixture of two or more kinds. 繊維状SiCがSiCウイスカーである請求項2記載の耐酸化性C/C複合材の製造方法。The method for producing an oxidation-resistant C / C composite according to claim 2, wherein the fibrous SiC is a SiC whisker. 混合スラリーが、繊維状SiC/高融点セラミックス粉末の重量比が0.15〜0.35、(繊維状SiC+高融点セラミックス粉末)/(B−SiO系ガラス)の重量比が0.50〜2.00、B−SiO系ガラスのB/SiOのモル比が0.25〜1.00、の組成からなる請求項2記載の耐酸化性C/C複合材の製造方法。Mixing the slurry, the weight ratio of the fibrous SiC / refractory ceramic powder is 0.15 to 0.35, the weight ratio of (fibrous SiC + refractory ceramic powder) / (B 2 O 3 -SiO 2 based glass) 0 .50~2.00, B 2 O 3 -SiO 2 system molar ratio of the glass of B 2 O 3 / SiO 2 is 0.25 to 1.00, a composition according to claim 2 wherein the oxidation resistant C / Method for producing C composite material.
JP2002342173A 2002-11-26 2002-11-26 Oxidation resistant C / C composite and method for producing the same Expired - Fee Related JP4539014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342173A JP4539014B2 (en) 2002-11-26 2002-11-26 Oxidation resistant C / C composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342173A JP4539014B2 (en) 2002-11-26 2002-11-26 Oxidation resistant C / C composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004175605A true JP2004175605A (en) 2004-06-24
JP4539014B2 JP4539014B2 (en) 2010-09-08

Family

ID=32704301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342173A Expired - Fee Related JP4539014B2 (en) 2002-11-26 2002-11-26 Oxidation resistant C / C composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP4539014B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466910B1 (en) * 2013-08-30 2014-12-03 한국에너지기술연구원 Fiber reinforced ceramic composite comprising oxidation barrier layer and manufacturing method
CN104311161A (en) * 2014-09-30 2015-01-28 湖北三江航天江北机械工程有限公司 Moistureproof method of porous composite quartz ceramic material
CN104945013A (en) * 2015-06-17 2015-09-30 河北建材职业技术学院 C/C composite and preparation method of surface oxidation resistant composite coating of C/C composite
CN106064949A (en) * 2016-06-03 2016-11-02 陕西科技大学 A kind of ultrasonic auxiliary microwave hydrothermal method method prepares SiC modification C/C MoSi2the method of composite
CN111039698A (en) * 2019-12-27 2020-04-21 中国航空制造技术研究院 Method for repairing thermal protection coating of silicon carbide ceramic matrix composite member
CN112321331A (en) * 2020-11-18 2021-02-05 江西信达航科新材料科技有限公司 High-temperature-resistant antioxidant composite coating and preparation process thereof
CN112341000A (en) * 2020-11-27 2021-02-09 西北工业大学 Carbon/carbon composite material SiC coating repairing modified glass material based on laser cladding method and preparation and use methods
CN112430130A (en) * 2020-11-23 2021-03-02 江西信达航科新材料科技有限公司 High-temperature-resistant composite coating and preparation process thereof
CN114716268A (en) * 2022-04-02 2022-07-08 陕西科技大学 Preparation of Glass-MoSi on surface of carbon/carbon composite material2@Y2O3Method for preparing-SiC oxidation-resistant coating
CN116589305A (en) * 2023-07-19 2023-08-15 中南大学 Carbon ceramic composite material containing ultra-high temperature ceramic composite coating and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153877A (en) * 1983-02-22 1984-09-01 Tateho Kagaku Kogyo Kk Spraying material containing needlelike ceramic fiber
US4471023A (en) * 1983-03-29 1984-09-11 Ltv Aerospace And Defense Company Enhancement coating and process for carbonaceous substrates
JPS62184073A (en) * 1986-02-07 1987-08-12 Isuzu Motors Ltd Heat-resistant adhesive or coating agent
JPH04187583A (en) * 1990-11-19 1992-07-06 Tokai Carbon Co Ltd Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH08217576A (en) * 1995-02-20 1996-08-27 Hitachi Ltd Heat and oxidation resistant high strength member
JPH11292645A (en) * 1998-04-16 1999-10-26 Tokai Carbon Co Ltd Oxidation resistant c/c composite material and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153877A (en) * 1983-02-22 1984-09-01 Tateho Kagaku Kogyo Kk Spraying material containing needlelike ceramic fiber
US4471023A (en) * 1983-03-29 1984-09-11 Ltv Aerospace And Defense Company Enhancement coating and process for carbonaceous substrates
JPS62184073A (en) * 1986-02-07 1987-08-12 Isuzu Motors Ltd Heat-resistant adhesive or coating agent
JPH04187583A (en) * 1990-11-19 1992-07-06 Tokai Carbon Co Ltd Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH08217576A (en) * 1995-02-20 1996-08-27 Hitachi Ltd Heat and oxidation resistant high strength member
JPH11292645A (en) * 1998-04-16 1999-10-26 Tokai Carbon Co Ltd Oxidation resistant c/c composite material and its production

