JPH0274670A - Oxidation-resistant carbon fiber-reinforced material and production thereof - Google Patents
Oxidation-resistant carbon fiber-reinforced material and production thereofInfo
- Publication number
- JPH0274670A JPH0274670A JP63224937A JP22493788A JPH0274670A JP H0274670 A JPH0274670 A JP H0274670A JP 63224937 A JP63224937 A JP 63224937A JP 22493788 A JP22493788 A JP 22493788A JP H0274670 A JPH0274670 A JP H0274670A
- Authority
- JP
- Japan
- Prior art keywords
- film
- silicon carbide
- carbon fiber
- oxidation
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 title claims abstract description 19
- 230000003647 oxidation Effects 0.000 title claims description 45
- 238000007254 oxidation reaction Methods 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 22
- 239000010703 silicon Substances 0.000 claims abstract description 22
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 20
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000007789 gas Substances 0.000 claims abstract description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 239000011733 molybdenum Substances 0.000 claims abstract description 5
- 229910021426 porous silicon Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052788 barium Inorganic materials 0.000 claims abstract description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011261 inert gas Substances 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 239000011572 manganese Substances 0.000 claims abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 239000010936 titanium Substances 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 46
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 16
- 239000004917 carbon fiber Substances 0.000 claims description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 15
- 238000007750 plasma spraying Methods 0.000 claims description 14
- 238000009792 diffusion process Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 7
- 238000005507 spraying Methods 0.000 abstract 2
- 239000002131 composite material Substances 0.000 description 58
- 239000010410 layer Substances 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000000576 coating method Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 238000005524 ceramic coating Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- WHJFNYXPKGDKBB-UHFFFAOYSA-N hafnium;methane Chemical compound C.[Hf] WHJFNYXPKGDKBB-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は炭素繊維で強化された炭素材料に関し、特に、
航空・宇宙産業の分野あるいは原子炉用部材等の高温:
囲気において繰返し使用に耐える耐酸化性炭素繊維強化
炭素材料に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a carbon material reinforced with carbon fibers, and in particular,
High temperature in the field of aerospace industry or parts for nuclear reactors:
The present invention relates to an oxidation-resistant carbon fiber-reinforced carbon material that can withstand repeated use in an ambient atmosphere.
〈従来の技術〉
炭素材料は、その応用の歴史的過程からも明らかなよう
に、電気・熱の良導体であると同時!、:無比の耐熱性
、耐食性、潤滑性など数多くのユニークな物理的・化学
的な性質を持っており、人造黒鉛電極、冶金用炭素・黒
鉛製品、放電加工電極、電気用ブラシ、機械用炭素製品
など広範囲の分野に用いられている。<Conventional technology> As is clear from the historical process of its application, carbon materials are good conductors of electricity and heat! ,: It has many unique physical and chemical properties such as unparalleled heat resistance, corrosion resistance, and lubricity, and is useful for artificial graphite electrodes, metallurgical carbon and graphite products, electrical discharge machining electrodes, electric brushes, and mechanical carbon. It is used in a wide range of fields including products.
炭素繊維で強化された炭素材料(以下、C/Cコンポジ
ットという)は、そのなかでも特に比強度が大きく、炭
素材料の持つ特性も兼ね備えているため、従来の炭素材
料では適用できない部位、例えばロケットのノーズコー
ンやノズルなどへの適用が可能となる。Carbon materials reinforced with carbon fibers (hereinafter referred to as C/C composites) have a particularly high specific strength and also have the characteristics of carbon materials, so they can be used in areas where conventional carbon materials cannot be used, such as rockets. It can be applied to nose cones, nozzles, etc.
しかしながら、C/Cコンポジットを含めて炭素材料は
、一般に500℃程度から酸化を受け、それ自身の持つ
すぐれた物理的・化学的性質が低下するため、高温大気
中での使用はと(短時間のものを除き不可能であった。However, carbon materials, including C/C composites, generally undergo oxidation at temperatures as low as 500°C, degrading their own excellent physical and chemical properties. It was impossible except for
この現象を防止するために、従来から炭素材料の耐酸
化処理方法については種々の、検討がなされてきた。In order to prevent this phenomenon, various studies have been made regarding oxidation-resistant treatment methods for carbon materials.
それらの方法のなかで、化学気相蒸着法(以下、CVD
法という)による炭素材料へのセラミック被覆は最も一
般的に行われている方法の一つであり、この方法により
緻密な皮膜を得ることができる。 また、この方法によ
れば、炭化けい素、炭化チタン、炭化ハフニウム、炭化
タンタル等の炭化物、窒化チタン、窒化はう素、窒化ジ
ルコニウム等の窒化物、アルミナ、ジルコニア等の酸化
物、その他はう化物の被覆を行うことができる。Among these methods, chemical vapor deposition (CVD)
Ceramic coating on carbon materials is one of the most commonly used methods, and a dense coating can be obtained by this method. Also, according to this method, carbides such as silicon carbide, titanium carbide, hafnium carbide, and tantalum carbide, nitrides such as titanium nitride, boron nitride, and zirconium nitride, oxides such as alumina and zirconia, and other Compound coating can be performed.
しかしながら、この方法では基材となる炭素材料の温度
を1000℃前後にまで加熱しなけわばならない場合が
多く、基材の冷却時に表面のセラミック皮膜が剥離した
り割れを起こすことが多かった。 これは、基材と析出
させるセラミック間の熱膨張率の差が大といため最大ひ
ずみが追随できないことが原因であり、基材の熱膨張率
を、析出させるセラミックとほぼ同程度にすることによ
り解決することができる。However, in this method, the temperature of the carbon material serving as the base material must often be heated to around 1000°C, and the ceramic coating on the surface often peels or cracks when the base material is cooled. This is because the difference in thermal expansion coefficient between the base material and the precipitated ceramic is so large that the maximum strain cannot be followed. It can be solved.
しかし、C/Cコンポジットを基材として用いる場合は
、その熱膨張率が炭素繊維自体の熱膨張率に拘束され自
由に調節することができず、またその熱膨張率に合致し
た耐熱性セラミック被覆材料もないため、CVD法によ
る優れた耐酸化皮膜を利用することができなかった。However, when using a C/C composite as a base material, its coefficient of thermal expansion is restricted by the coefficient of thermal expansion of the carbon fiber itself and cannot be freely adjusted. Since there was no material available, it was not possible to utilize the excellent oxidation-resistant film produced by the CVD method.
特開昭61−26563号公報には、有機けい崇高分子
化合物を溶融状態でC/Cコンポジットに強制含浸した
後、不活性7囲気中で1200〜2000℃の温度で高
温焼成して含浸物を炭化けい素に転化する方法が開示さ
れている。 しかしながら、この方法ではC/Cコン
ポジットの密度が高い場合には、溶融状態の有機けい崇
高分子化合物を均一に含浸することができず、その結果
アンカー効果が乏しくなるためにC/Cコンポジットと
十分に密着した炭化けい素皮膜を得ることができない。JP-A No. 61-26563 discloses that a C/C composite is forcibly impregnated with an organic silicon high molecular compound in a molten state, and then the impregnated material is baked at a high temperature of 1200 to 2000°C in an inert atmosphere. A method of converting to silicon carbide is disclosed. However, in this method, when the density of the C/C composite is high, it is not possible to uniformly impregnate the molten organic silicon high molecular compound, and as a result, the anchoring effect becomes poor. It is not possible to obtain a silicon carbide film that adheres closely to the surface.
このような炭化けい素皮膜では、繰返し高温で使用す
る場合には剥離が起こり易く、C/Cコンポジットの耐
酸化保護皮膜としては適さない。Such silicon carbide films tend to peel off when used repeatedly at high temperatures, and are not suitable as oxidation-resistant protective films for C/C composites.
また、特開昭62−153164号公報には、C/Cコ
ンポジット表面に熱硬化性樹脂と有機りん化合物の混合
物を付与した後、該混合物を硬化および炭化処理すると
いう方法が開示されている。 しかし、同公報の実施例
に示されるように、上記処理を施したC/Cコンポジッ
トにおいても1000℃以下の温度で10%程度の重量
減少があり、例えばスペースシャトルの外装材としての
応用を考えたとき、これが大気圏に突入するときに16
00℃程度と極めて高温に達するという事実を考えた場
合、前述の方法で得られるC/Cコンポジットは耐酸化
性が不充分である。Further, Japanese Patent Application Laid-Open No. 153164/1984 discloses a method in which a mixture of a thermosetting resin and an organic phosphorus compound is applied to the surface of a C/C composite, and then the mixture is hardened and carbonized. However, as shown in the examples in the same publication, even in the C/C composite treated as described above, there is a weight loss of about 10% at temperatures below 1000°C. 16 when it enters the atmosphere
Considering the fact that the temperature reaches an extremely high temperature of about 00° C., the C/C composite obtained by the above method has insufficient oxidation resistance.
さらに、特開昭61−27248号公報には、C/Cコ
ンポジットに拡散法による炭化けい未被覆を行い、その
外表面にCVD法により窒化けい素皮膜を被覆すること
が示されている。 この方法によれば、ある程度有効な
耐酸化皮膜の形成は可能であるが、窒化けい素を用いて
いるために使用可能温度が約1300℃と低く、また、
2層の耐酸化皮膜同志の密着性が弱いために、緻密な膜
、つまりこの方法ではCVD法により析出させた窒化け
い素皮膜に、急激な熱衝撃により微細な割れか発生しや
すく、その微細な割れから酸素が拡散してC/Cコンポ
ジットの性能を低下せしめる。 このた、め上述の技
術では、繰返し高温で使用する部位への利用には適した
ものではなかった。Further, JP-A No. 61-27248 discloses that a C/C composite is coated with silicon carbide by a diffusion method, and its outer surface is coated with a silicon nitride film by a CVD method. According to this method, it is possible to form a somewhat effective oxidation-resistant film, but because silicon nitride is used, the usable temperature is as low as about 1300°C.
Because the adhesion between the two layers of oxidation-resistant films is weak, the dense film, that is, the silicon nitride film deposited by CVD in this method, is prone to minute cracks due to rapid thermal shock. Oxygen diffuses through these cracks, reducing the performance of the C/C composite. For this reason, the above-mentioned techniques are not suitable for use in areas that are repeatedly used at high temperatures.
〈発明が解決しようとする課題〉
C/Cコンポジットへの耐酸化被覆方法には前述のよう
に種々のものがあるが、それらには下記のような問題点
がある。<Problems to be Solved by the Invention> As mentioned above, there are various methods for coating C/C composites with oxidation resistance, but they have the following problems.
(1)CVD法によフてC/Cコンポジット上に析出さ
せた耐酸化皮膜には、必ず熱膨張率の違いによる割れ、
剥離が生じ、そのままでは実用に適さない。(1) The oxidation-resistant film deposited on the C/C composite by the CVD method always suffers from cracks due to differences in thermal expansion coefficient.
Peeling occurs, making it unsuitable for practical use as it is.
(2)耐酸化皮膜成分を含む液体を含浸させる場合には
、用いるC/Cコンポジットの密度が高いと中まで含浸
が行なえず、それ故アンカー効果による耐酸化皮膜の密
着性が失われるため、il l!!tが起こる原因とな
る。 しかも、見密着性のよさそうな皮膜であっても
、C/Cコンポジットとの熱膨張率差が大きすぎるため
に一回以上の熱サイクル負荷によりすぐに割れや剥離を
生じる。(2) When impregnating with a liquid containing oxidation-resistant film components, if the density of the C/C composite used is high, impregnation cannot be carried out to the inside, and therefore the adhesion of the oxidation-resistant film due to the anchor effect is lost. Ill! ! This causes t to occur. Furthermore, even if the film appears to have good adhesion, the difference in coefficient of thermal expansion between the film and the C/C composite is too large, so it will easily crack or peel when subjected to one or more thermal cycles.
(3)特開昭61−27248号公報に開示されている
複層被覆法によれば、前述の2つの方法に比べてはるか
に安定な耐酸化皮膜を得ることができるか、CVD法に
より被覆した膜は1回の熱サイクル負荷によって容易に
微細な割れを生じ、そこから酸素が拡散していくために
C/Cコンポジットの強度低下が起こる。(3) According to the multilayer coating method disclosed in JP-A-61-27248, it is possible to obtain an oxidation-resistant film that is much more stable than the above two methods. The resulting film easily develops fine cracks due to one thermal cycle load, and oxygen diffuses through the cracks, resulting in a decrease in the strength of the C/C composite.
本発明は、従来法の欠点である耐酸化皮膜の剥離が押え
られ、しかも熱サイクル負荷による微細な割れを極力少
なくした炭素繊維強化炭素材料およびその製造方法を提
供することを目的としている。An object of the present invention is to provide a carbon fiber-reinforced carbon material that suppresses peeling of an oxidation-resistant film, which is a drawback of conventional methods, and minimizes microscopic cracks caused by thermal cycle loads, and a method for producing the same.
く課題を解決するための手段〉
上記目的を達成するために、本発明の第1の態様によれ
ば、炭素繊維強化炭素材料基体の表面に、多孔質または
緻密な炭化けい素皮膜の内層を有し、さらに該炭化けい
素皮膜上に多孔質な金属シリサイドの外層を有すること
を特徴とする耐酸化性炭素繊維強化炭素材料が提供され
る。Means for Solving the Problems> In order to achieve the above object, according to a first aspect of the present invention, an inner layer of a porous or dense silicon carbide film is provided on the surface of a carbon fiber-reinforced carbon material substrate. An oxidation-resistant carbon fiber-reinforced carbon material is provided, which further comprises an outer layer of porous metal silicide on the silicon carbide film.
また、前記内層の炭化けい素皮膜は、45〜800μm
の膜厚がよい。Further, the silicon carbide film of the inner layer has a thickness of 45 to 800 μm.
Good film thickness.
そして、前記外層の金属シリサイド皮膜は、200〜1
000μmの範囲が好ましい。The metal silicide film of the outer layer has a 200 to 1
A range of 000 μm is preferred.
また、前記金属シリサイドを形成する金属は、バリウム
、チタン、ジルコニウム、バナジウム、タンタル、モリ
ブデンおよびマンガンより選択されるものがよい。Further, the metal forming the metal silicide is preferably selected from barium, titanium, zirconium, vanadium, tantalum, molybdenum, and manganese.
本発明の第2の態様によれば、炭素繊維強化炭素材料基
体の表面に拡散法により多孔質または緻密な炭化けい素
皮膜の内層を形成せしめ、さらに該炭化けい素皮膜上に
プラズマ溶射法により多孔質な金属シリサイドの外層を
形成することを特徴とする耐酸化性炭素繊維強化炭素材
料の製造方法が提供される。According to the second aspect of the present invention, an inner layer of a porous or dense silicon carbide film is formed on the surface of the carbon fiber-reinforced carbon material substrate by a diffusion method, and the inner layer is further formed on the silicon carbide film by a plasma spraying method. A method for producing an oxidation-resistant carbon fiber-reinforced carbon material is provided, which comprises forming an outer layer of porous metal silicide.
ここで、前記炭化けい素皮膜は、不活性ガスτ囲気下1
500〜1700℃の温度で30〜600分間炭素繊維
強化炭素材料とけい素を含むガスおよび/または液体と
の間で化学反応させることにより得るのがよい。 なお
、膜厚はいずれも断面の電子顕微鏡観察により測定した
。Here, the silicon carbide film is formed under an atmosphere of inert gas τ.
It is preferably obtained by a chemical reaction between the carbon fiber reinforced carbon material and a silicon-containing gas and/or liquid at a temperature of 500 to 1700° C. for 30 to 600 minutes. Note that the film thicknesses were all measured by electron microscopic observation of the cross section.
以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.
本発明の炭素繊維強化炭素材料は、第1図に示したよう
にC/Cコンポジット基体1の上に内層2を有し、さら
に該内層上に外N3を有する。 4は、外層中に含ま
れるボア(孔)である。The carbon fiber reinforced carbon material of the present invention has an inner layer 2 on a C/C composite base 1 as shown in FIG. 1, and further has an outer layer 3 on the inner layer. 4 is a bore contained in the outer layer.
基体となるC/Cコンポジットを構成する炭素繊維とし
て、平織、朱子織、綾織などの二次元織布、−次元配向
材、三次元配向材、フェルト、トウなどが用いられ、バ
インダーとしてはフェノール樹脂、フラン樹脂などの熱
硬化性物質、タールピッチのような熱可塑性物質を用い
ることができる。 前記炭素繊維は、含浸、塗布などの
方法によりプリプレグ化し、積層加圧成形して成形体と
する。 この成形体は、熱処理によってバインダーを硬
化させ、その後常法に従って焼成し、さらに必要に応じ
て黒鉛化することによりC/Cコンポジットとする。
その後、用途に応じて熱硬化性物質、ピッチなどを含浸
、再度炭化を行う含浸法、メタン、プロパンなどの熱分
解炭素を利用するCVD法などにより緻密化を繰り返し
行い、さらに高強度のC/Cコンポジットとすることも
できる。Two-dimensional woven fabrics such as plain weave, satin weave, and twill weave, -dimensionally oriented materials, three-dimensionally oriented materials, felt, tow, etc. are used as the carbon fibers constituting the C/C composite that serves as the base, and phenolic resin is used as the binder. , thermosetting materials such as furan resins, and thermoplastic materials such as tar pitch. The carbon fiber is made into a prepreg by a method such as impregnation or coating, and then laminated and pressure-molded to form a molded body. This molded body is made into a C/C composite by hardening the binder by heat treatment, then firing in accordance with a conventional method, and further graphitizing if necessary.
After that, depending on the application, densification is repeated by an impregnation method in which thermosetting substances, pitch, etc. are impregnated and carbonized again, or a CVD method that uses pyrolytic carbon such as methane or propane. It can also be a C composite.
本発明における内層2はC/Cコンポジットの表面に、
多孔質な炭化けい素皮膜を有している。The inner layer 2 in the present invention is on the surface of the C/C composite,
It has a porous silicon carbide film.
内層2の空隙率は、最外層を電子顕微鏡写真撮影し、そ
の画像解析結果から15〜85%の範囲にあることが好
ましい。 15%未満では応力緩和層になり得す、8
5%を超えると強度が急速に低下するからである。The porosity of the inner layer 2 is preferably in the range of 15 to 85% based on the image analysis results obtained by taking an electron micrograph of the outermost layer. If it is less than 15%, it may become a stress relaxation layer, 8
This is because if it exceeds 5%, the strength will rapidly decrease.
内層を多孔質とすると、基体1と外N3を密着性良く結
合するとともにC/Cコンポジットへの外応力に対する
緩衝層として働く。When the inner layer is porous, the base 1 and the outer N3 are bonded with good adhesion, and it also acts as a buffer layer against external stress on the C/C composite.
本発明の炭化けい素皮膜の膜厚は、45〜800μmの
範囲であることが好ましい。 膜厚が45μm未満では
、C/Cコンボジッ1−の耐酸化特性を改善するために
十分なものではなく、しかも外層とC/Cコンポジット
間に存在する熱応力緩和層として働き難い。The thickness of the silicon carbide film of the present invention is preferably in the range of 45 to 800 μm. If the film thickness is less than 45 μm, it is not sufficient to improve the oxidation resistance of the C/C composite 1-, and moreover, it is difficult to act as a thermal stress relaxation layer existing between the outer layer and the C/C composite.
また、膜厚が800μmを超えるような厚膜であれば、
急激な熱サイクル負荷による炭化けい素皮膜の破壊がお
こり易くなる。 さらに、5膜であると拡散法の性質上
C/Cコンポジットの強度を低下せしめるため好ましく
ない。In addition, if the film is thicker than 800 μm,
The silicon carbide film is more likely to be destroyed due to rapid thermal cycle loads. Furthermore, five films are not preferable because they reduce the strength of the C/C composite due to the nature of the diffusion method.
内層2は、未反応のけい素を含まない層であってもよい
が、好ましくはけい素を35重量%以下含有する層とす
る。 けい素を含有すると、仮に外層3の金属シリサイ
ド皮膜に割れが生じた場合でも、内部に存在する未反応
けい素の蒸気がその部分を通って表面に出てくるために
酸素の内部への拡散が抑制され、C/Cコンポジット自
体の本来の耐酸化性特性は損なわれない。 しかも、け
い素蒸気の一部と酸素の反応によりシリカを生成し、こ
れが炭化けい素皮膜に生じた割れを塞ぐ封孔処理剤とし
ての機能も果たすことができる。The inner layer 2 may be a layer that does not contain unreacted silicon, but preferably contains 35% by weight or less of silicon. If silicon is contained, even if a crack occurs in the metal silicide film of the outer layer 3, the unreacted silicon vapor existing inside will pass through that part and come out to the surface, preventing oxygen from diffusing into the interior. is suppressed, and the original oxidation resistance properties of the C/C composite itself are not impaired. Furthermore, silica is produced by the reaction between a portion of silicon vapor and oxygen, and this can also function as a sealing agent for sealing cracks that occur in the silicon carbide film.
けい素が、35重量%を超えると、けい素の融点以上の
温度で使用した場合、未反応のけい素の流動が激しくな
り炭化けい素皮膜の剥離を促すことになるため好ましく
ない。If the silicon content exceeds 35% by weight, unreacted silicon will flow violently if used at a temperature higher than the melting point of silicon, which will promote peeling of the silicon carbide film, which is not preferable.
また、外層3として炭化けい素の皮膜の上には、さらに
プラズマ溶射法により金属シリサイド皮膜が形成される
。Further, as the outer layer 3, a metal silicide film is further formed on the silicon carbide film by a plasma spraying method.
プラズマ溶射により得られた皮膜の厚さは、200〜1
000μmの範囲であることが好ましい。 200μ
mよりも薄いと、C/Cコンポジットの耐酸化皮膜とし
て十分に働き難いからであり、逆に1000μmを超え
ると熱応力緩和能が低下して割れの発生する場合が多く
なるために好ましくない。The thickness of the film obtained by plasma spraying is 200 to 1
000 μm range is preferable. 200μ
If it is thinner than m, it is difficult to function sufficiently as an oxidation-resistant film of the C/C composite, and if it exceeds 1000 μm, the thermal stress relaxation ability decreases and cracks often occur, which is not preferable.
プラズマ溶射に供される金属シリサイドを形成する金属
は、バリウム、チタン、ジルコニウム、バナジウム、タ
ンタル、モリブデンおよびマンガンの中から選ばれ、そ
のなかでも特にモリブデン、ジルコニウム、マンガンの
各シリサイドは優れた耐酸化特性を示す。The metal forming the metal silicide subjected to plasma spraying is selected from barium, titanium, zirconium, vanadium, tantalum, molybdenum, and manganese, and among these, molybdenum, zirconium, and manganese silicides have particularly excellent oxidation resistance. Show characteristics.
次に、上述の本発明の耐酸化性炭素!a維強化炭素材料
の好ましい製造方法について説明する。Next, the above-mentioned oxidation-resistant carbon of the present invention! A preferred method for producing the fiber-reinforced carbon material will be described.
本発明の製造方法は、C/Cコンポジットの耐酸化皮膜
として、最初に拡散法によりC/Cコンポジットの表面
に炭化けい素皮膜をつくり、次にプラズマ溶射法により
炭化けい素皮膜の表面に多孔質な金属シリサイドの外層
を形成する。In the manufacturing method of the present invention, as an oxidation-resistant film for a C/C composite, a silicon carbide film is first created on the surface of the C/C composite by a diffusion method, and then a porous silicon carbide film is formed on the surface of the silicon carbide film by a plasma spraying method. Forms an outer layer of high quality metal silicide.
拡散法は、けい素を含むガスおよび/またはけい素を含
む液体とC/Cコンポジット基体とを反応させて、C/
Cコンポジットの表面を炭化けい素に転化する方法であ
る。 この方法によれば、C/Cコンポジットの表層部
を炭化けい素化するので、C/Cコンポジットとの密着
性が強固になり、熱衝撃によっても容易に剥離を起こさ
ないという長所がある。The diffusion method involves reacting a silicon-containing gas and/or a silicon-containing liquid with a C/C composite substrate to form a C/C composite substrate.
This method converts the surface of C composite into silicon carbide. According to this method, since the surface layer of the C/C composite is made into silicon carbide, the adhesiveness with the C/C composite is strong, and there is an advantage that peeling does not easily occur even under thermal shock.
また、未反応のけい素を容易に炭化けい素皮膜の中に介
在させ得ることにもある。Another advantage is that unreacted silicon can be easily interposed in the silicon carbide film.
その具体的な方法としては、けい素粉床内部にC/Cコ
ンポジットを埋没させ、不活性ガスヌ囲気下1500〜
1700℃の温度範囲で30〜600分間反応を行なわ
せ、C/Cコンポジットの表層部を炭化けい素化すると
いうものである。The specific method is to bury the C/C composite inside the silicon powder bed and heat it under an inert gas atmosphere for 1,500~
The reaction is carried out in a temperature range of 1700° C. for 30 to 600 minutes to convert the surface layer of the C/C composite into silicon carbide.
ここで、反応温度が1500℃より低いと炭化けい素皮
膜の形成速度が非常に遅く、所望の膜厚のものを得るに
は長時間を要するために非効率的であり、1700℃よ
り高温での反応は、C/Cコンポジットの炭化けい素化
反応が内部にまで進行し、炭素繊維本来の持つ特性が損
なわれるために好ましくない。Here, if the reaction temperature is lower than 1500°C, the formation rate of the silicon carbide film is very slow and it takes a long time to obtain the desired film thickness, which is inefficient. This reaction is not preferable because the silicon carbide reaction of the C/C composite progresses to the inside, impairing the characteristics inherent to the carbon fiber.
反応時間については、30分より短いと炭化けい素皮膜
の形成が不均一かつ不十分に起こるために好ましくない
。 逆に600分を超えて反応させるとC/Cコンポジ
ット内部まで炭化けい素化反応が進行し、炭素材料の持
つ特性を喪失するために好ましくない。Regarding the reaction time, if it is shorter than 30 minutes, the formation of the silicon carbide film will occur unevenly and insufficiently, which is not preferable. On the other hand, if the reaction time exceeds 600 minutes, the silicon carbide reaction progresses to the inside of the C/C composite, which is not preferable because the characteristics of the carbon material are lost.
また、けい素粉末のみを反応に用いると、反応中に焼結
が起こってC/Cコンポジットを取り出せなくなるので
、高温で安定なセラミック粉末、例えば炭化けい素、ア
ルミナ、シリカ等を加えてやることによりハンドリング
性が向北する。Also, if only silicon powder is used in the reaction, sintering will occur during the reaction and the C/C composite will not be able to be taken out, so it is recommended to add ceramic powder that is stable at high temperatures, such as silicon carbide, alumina, silica, etc. This improves handling.
ただし、セラミック粉末の混合量が85重量%を超える
とC/Cコンポジット表層の炭化けい素化反応に悪影響
を及ぼすので避けるべきである。However, if the amount of ceramic powder mixed exceeds 85% by weight, it should be avoided since it will have an adverse effect on the silicon carbide reaction of the surface layer of the C/C composite.
拡散法において用いられるけい素は、純度95%以上、
粒径100μm以下であることが必要であり、そのなか
でも純度99%以上で、マグネシウム、アルミニウム、
鉄および/*たけそれらの酸化物の含有量の合計が1重
量%以下、粒径10μm以下であることが特に好ましい
。 すなわち、純度が95%未満であり、しかも前述の
不純物が含まれていると、C/Cコンポジットの表層部
に生成した炭化けい素皮膜の酸化開始温度を低下させる
からである。 この傾向は、特にマグネシウムおよび/
またはマグネシウムの酸化物が含まれている場合に著し
い。 粒径が100μmより大きい場合は前述のセラミ
ック粉末を加える場合にけい素との均一な混合が難しく
なるため好ましくない。The silicon used in the diffusion method has a purity of 95% or more,
The particle size must be 100 μm or less, and the purity must be 99% or more, including magnesium, aluminum,
It is particularly preferable that the total content of iron and/or oxides thereof is 1% by weight or less and the particle size is 10 μm or less. That is, if the purity is less than 95% and the above-mentioned impurities are contained, the oxidation start temperature of the silicon carbide film formed on the surface layer of the C/C composite will be lowered. This trend is especially true for magnesium and/or
or significant if it contains magnesium oxides. If the particle size is larger than 100 μm, it is not preferable because it becomes difficult to mix uniformly with silicon when adding the above-mentioned ceramic powder.
本方法によって得られる炭化けい素皮膜は多孔質である
必要がある。The silicon carbide film obtained by this method needs to be porous.
多孔質膜を得る場合には、1500〜
1700℃の温度で30〜300分間反応させることに
より得られる。 この場合に、炭化けい素の焼結助剤と
して、はう素を添加するけい素の0.5瓜量%未満加え
てやると、多孔質でかつ高強度な皮膜を得ることができ
る。When obtaining a porous membrane, it can be obtained by reacting at a temperature of 1500 to 1700°C for 30 to 300 minutes. In this case, if boron is added as a sintering aid for silicon carbide in an amount of less than 0.5% of the silicon to be added, a porous and high-strength film can be obtained.
この他、具体的な方法としてSiOガスとC/Cコンポ
ジットの反応による炭化けい未形成等があげられるが、
必ずしも以上の方法には限定されない。In addition, specific methods include non-formation of silicon carbide through the reaction of SiO gas and C/C composite, etc.
The method is not necessarily limited to the above method.
以上の方法によって得られた炭化けい素の皮膜の上には
、さらにプラズマ溶射法を用いて金属シリサイド皮膜が
形成される。A metal silicide film is further formed on the silicon carbide film obtained by the above method using a plasma spraying method.
金属シリサイドの形成は、プラズマ溶射法によることが
好ましい。Preferably, the metal silicide is formed by plasma spraying.
プラズマ溶射とは、粉末原料がプラズマジェット中に供
給され、溶融しつつ加速され飛行して素材に衝突し、素
材に濡れながら熱を奪われ固化して皮膜を形成するとい
う一連の挙動から成り立っている。 プラズマ溶射によ
り皮膜を得ることの利点は、
(1)プラズマジェット流速が速いので、溶融粒子の衝
突エネルギーが大きくなり、結合力の強い皮膜が得られ
る。Plasma spraying consists of a series of actions in which a powder raw material is fed into a plasma jet, melts, accelerates, flies, and collides with the material, where it absorbs heat while getting wet with the material and solidifies to form a film. There is. The advantages of obtaining a film by plasma spraying are: (1) Since the plasma jet flow rate is high, the collision energy of the molten particles becomes large, and a film with strong bonding force can be obtained.
(2)素材の温度は普通200℃以上には加熱されない
ので、素材の機械強度を劣化させたり、熱歪を与えない
。(2) Since the temperature of the material is not normally heated above 200°C, the mechanical strength of the material will not deteriorate or thermal distortion will occur.
(3)コーティング速度が速く、低コストで厚い皮膜を
得ることができる。(3) The coating speed is fast and a thick film can be obtained at low cost.
という点等が挙げられる。The following points can be mentioned.
C/Cコンポジットおよびその上部に形成した炭化けい
素皮膜には凹凸が多数存在するために、アンカー効果に
よる結合力の強い皮膜を得ることができ、しかも金属シ
リサイドは炭化けい素との化学的親和性に優れているた
めに、剥離か起こり難くなる。Since the C/C composite and the silicon carbide film formed on it have many irregularities, it is possible to obtain a film with strong bonding strength due to the anchor effect, and metal silicide has a chemical affinity with silicon carbide. Because of its excellent properties, peeling is less likely to occur.
上述の長所に加えて、プラズマ溶射により得られた皮膜
は適度にポーラスであるため、急激な熱サイクル負荷に
対しても皮膜内部で応力を吸収するために割れには至ら
ない。 一般に、耐酸化皮膜は酸素の拡散を防ぐために
緻密なものが好ましいとされているが、緻密であればあ
るほど熱負荷に伴う応力を吸収できずに破壊に至ること
が多かった。 本発明では、プラズマ溶射皮膜の持つ多
孔性と、耐酸化特性に優れた素材の還定により、熱応力
により破壊されない耐酸化皮膜を得ることに成功したの
である。In addition to the above-mentioned advantages, the coating obtained by plasma spraying is moderately porous, so even when subjected to sudden thermal cycle loads, the stress is absorbed within the coating and cracking does not occur. Generally, it is said that a dense oxidation-resistant film is preferable in order to prevent oxygen diffusion, but the denser the film, the more likely it is that it cannot absorb the stress associated with heat load, leading to destruction. In the present invention, we have succeeded in obtaining an oxidation-resistant coating that will not be destroyed by thermal stress by utilizing the porosity of the plasma sprayed coating and using a material with excellent oxidation resistance.
プラズマ溶射を行なう際、反応条件として原料供給量、
溶射温度等を規定する必要がある。When performing plasma spraying, the reaction conditions include the amount of raw material supplied,
It is necessary to specify the thermal spraying temperature, etc.
以上の方法により、C/Cコンポジットへの耐酸化被覆
を行なうことができる。 この方法によれば、熱サイク
ル負荷に耐え、しかも耐酸化特性に優れた皮膜を得るこ
とができる。By the above method, oxidation-resistant coating can be applied to the C/C composite. According to this method, it is possible to obtain a film that can withstand thermal cycle loads and has excellent oxidation resistance.
〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.
(実施例1)
基体として用いるC/Cコンポジットは、以下に述べる
方法によって作成した。(Example 1) A C/C composite used as a substrate was created by the method described below.
熱硬化性を示すフェノールホルムアルデヒド樹脂(鐘紡
■製、商品名ベルバール)が25重■%になるようにメ
タノールで溶解希釈した溶液に、東邦レーヨン■製炭素
繊維クロス“ベスファイト#3101” (高強度タイ
プ炭素繊維使用)に含浸した。 樹脂目付は量として8
5g/m’であった。A thermosetting phenol formaldehyde resin (manufactured by Kanebo ■, trade name Belbar) was dissolved and diluted with methanol to a concentration of 25% by weight, and carbon fiber cloth "Besphite #3101" (high strength) manufactured by Toho Rayon ■ was added to the solution. (type carbon fiber used) impregnated. The resin basis weight is 8 as an amount.
It was 5 g/m'.
その後、オーブン中で80℃、30分間乾燥してメタノ
ールを揮発させ、樹脂含浸炭素繊維クロスを得た。 こ
のクロスを15枚積層しオートクレーブにより50 k
gf/cm”の圧力下159℃で60分間加熱加圧成形
し、炭素繊維強化プラスチツク板を得た。 つぎに、該
炭素繊維強化プラスチツク板をアルゴンガス霊囲気中で
20℃/ Hrの昇温速度で2000℃まで焼成して厚
さ2mmのC/Cコンポジットを得た。 このようにし
て得られたC/Cコンポジットは、さらにピッチの含浸
−焼成という緻密化処理を4回繰り返して行い、曲げ強
度15kgf/mm’ 層間剪断強度1 、01 k
gf/mm2、密度1.53g/cm3の高強度C/C
コンポジットとした。Thereafter, it was dried in an oven at 80° C. for 30 minutes to volatilize methanol to obtain a resin-impregnated carbon fiber cloth. Laminate 15 sheets of this cloth and autoclave it for 50k.
A carbon fiber-reinforced plastic board was obtained by heating and press-forming at 159°C for 60 minutes under a pressure of "gf/cm". Next, the carbon fiber-reinforced plastic board was heated at a temperature of 20°C/Hr in an argon gas atmosphere. A C/C composite with a thickness of 2 mm was obtained by firing at a speed of up to 2000°C.The C/C composite thus obtained was further subjected to a densification process of pitch impregnation and firing four times. Bending strength: 15 kgf/mm' Interlaminar shear strength: 1,01 k
High strength C/C with gf/mm2 and density 1.53g/cm3
Composite.
以上の方法により得られたC/Cコンポジットを101
00x50X2の大きさに切り出し、けい素(粒径10
μm以下、純度99.9%、高純度化学■製)60重量
%、炭化けい素(平均粒径1.0μm、純度99.7%
昭和電工■製)40重量%をボールミル中で3時間混合
した無機粉末混合物中に埋没させるようにして黒鉛るつ
ぼの中に入れた。 このようにして調製した試料を高周
波読導加熱炉内に静置し、アルゴンガス10℃/分 流
通 下1550℃で600分反応を行わせ、C/Cコ
ンポジットに平均膜厚694μmの炭化けい素皮膜を被
覆した。 この炭化けい素皮膜内に含まれる未反応のけ
い素は、酸洗法による重量減少から計算したところ、炭
化けい素皮膜に対して12.7重量%であった。The C/C composite obtained by the above method was
Cut it out to a size of 00x50x2, and add silicon (particle size 10
μm or less, purity 99.9%, made by Kojundo Kagaku ■) 60% by weight, silicon carbide (average particle size 1.0μm, purity 99.7%)
40 wt. The sample thus prepared was placed in a high-frequency reading heating furnace and reacted for 600 minutes at 1550°C with argon gas flowing at 10°C/min. Covered with a bare film. The unreacted silicon contained in this silicon carbide film was calculated from the weight loss due to the pickling method, and was 12.7% by weight based on the silicon carbide film.
上述の方法によって得られた拡散法による炭化けい素皮
膜を有するC/Cコンポジットに、さらにプラズマ溶射
法によりモリブデンシリサイドを被覆した。 用いた装
置はプラズマ技研■製であった。The C/C composite having a silicon carbide film obtained by the diffusion method obtained by the above method was further coated with molybdenum silicide by a plasma spraying method. The equipment used was manufactured by Plasma Giken ■.
用いたモリブデンシリサイドの平均粒径は1.5μm、
アウトサイド粉末供給方式により30 g / m i
nの供給により行なった。 用いたプラズマガスはア
ルゴン、プラズマジェットの速度はマツハ1であった。The average particle size of the molybdenum silicide used was 1.5 μm.
30 g/mi by outside powder feeding method
This was done by supplying n. The plasma gas used was argon, and the speed of the plasma jet was Matsuha 1.
このプラズマ溶Q]によりモリブデンシリサイドの皮
膜を約500μm被覆した。This plasma melt Q] coated the film with a molybdenum silicide film of about 500 μm.
以上の方法により得られた耐酸化被覆されたC/Cコン
ポジットについて、空気中マツハ2のアルゴンプラズマ
に30分間曝露し、そのときの重量減少率について測定
した。 アルゴンプラズマのC/Cコンポジットへの曝
露中心温度は1500℃とした。 この結果を表1に示
した。The oxidation-resistant coated C/C composite obtained by the above method was exposed to Matsuha 2 argon plasma in air for 30 minutes, and the weight loss rate at that time was measured. The temperature at the center of exposure of the argon plasma to the C/C composite was 1500°C. The results are shown in Table 1.
(実施例2)
実施例1と同じ方法で得られたC/Cコンポジットを1
0100x50x2の大きさに切出し、高周波誘導加熱
炉内に静置した。 SiO源として、けい素と5t0
2を重量比で1:1になるように混合した原料を黒鉛る
つぼに入れ、前述の高周波誘導加熱炉内に同じように挿
入した。 この状態で、Arガス5 fl / m i
n流通下、1700℃まで2時間かけて昇温し、その
温度で3時間保持することにより、C/Cコンポジット
のSiC化反応を行なった。 得られた皮膜の厚さは4
10μmであった。(Example 2) A C/C composite obtained by the same method as Example 1 was
It was cut into a size of 0.100 x 50.0 x 2 and placed in a high frequency induction heating furnace. Silicon and 5t0 as SiO sources
2 were mixed at a weight ratio of 1:1 and placed in a graphite crucible, which was similarly inserted into the high frequency induction heating furnace described above. In this state, Ar gas 5 fl/m i
The C/C composite was subjected to a SiC reaction by raising the temperature to 1700° C. over 2 hours under n-flow and holding it at that temperature for 3 hours. The thickness of the obtained film was 4
It was 10 μm.
この方法により炭化けい素皮膜を有するC/Cコンポジ
ットを得た後、実施例1と同様の方法でモリブデンシリ
サイドの皮膜を500μm形成させた。After obtaining a C/C composite having a silicon carbide film by this method, a 500 μm thick molybdenum silicide film was formed in the same manner as in Example 1.
このようにして得られた試料を実施例1と同様の方法で
空気酸化試験を行ない、その後物性測定を行なった。The sample thus obtained was subjected to an air oxidation test in the same manner as in Example 1, and then its physical properties were measured.
(比較例1)
拡散法による反応条件を1400℃で200分間とした
以外は、実施例1と同様の方法で行なった。 C/C
コンポジット上に形成された炭化けい素皮膜の膜厚は、
電子顕微鏡観察から34μmであった。(Comparative Example 1) The same method as in Example 1 was carried out except that the reaction conditions for the diffusion method were changed to 1400° C. for 200 minutes. C/C
The thickness of the silicon carbide film formed on the composite is
The diameter was 34 μm when observed using an electron microscope.
その後、実施例1と同様にプラズマフレーム曝露試験を
行ない、さらに酸化テストを行なった。Thereafter, a plasma flame exposure test was conducted in the same manner as in Example 1, and an oxidation test was also conducted.
(比較例2)
モリブデンシリサイドの皮膜厚さを146μmにした以
外は、実施例1と同様の方法で被覆を行なった。 膜厚
は電子顕微鏡観察により測定した。(Comparative Example 2) Coating was carried out in the same manner as in Example 1, except that the thickness of the molybdenum silicide film was 146 μm. The film thickness was measured by electron microscopy.
その後、実施例1と同様にプラズマフレーム曝露試験を
行ない、さらに酸化テストを行なった。Thereafter, a plasma flame exposure test was conducted in the same manner as in Example 1, and an oxidation test was also conducted.
(比較例3)
モリブデンシリサイドの膜厚を1500μmにした以外
は、実施例1と同様の方法で行なりた。 膜厚測定は、
電子顕微鏡写真を用いて行なった。(Comparative Example 3) The same method as in Example 1 was carried out except that the film thickness of molybdenum silicide was set to 1500 μm. Film thickness measurement is
This was done using electron micrographs.
その後、実施例1と同様にプラズマフレーム曝露試験を
行ない、その後物性測定を行なった。Thereafter, a plasma flame exposure test was conducted in the same manner as in Example 1, and then physical properties were measured.
表 1
〈発明の効果〉
本発明の耐酸化性炭素繊維強化炭素材料は、その耐熱性
、耐酸化性、比強度が極めて優れており、特に航空、宇
宙産業や原子力産業では欠くことのできない素材として
用いることができる。Table 1 <Effects of the Invention> The oxidation-resistant carbon fiber-reinforced carbon material of the present invention has extremely excellent heat resistance, oxidation resistance, and specific strength, and is an indispensable material particularly in the aviation, space, and nuclear industries. It can be used as
本発明の製造方法は、最初に拡散法により炭素繊維強化
炭素材料基体の表面を炭化けい素化した後、プラズマ溶
射法により炭素繊維強化炭素材料の表面に多孔質の金属
シリサイドを形成するため、基体と耐酸化皮膜、金属シ
リサイド同志が強固に密着し、耐酸化皮膜がアンカー効
果を持っている炭素繊維強化炭素材料が製造でき、急激
な熱衝撃、熱サイクル負荷がかかつても耐酸化皮膜に、
割れ、剥離が起こらず、炭素繊維強化炭素材料自体の本
来の特性は損なわれない。The manufacturing method of the present invention first converts the surface of a carbon fiber reinforced carbon material base into silicon carbide by a diffusion method, and then forms a porous metal silicide on the surface of the carbon fiber reinforced carbon material by a plasma spraying method. Carbon fiber-reinforced carbon materials can be produced in which the substrate, oxidation-resistant film, and metal silicide are in close contact with each other, and the oxidation-resistant film has an anchoring effect, and the oxidation-resistant film remains strong even under sudden thermal shock and thermal cycle loads. ,
No cracking or peeling occurs, and the original properties of the carbon fiber reinforced carbon material itself are not impaired.
第1図は、本発明によって得られた耐酸化被覆を施した
C/Cコンポジットの概略断面図を表わしたものである
。
符号の説明
1・・・C/Cコンポジット、
2・・・内層、
3・・・外層、
4・・・ボア(孔)FIG. 1 shows a schematic cross-sectional view of a C/C composite provided with an oxidation-resistant coating obtained according to the present invention. Explanation of symbols 1... C/C composite, 2... Inner layer, 3... Outer layer, 4... Bore (hole)
Claims (6)
化けい素皮膜の内層を有し、さらに該炭化けい素皮膜上
に多孔質な金属シリサイドの外層を有することを特徴と
する耐酸化性炭素繊維強化炭素材料。(1) Oxidation resistance characterized by having an inner layer of a porous silicon carbide film on the surface of the carbon fiber-reinforced carbon material base, and further having an outer layer of porous metal silicide on the silicon carbide film. carbon fiber reinforced carbon material.
の膜厚である請求項1に記載の耐酸化性炭素繊維強化炭
素材料。(2) The inner layer silicon carbide film has a thickness of 45 to 800 μm.
The oxidation-resistant carbon fiber-reinforced carbon material according to claim 1, which has a film thickness of .
載の耐酸化性炭素繊維強化炭素材 料。(3) The oxidation-resistant carbon fiber-reinforced carbon material according to claim 1 or 2, wherein the metal silicide film of the outer layer has a thickness in the range of 200 to 1000 μm.
、チタン、ジルコニウム、バナジウム、タンタル、モリ
ブデンおよびマンガンより選択されるものである請求項
1〜3のいずれかに記載の耐酸化性炭素繊維強化炭素材
料。(4) The oxidation-resistant carbon fiber reinforced carbon according to any one of claims 1 to 3, wherein the metal forming the metal silicide is selected from barium, titanium, zirconium, vanadium, tantalum, molybdenum, and manganese. material.
多孔質または緻密な炭化けい素皮膜の内層を形成せしめ
、さらに該炭化けい素皮膜上にプラズマ溶射法により多
孔質な金属シリサイドの外層を形成することを特徴とす
る耐酸化性炭素繊維強化炭素材料の製造方法。(5) A porous or dense inner layer of silicon carbide film is formed on the surface of the carbon fiber-reinforced carbon material substrate by a diffusion method, and an outer layer of porous metal silicide is further formed on the silicon carbide film by a plasma spraying method. A method for producing an oxidation-resistant carbon fiber-reinforced carbon material.
00〜1700℃の温度で30〜 600分間炭素繊維強化炭素材料とけい素を含むガスお
よび/または液体との間で化学反応させることにより得
る請求項5に記載の耐酸化性炭素繊維強化炭素材料の製
造方法。(6) The silicon carbide film is heated for 15 minutes under an inert gas atmosphere.
The oxidation-resistant carbon fiber-reinforced carbon material according to claim 5 obtained by chemically reacting the carbon fiber-reinforced carbon material with a silicon-containing gas and/or liquid at a temperature of 00 to 1700°C for 30 to 600 minutes. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63224937A JPH0274670A (en) | 1988-09-08 | 1988-09-08 | Oxidation-resistant carbon fiber-reinforced material and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63224937A JPH0274670A (en) | 1988-09-08 | 1988-09-08 | Oxidation-resistant carbon fiber-reinforced material and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0274670A true JPH0274670A (en) | 1990-03-14 |
Family
ID=16821523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63224937A Pending JPH0274670A (en) | 1988-09-08 | 1988-09-08 | Oxidation-resistant carbon fiber-reinforced material and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0274670A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02102171A (en) * | 1988-10-11 | 1990-04-13 | Nichias Corp | Refractory for ceramic calcination |
JPH03288639A (en) * | 1990-04-05 | 1991-12-18 | Mitsui Eng & Shipbuild Co Ltd | Heat insulating material |
CN108530110A (en) * | 2018-06-08 | 2018-09-14 | 中南大学 | A kind of superhigh temperature ceramics coating of C/C composite materials and preparation method thereof |
-
1988
- 1988-09-08 JP JP63224937A patent/JPH0274670A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02102171A (en) * | 1988-10-11 | 1990-04-13 | Nichias Corp | Refractory for ceramic calcination |
JPH0543660B2 (en) * | 1988-10-11 | 1993-07-02 | Nichias Corp | |
JPH03288639A (en) * | 1990-04-05 | 1991-12-18 | Mitsui Eng & Shipbuild Co Ltd | Heat insulating material |
JPH0681713B2 (en) * | 1990-04-05 | 1994-10-19 | 三井造船株式会社 | Insulation |
CN108530110A (en) * | 2018-06-08 | 2018-09-14 | 中南大学 | A kind of superhigh temperature ceramics coating of C/C composite materials and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2275130C (en) | Composite material with ceramic matrix and sic fiber reinforcement, method for making same | |
US6355206B1 (en) | Sic-C/C composite material, uses thereof, and method for producing the same | |
US5067999A (en) | Method for providing a silicon carbide matrix in carbon-fiber reinforced composites | |
JP2000169249A (en) | Ceramic composite material | |
KR20020025875A (en) | Composite Carbonaceous Heat Insulator | |
WO2002098819A1 (en) | Method for producing sic fiber-reinforced sic composite material | |
JP3034084B2 (en) | Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same | |
JPH05339056A (en) | Oxidation-resistant member composed of carbon-carbon composite having sic doped matrix and production thereof | |
KR20000009035A (en) | Ceramic-contained carbon-carbon composite material and process for producing the same | |
JPH0274670A (en) | Oxidation-resistant carbon fiber-reinforced material and production thereof | |
JP5769519B2 (en) | Fiber material for reinforcement, fiber-reinforced ceramic composite material using fiber material for reinforcement, and method for producing the same | |
JPH0274671A (en) | Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof | |
JPH0291270A (en) | Oxidation-resistant carbon fiber-reinforced carbon material and production thereof | |
JP3562989B2 (en) | Composite having thermal sprayed layer and method for producing the same | |
JPH0274669A (en) | Carbon fiber-reinforced carbon material having oxidation resistance and production thereof | |
JPH03197377A (en) | Carbon fiber-reinforced composite material and its production | |
JP3853035B2 (en) | Oxidation resistant C / C composite and method for producing the same | |
JPH01320152A (en) | Carbon fiber reinforced carbon material | |
JPH0274668A (en) | Carbon fiber-reinforced carbon material having oxidation resistance and production thereof | |
JPH06183863A (en) | Production of oxidation-resistant carbon fiber-reinforced carbon composite material | |
JPH03205358A (en) | Production of carbon fiber-reinforced carbon composite material | |
JPH05170577A (en) | Method for anti-oxidizing coating of carbon fiber reinforced carbon composite material using coating method | |
JPH0648867A (en) | Production of boron carbide-coated carbon material | |
JPH03177358A (en) | Carbon fiber-reinforced carbon composite material and its production | |
JPH08253876A (en) | High adhesion oxidation resistant coating film for c/c composite material and its formation |