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466910B1 (en) * 2013-08-30 2014-12-03 한국에너지기술연구원 Fiber reinforced ceramic composite comprising oxidation barrier layer and manufacturing method
CN104311161A (en) * 2014-09-30 2015-01-28 湖北三江航天江北机械工程有限公司 Moistureproof method of porous composite quartz ceramic material
CN104945013A (en) * 2015-06-17 2015-09-30 河北建材职业技术学院 C/C composite and preparation method of surface oxidation resistant composite coating of C/C composite
CN106064949A (en) * 2016-06-03 2016-11-02 陕西科技大学 A kind of ultrasonic auxiliary microwave hydrothermal method method prepares SiC modification C/C MoSi2the method of composite
CN111039698A (en) * 2019-12-27 2020-04-21 中国航空制造技术研究院 Method for repairing thermal protection coating of silicon carbide ceramic matrix composite member
CN112321331A (en) * 2020-11-18 2021-02-05 江西信达航科新材料科技有限公司 High-temperature-resistant antioxidant composite coating and preparation process thereof
CN112430130B (en) * 2020-11-23 2022-11-01 江西信达航科新材料科技有限公司 High-temperature-resistant composite coating and preparation process thereof
CN112430130A (en) * 2020-11-23 2021-03-02 江西信达航科新材料科技有限公司 High-temperature-resistant composite coating and preparation process thereof
CN112341000A (en) * 2020-11-27 2021-02-09 西北工业大学 Carbon/carbon composite material SiC coating repairing modified glass material based on laser cladding method and preparation and use methods
CN112341000B (en) * 2020-11-27 2023-01-03 西北工业大学 Carbon/carbon composite material SiC coating repairing modified glass material based on laser cladding method and preparation and use methods
CN114716268A (en) * 2022-04-02 2022-07-08 陕西科技大学 Preparation of Glass-MoSi on surface of carbon/carbon composite material2@Y2O3Method for preparing-SiC oxidation-resistant coating
CN114716268B (en) * 2022-04-02 2022-11-29 陕西科技大学 Preparation of Glass-MoSi on surface of carbon/carbon composite material 2 @Y 2 O 3 Method for preparing-SiC oxidation-resistant coating
CN116589305A (en) * 2023-07-19 2023-08-15 中南大学 Carbon ceramic composite material containing ultra-high temperature ceramic composite coating and preparation method thereof
CN116589305B (en) * 2023-07-19 2023-09-19 中南大学 Carbon ceramic composite material containing ultra-high temperature ceramic composite coating and preparation method thereof

Also Published As

Publication number Publication date
JP4539014B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
KR100634935B1 (en) Composite Carbonaceous Heat Insulator
WO2011027756A1 (en) Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
WO2002081405A1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
WO2011114810A1 (en) Inorganic fibers for fiber bundles, process for production of the inorganic fibers, inorganic fiber bundles for composite material produced using the inorganic fibers, and ceramic-based composite material reinforced by the fiber bundles
JP3979311B2 (en) Silicon carbide ceramic fiber and method for producing the same
JP2002104892A (en) Ceramic composite material
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
EP1388527A2 (en) Highly heat-resistant inorganic fiber bonded ceramic component and process for the production thereof
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material
JP3562989B2 (en) Composite having thermal sprayed layer and method for producing the same
JPH0848509A (en) Production of carbonaceous porous body
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH11314985A (en) Heat resistant/oxidation resistant carbon fiber reinforced carbon material
JPH05306180A (en) Production of carbon fiber reinforced carbon-inorganic compound composite material
JP2976369B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3031853B2 (en) Heat and oxidation resistant carbon materials
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP4208217B2 (en) Method for producing oxidation-resistant C / C composite material
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP3494533B2 (en) Method for producing oxidation resistant C / C composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4539014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees