JPH03197377A - Carbon fiber-reinforced composite material and its production - Google Patents

Carbon fiber-reinforced composite material and its production

Info

Publication number
JPH03197377A
JPH03197377A JP1336958A JP33695889A JPH03197377A JP H03197377 A JPH03197377 A JP H03197377A JP 1336958 A JP1336958 A JP 1336958A JP 33695889 A JP33695889 A JP 33695889A JP H03197377 A JPH03197377 A JP H03197377A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
surface layer
metal silicide
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1336958A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hasegawa
和広 長谷川
Tsuneo Kaneshiro
庸夫 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1336958A priority Critical patent/JPH03197377A/en
Publication of JPH03197377A publication Critical patent/JPH03197377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the subject composite material capable of preventing fine cracks due to cyclic load by calcining a carbon fiber preform impregnated with an Mo powder-containing resin, modifying the surface layer into an Mo carbide material layer and subsequently applying a metal silicide thereto. CONSTITUTION:A carbon fiber preform and an Mo powder-blended resin contained in the surface layer and/or the whole body of the carbon fiber preform structure are calcined in a monolithic state to modify the surface layer into a molybdenum carbide layer and the surface layer is subsequently coated with a metal silicide to obtain the objective composite material. As the metal constituting the above-mentioned metal silicide, titanium, zirconium, tantalum, molybdenum or manganese is preferable. The content of the above-mentioned powdery metal is preferably within a range of 10-50wt.% based on the amount of the impregnated resin.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、炭素繊維強化炭素複合材料に関し、航空・宇
宙産業あるいは、原子炉用部材等の分野において、高温
酸化雰囲気下繰返し使用に耐える耐酸化性炭素繊維強化
炭素複合材料およびその製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to carbon fiber-reinforced carbon composite materials, which are used in the fields of the aerospace industry, nuclear reactor components, etc. The present invention relates to a carbon fiber-reinforced carbon composite material and a method for producing the same.

〈従来の技術〉 炭素材料は電気、熱の良導体であると同時に、耐熱性、
耐食性、潤滑性など数多くのユニークな物理的、化学的
性質を有しており、人造黒鉛電極、冶金用炭素・黒鉛製
品、放電加工用電極、電機用ブラシ、機械用炭素製品な
ど広範囲の分野に用いられている。
<Conventional technology> Carbon materials are good conductors of electricity and heat, and at the same time have heat resistance and
It has many unique physical and chemical properties such as corrosion resistance and lubricity, and is used in a wide range of fields such as artificial graphite electrodes, metallurgical carbon and graphite products, electrical discharge machining electrodes, electrical brushes, and mechanical carbon products. It is used.

炭素繊維強化炭素複合材料(−以下、C70という、)
はそのなかでも特に比強度が、大きく、炭素材料の持つ
優れた特性も兼ね備えているため、従来の材料では適用
できない部位、例えばロケットのノーズコーンやノズル
などへの適用が可能になる。
Carbon fiber reinforced carbon composite material (-hereinafter referred to as C70)
Because it has particularly high specific strength and also has the excellent properties of carbon materials, it can be applied to areas where conventional materials cannot be used, such as rocket nose cones and nozzles.

しかしながら、C70を含めた炭素材料は、一般に50
0℃程度から酸化を受け、それ自身の持つ優れた物理的
・化学的性質が低下するため、高温酸化雰囲気下での使
用は困難であフた。
However, carbon materials including C70 are generally 50
Since it undergoes oxidation from about 0°C and its own excellent physical and chemical properties deteriorate, it was difficult to use it in a high-temperature oxidizing atmosphere.

この現象を防止するために、従来から炭素材料の耐酸化
処理方法については種々の検討がなされてきた。 その
なかで、化学気相蒸着法(以下CVDという)による炭
素材料へのセラミック被覆は最も一般的に行われている
方法の一つであり、例えば、炭化けい素、炭化チタン、
炭化ハフニウム、炭化タンタル等の炭化物、窒化けい素
、窒化チタン、窒化はう素、窒化ジルコニウム等の窒化
物、アルミナ、ジルコニア、シリカ等の酸化物、はう化
へフニウム等のほう化物等積々の被覆を行うことができ
る。
In order to prevent this phenomenon, various studies have been made regarding oxidation-resistant treatment methods for carbon materials. Among these, ceramic coating on carbon materials by chemical vapor deposition (hereinafter referred to as CVD) is one of the most commonly used methods.For example, silicon carbide, titanium carbide,
Carbides such as hafnium carbide and tantalum carbide, nitrides such as silicon nitride, titanium nitride, boron nitride, and zirconium nitride, oxides such as alumina, zirconia, and silica, borides such as hefnium hydride, etc. coating can be performed.

しかしながら、この方法では基体となる炭素材料の温度
を1000℃もしくはそれ以上にまで加熱しなければな
らない場合が多く、基体の冷却時に表面のセラミック皮
膜が割れたり剥離する場合が多かった。 これは、基体
と析出させるセラミック間の熱膨張率差が大きく、最大
歪が追随できないことが原因であり、基体の熱膨張率を
析出させるセラミックとほぼ同程度にすることにより解
決できる。
However, in this method, it is often necessary to heat the carbon material serving as the base to 1000° C. or higher, and the ceramic coating on the surface often cracks or peels off when the base is cooled. This is because the difference in thermal expansion coefficient between the base and the precipitated ceramic is large and the maximum strain cannot be followed.This can be solved by making the thermal expansion coefficient of the base almost the same as that of the precipitated ceramic.

しかし、C70を基体として用いた場合、その熱膨張率
は炭素Mill自体の熱膨張率に拘束されて自由に調節
することができず、またその熱膨張率に合致した耐熱耐
酸化性を有するセラミック材料もないため、第1図に示
すようにCVD法によりC701上に析出されたセラミ
ック皮膜2は、3で示す割れ、4で示す剥離を生じ、耐
酸化皮膜として利用できなかった。
However, when C70 is used as a substrate, its coefficient of thermal expansion is restricted by the coefficient of thermal expansion of the carbon mill itself and cannot be freely adjusted. Since there was no material available, the ceramic coating 2 deposited on C701 by the CVD method as shown in FIG. 1 caused cracking as indicated by 3 and peeling as indicated by 4, and could not be used as an oxidation-resistant coating.

特開昭61−26583号公報には、有機けい素高分子
化合物を溶融状態でC70に強制含浸した後、不活性雰
囲気下1200〜2000℃の温度で焼成して含浸物を
炭化けい素に転化する方法が開示されている。 しかし
ながら、この方法では、C70の密度が高い場合には溶
融状態の有機けい素高分子化合物を均一に含浸すること
ができず、その結果アンカー効果による高い密着性を有
する皮膜が得られない、 このような皮膜では、繰返し
高温で使用する場合には容易に剥離が起こり、耐酸化皮
膜としては適さない。
JP-A No. 61-26583 discloses that after C70 is forcibly impregnated with an organosilicon polymer compound in a molten state, the impregnated material is converted into silicon carbide by firing at a temperature of 1200 to 2000°C in an inert atmosphere. A method is disclosed. However, with this method, when the density of C70 is high, it is not possible to uniformly impregnate the organosilicon polymer compound in a molten state, and as a result, a film with high adhesion due to the anchor effect cannot be obtained. Such a film easily peels off when used repeatedly at high temperatures, making it unsuitable as an oxidation-resistant film.

また、特開昭62−153164号公報には、C/C表
面に熱硬化性樹脂と有機りん化合物を付与した後、該混
合物を硬化および炭化処理するという方法が開示されて
いる。 しかし同公報の実施例に示されるように、上記
処理を施したC70においても1000℃以下の温度で
lO重量%程度の重量減少があるため熱負荷の大きな部
位への通用は困難である。
Further, Japanese Patent Application Laid-open No. 153164/1984 discloses a method in which a thermosetting resin and an organic phosphorus compound are applied to the C/C surface, and then the mixture is hardened and carbonized. However, as shown in the Examples of the same publication, even C70 subjected to the above treatment has a weight loss of about 10% by weight at temperatures below 1000° C., so it is difficult to apply it to areas with large heat loads.

さらに特開昭61−27248号公報には、C70に拡
散法による炭化けい素被覆を行い、その外表面にCVD
法により窒化けい素皮膜を形成する方法が開示されてい
る。 この方法によれば、ある程度有効な耐酸化皮膜の
形成が可能となるが、窒化けい素を用いているため使用
可能温度が約1400℃と低く、しかも高温での強度低
下が大きいため熱負荷の大きな部位への適用は困難であ
る・。
Furthermore, in JP-A No. 61-27248, C70 is coated with silicon carbide by a diffusion method, and its outer surface is coated with CVD.
A method of forming a silicon nitride film by a method is disclosed. According to this method, it is possible to form a somewhat effective oxidation-resistant film, but since silicon nitride is used, the usable temperature is as low as approximately 1400°C, and the strength decreases significantly at high temperatures, so the heat load is reduced. Difficult to apply to large areas.

一般炭素材料へ炭化けい素被覆を施した特許としては、
特開昭60−155586号公報があげられる。 この
方法は、炭素基体を炭化けい米粉末中に埋没させ、ハロ
ゲンを含むガスの気流中で熱処理し、炭素基体の表面に
炭化けい素皮膜を形成させるものである。 この方法の
原理は、ハロゲンを含むガスが、炭化けい素の分解によ
って生じたSLガスが炭素基材と反応してその表面を炭
化けい素に転化する反応を促進していると考えられる。
Patents that apply silicon carbide coating to general carbon materials include:
JP-A-60-155586 is mentioned. In this method, a carbon substrate is buried in silicon carbide rice powder and heat-treated in a gas stream containing halogen to form a silicon carbide film on the surface of the carbon substrate. The principle of this method is thought to be that a halogen-containing gas promotes a reaction in which SL gas generated by decomposition of silicon carbide reacts with a carbon base material and converts its surface into silicon carbide.

 この方法によれば、高密度な特殊炭素材料に関しては
有効な耐酸化皮膜を形成することも可能−であるが、反
対にそれほど高密度化できないC70の場合、得られた
炭化けい素皮膜には多数の貫通孔が生じるため、効果的
な耐酸化皮膜とはなり得ない。
According to this method, it is possible to form an effective oxidation-resistant film on special high-density carbon materials, but on the other hand, in the case of C70, which cannot be made so dense, the silicon carbide film obtained is Since a large number of through holes are generated, it cannot be an effective oxidation-resistant film.

C70への耐酸化被覆方法には前述のように種々のもの
があるが、それらには下記のような問題点がある。
As mentioned above, there are various methods for coating C70 with oxidation resistance, but they have the following problems.

(1)CVD法によってC/C上に析出させた耐酸化皮
膜には、必ず熱膨張率差による割れ、剥離が生じるため
、そのままでは実用に適さない。
(1) The oxidation-resistant film deposited on C/C by the CVD method always cracks and peels due to the difference in thermal expansion coefficient, so it is not suitable for practical use as it is.

(2)耐酸化皮膜成分を含む液体を含浸させる場合には
、用いるC70の密度が高いと中心まで含浸が行えず、
それ故アンカー効果による耐酸化皮膜の密着性が失われ
るため、剥離の生じる原因となる。 しかも−見密着性
のよさそうな皮膜であっても、C70との熱膨張率差が
大きすぎるために一回以上の熱サイクル負荷によりすぐ
に割れ、剥離を生じる。
(2) When impregnating with a liquid containing oxidation-resistant film components, if the density of C70 used is high, impregnation cannot be performed to the center;
Therefore, the adhesion of the oxidation-resistant film due to the anchor effect is lost, resulting in peeling. Moreover, even if the film appears to have good adhesion, the difference in thermal expansion coefficient from that of C70 is too large, so it will easily crack and peel when subjected to one or more thermal cycles.

(3)特開昭61−27274号公報に開示されている
複層被覆方法によれば、前述の2つの方法に比べてはる
かに安定な耐酸化皮膜を得ることができるが、皮膜の高
温強度が劣るため、熱負荷の大きな部位への適用は困難
である。
(3) According to the multi-layer coating method disclosed in JP-A No. 61-27274, it is possible to obtain a much more stable oxidation-resistant film than the above two methods, but the high-temperature strength of the film is It is difficult to apply it to areas with large heat loads because of its poor performance.

本発明は、従来法の欠点である耐酸化皮膜の剥離がおさ
えられ、しかも熱サイクル負荷による微細な割れを極力
少なくした耐酸化性を有する炭素繊維強化炭素複合材料
およびその製造方法を提供することを目的とする。
An object of the present invention is to provide a carbon fiber-reinforced carbon composite material having oxidation resistance that suppresses peeling of an oxidation-resistant film, which is a drawback of conventional methods, and minimizes microscopic cracks caused by thermal cycle loads, and a method for producing the same. With the goal.

く課題を解決するための手段〉 本発明の第1の態様によれば、モリブデン炭化物を含有
する表層部およびその上に金属シリサイド皮膜を有する
ことを特徴とする炭素繊維強化炭素複合材料が提供され
る。
Means for Solving the Problems> According to a first aspect of the present invention, there is provided a carbon fiber-reinforced carbon composite material characterized by having a surface layer portion containing molybdenum carbide and a metal silicide film thereon. Ru.

ここで、前記金属シリサイドを構成する金属が、チタン
、ジルコニウム、タンタル、モリブデン、マンガンのな
かから選ばれる少なくとも1種であるのが好ましい。
Here, it is preferable that the metal constituting the metal silicide is at least one selected from titanium, zirconium, tantalum, molybdenum, and manganese.

本発明の第2の態様によれば、炭素繊維プリフォームと
、該炭素繊維プリフォーム構造内の表層部および/また
は全体に含浸されているモリブデン粉末が混入された樹
脂とを一体的に焼成することにより、表層部をモリブデ
ン炭化物層に改質し、しかる後肢表層部上に金属シリサ
イドを被覆することを特徴とする炭素繊維強化炭素複合
材料の製造方法が提供される。
According to the second aspect of the present invention, a carbon fiber preform and a resin mixed with molybdenum powder impregnated into the surface layer and/or the entire structure of the carbon fiber preform are integrally fired. Thereby, a method for manufacturing a carbon fiber reinforced carbon composite material is provided, which comprises modifying the surface layer to a molybdenum carbide layer and coating the surface layer of the hind leg with metal silicide.

上記発明において、前記金属粉末は、含浸樹脂量に対し
て10〜50重量%の範囲で含有されているのがよい。
In the above invention, the metal powder is preferably contained in an amount of 10 to 50% by weight based on the amount of the impregnated resin.

また、前記モリブデン粉末の粒径は100μm以下であ
るのが好ましい。
Moreover, it is preferable that the particle size of the molybdenum powder is 100 μm or less.

前記樹脂の含浸量がプリプレグの状態において、25〜
60重量%の範囲であるのがよい。
The impregnation amount of the resin is 25 to 25% in the prepreg state.
It is preferably in the range of 60% by weight.

また、前記焼成温度は1400〜3000℃の範囲であ
るのが好ましい。
Further, it is preferable that the firing temperature is in a range of 1400 to 3000°C.

前記金属シリサイドの被覆はプラズマ溶射によるのがよ
く、前記金属シリサイド皮膜は100〜11000uの
範囲であるのが好ましい。
The metal silicide coating is preferably carried out by plasma spraying, and the thickness of the metal silicide film is preferably in the range of 100 to 11,000 u.

〈発明の具体的構成〉 以下に本発明をさらに詳細に説明する。<Specific structure of the invention> The present invention will be explained in more detail below.

本発明で用いる炭素繊維プリフォームは、次元配向材プ
リフォーム、平織、朱子織、綾織などの二次元織布積層
プリフォーム、三次元配向材プリフォーム、フェルト、
トウ等が用いられる。
The carbon fiber preform used in the present invention includes a dimensionally oriented material preform, a two-dimensional woven fabric laminated preform such as plain weave, satin weave, and twill weave, a three-dimensionally oriented material preform, felt,
Tow etc. are used.

本発明において使用可能な樹脂は、熱可塑型としてピッ
チ、熱硬化型としてフェノール樹脂、フラン樹脂、エボ
シキ樹脂等が代表的なものとして挙げられるが、そのう
ち取扱いの容易さ、残炭率の高さ等からフェノール樹脂
が最も好ましい、 また該樹脂の含有量は、ブリブリグ
の状態において25〜60重量%の範囲であることが好
ましい、 すなわち、25重量%より少ない場合、得ら
れるC70の層間接着力が弱く、低強度なC70しか得
られず、本発明の適用分野に合致したものとは−ならな
い。
Typical resins that can be used in the present invention include pitch as a thermoplastic type, and phenolic resin, furan resin, and eboshiki resin as thermosetting types. The content of the resin is preferably in the range of 25 to 60% by weight in the form of blibrig. In other words, if it is less than 25% by weight, the interlayer adhesive strength of the resulting C70 will decrease. Only weak and low-strength C70 can be obtained, which does not meet the field of application of the present invention.

方、該樹脂含有量が601量%を超えた場合、焼成時の
熱分解ガス発生が多くなり、また樹脂の収縮による層間
割れを引き起こし、さらに、相対的に炭素繊維の含有量
が低下するため、高強度C/Cが得られ難くなる。
On the other hand, if the resin content exceeds 601% by weight, more pyrolysis gas will be generated during firing, interlayer cracking will occur due to resin contraction, and the carbon fiber content will decrease relatively. , it becomes difficult to obtain high strength C/C.

前記樹脂に混合されるモリブデンは、取扱いおよび混合
の容易さから粉末状であることが望ましく、さらにその
粒子径は100ttn以下で、細かいものほど好ましい
、 粒子径が100μmを超えると炭素繊維プリフォー
ムへの混入が困難なばかりでなく、C/C化した場合の
緻密性が損なわれ、高強度なものが得られないために好
ましくない、 また、該モリブデン粉末は、含浸樹脂量
に対して10〜50重量%の範囲で含有されていること
が好ましい。
The molybdenum mixed in the resin is preferably in powder form for ease of handling and mixing, and the particle size is 100 ttn or less, the finer the better. If the particle size exceeds 100 μm, it cannot be used as a carbon fiber preform. Not only is it difficult to mix in the molybdenum powder, but also the density is impaired when C/C is formed, making it impossible to obtain a high-strength product, which is undesirable. It is preferable that the content is in the range of 50% by weight.

含有量が10重量%より少ない場合、C/C表層部の炭
化モリブデンへの改賀が十分に進まず、従って耐酸化皮
膜の剥離を抑える、いわゆる熱応力緩和層が十分に形成
されないため好ましくない、 また、該モリブデン粉末
が50重量%を超えた場合C/Cの大部分が炭化モリブ
デンに改賀されC/C自体の特性を失うばかりか、眉間
強度低下をもたらすために好ましくない。
If the content is less than 10% by weight, conversion to molybdenum carbide in the C/C surface layer does not progress sufficiently, and therefore, a so-called thermal stress relaxation layer that suppresses peeling of the oxidation-resistant film is not sufficiently formed, which is not preferable. Moreover, if the molybdenum powder exceeds 50% by weight, most of the C/C is converted into molybdenum carbide, which is not preferable because it not only loses the characteristics of the C/C itself but also causes a decrease in glabellar strength.

炭素繊維プリフォームへのモリブデン粉末および樹脂の
含浸方法としては、例えばモリブデン粉末と樹脂をアセ
トン、メタノール、トルエン等低沸点の有機溶媒やその
混合溶媒に溶解せしめ、炭素繊維プリフォームに含浸さ
せた後、オーブンや真空乾燥器等を用いて有機溶媒を除
く方法、あるいは炭素繊維プリフォームを挟んで少なく
とも一方にモリブデン粉末と樹脂との混合物を塗布した
離型紙を重ね合わせ、加熱ロールで加熱、加圧処理して
該混合物を炭素繊維に転δ含浸させる方法等があるが、
炭素1amプリフォームに該混合物を均一に含浸できる
方法であればいかなる方法によってもよく、本発明は炭
素繊維プリフォームへのモリブデン粉末および樹脂の含
浸方法について限、定されるものではない。
A method for impregnating carbon fiber preforms with molybdenum powder and resin is, for example, dissolving molybdenum powder and resin in a low boiling point organic solvent such as acetone, methanol, toluene, or a mixed solvent thereof, and then impregnating the carbon fiber preform with the solution. , by removing the organic solvent using an oven or vacuum dryer, or by stacking release paper coated with a mixture of molybdenum powder and resin on at least one side of the carbon fiber preform, and heating and pressing with heating rolls. There are methods such as treating the mixture and impregnating carbon fiber with δ, etc.
Any method may be used as long as the carbon 1am preform can be uniformly impregnated with the mixture, and the present invention is not limited to the method of impregnating the carbon fiber preform with molybdenum powder and resin.

炭素繊維プリフォームと、該炭素繊維プリフォーム構造
内の表層部および/または全体に含浸されている金属粉
末が混入された樹脂を一体的に焼成する工程において、
焼成温度は1400℃〜3000℃の範囲であることが
好ましい、 焼成温度が1400℃より低い場合モリブ
デンと炭素間の反応が起こり難く、また得られたモリブ
デン炭化物も不安定で低強度なため、本発明の目的であ
る奇瑞性に優れた耐酸化皮膜の形成には通さない、 ま
た、焼成温度が3000℃を超える炉の製作は実際上非
常な困難を伴うため実用的でなく、また3000℃以下
の温度でも炭素−そリブダン間で十分な化学反応が進行
するため、敢えて3000℃を超える温度域で反応を行
わせる必要はない、 焼成工程において得られる炭化モ
リブデンは、その組成が必ずしも化学量論的に安定した
ものではなく、M o Cs−xの化学式で表わされる
ものも含まれていると思われる。
In the step of integrally firing a carbon fiber preform and a resin mixed with metal powder that is impregnated into the surface layer and/or the entire structure of the carbon fiber preform,
The firing temperature is preferably in the range of 1400°C to 3000°C. If the firing temperature is lower than 1400°C, the reaction between molybdenum and carbon is difficult to occur, and the obtained molybdenum carbide is also unstable and has low strength. In addition, it is impractical to manufacture a furnace with a firing temperature of over 3000°C because it is extremely difficult in practice, and it is impractical to create a furnace with a firing temperature of over 3000°C, which is the purpose of the invention. Since a sufficient chemical reaction between carbon and molybdenum proceeds even at a temperature of It is thought that the chemical formula of M o Cs-x, which is not stable in terms of stability, is also included.

以上述べた方法でC/C表層部に熱応力緩和層となり得
る炭化モリブデン層が形成できる。
By the method described above, a molybdenum carbide layer that can serve as a thermal stress relaxation layer can be formed on the C/C surface layer.

但し、この層はかなり多孔質であり、そのまま加熱空気
中に置いた場合、酸化劣化するのは避けられない、 そ
のため、さらに表層部に高温酸化雰囲気下でも安定な金
属シリサイド皮膜がプラズマ溶射法により形成される。
However, this layer is quite porous, and if left as is in heated air, it will inevitably deteriorate due to oxidation. Therefore, a metal silicide film that is stable even in high-temperature oxidizing atmospheres is added to the surface layer by plasma spraying. It is formed.

金属シリサイドの形成は、プラズマ溶射法によることが
好ましい、 プラズマ溶射法とは、粉末原料がプラズマ
ジェット中に供給され、溶融しつつ加速され飛行して素
材に衝突し、素材に濡れながら熱を奪われ側止して皮膜
を形成するという一連の挙動から成り立っている。 プ
ラズマ溶射法により皮膜を得ることの利点は以下の通り
である。
The formation of metal silicide is preferably performed by plasma spraying. In plasma spraying, a powder raw material is supplied into a plasma jet, melts, accelerates, flies, and collides with the material, absorbing heat while getting wet with the material. It consists of a series of behaviors such as stopping on the side and forming a film. The advantages of obtaining a coating by plasma spraying are as follows.

(1)プラズマジェット流速が速いので、溶融粒子の衝
突エネルギーが大きくなり、結合力の強い皮膜が得られ
る。
(1) Since the plasma jet flow rate is high, the collision energy of the molten particles becomes large, and a film with strong bonding force can be obtained.

(2)素材の温度は普通200℃以上に加熱されないの
で、素材の機械強度を劣化させたり、熱歪を与えない。
(2) Since the temperature of the material is usually not heated above 200°C, the mechanical strength of the material will not deteriorate or thermal distortion will occur.

(3)コーティング速度が速く、低コストで厚い皮膜を
得ることができる。   C70およびその上部に形成
した炭化モリブデン層には凹凸が多数存在するために、
アンカー効果による結合力の強い皮膜を得ることができ
、しかも金属シリサイドは炭化モリブデンとの化学的親
和性に優れているため、剥離が起こり難くなる。
(3) The coating speed is fast and a thick film can be obtained at low cost. Because C70 and the molybdenum carbide layer formed on it have many irregularities,
A film with strong bonding strength due to the anchor effect can be obtained, and since metal silicide has excellent chemical affinity with molybdenum carbide, peeling is less likely to occur.

プラズマ溶射により形成される金属シリサイド皮膜の厚
さは、100〜1000μmの範囲であることが好まし
い、  100μmより薄いとC70の耐酸化皮膜とし
て十分に働き難いからであり、逆に1000μmを超え
ると熱衝撃による皮膜の破壊(割れ)が起こり易くなる
ために好ましくない。
The thickness of the metal silicide film formed by plasma spraying is preferably in the range of 100 to 1000 μm, because if it is thinner than 100 μm, it will not work sufficiently as an oxidation-resistant film for C70, whereas if it exceeds 1000 μm, it will not work as a heat resistant film. This is not preferable because the film is more likely to break (crack) due to impact.

プラズマ溶射に供される金属シリサイドを形成する金属
は、チタン、ジルコニウム、タンタル、モリブデンおよ
びマンガンの中から選ばれ、そのなかでも特にモリブデ
ン、ジルコニウム、マンガンの各シリサイドは優れた耐
酸化特性を示す。
The metal forming the metal silicide subjected to plasma spraying is selected from titanium, zirconium, tantalum, molybdenum, and manganese, and among these, molybdenum, zirconium, and manganese silicides exhibit particularly excellent oxidation resistance.

以上述べたように、炭素繊維プリフォーム中にあらかじ
め炭化可能な金属粉末を混合しておき、熱処理すること
によりC70の表面改質を行う方法によれば、従来の成
膜方法に比べて皮膜の密着性に優れたものが得られるた
め、酸化雰囲気での皮膜の剥離を防止することができ、
結果的に耐酸化性の向上に寄与することになる。
As mentioned above, according to the method of surface modification of C70 by mixing carbonizable metal powder in advance in the carbon fiber preform and heat-treating it, the film formation rate is lower than that of the conventional film forming method. Because it provides excellent adhesion, it can prevent the film from peeling off in an oxidizing atmosphere.
As a result, it contributes to improving oxidation resistance.

〈実施例〉 以下に本発明を実施例に基づいて具体的に説明する。<Example> The present invention will be specifically described below based on Examples.

熱硬化性を示すフェノールホルムアルデヒド樹脂(鐘紡
■製、商品名ベルパール)が40重量%になるようにメ
タノールで溶解希釈した溶液4kgにモリブデン粉末(
昭和電工■製、純度99%、平均粒子径40μm)を6
40g(フェノールホルムアルデヒド樹脂の403i量
%)を加え、DCスターラーで30分間混合した。 得
られた混合液を含浸槽に穆し、310x310mmの大
きさに切断した炭素繊維クロス(二次元織布)(東し■
、高弾性炭素繊維使用、3に8枚朱子織り)を槽内に浸
し、含浸を行った。
Molybdenum powder (Molybdenum powder
Made by Showa Denko ■, purity 99%, average particle size 40 μm) 6
40g (403i weight % of phenol formaldehyde resin) was added and mixed for 30 minutes with a DC stirrer. The obtained mixed solution was poured into an impregnating tank, and carbon fiber cloth (two-dimensional woven fabric) cut into a size of 310 x 310 mm (east cloth) was poured.
(Using high elastic carbon fiber, 3 to 8 pieces of satin weave) was immersed in the tank for impregnation.

その後、オーブン中で80℃、30分間乾燥を行ってメ
タノールを揮散せしめ、モリブデン粉末含有樹脂含浸炭
素繊維クロス(プリプレグ)とした、 このプリプレグ
の樹脂含有量は37wt%(金属モリブデン粉末は含ま
ない)、金属モリブデンの含有量は610g / m 
”であった、 このプリプレグを6枚積層し、オートク
レーブ中で2  kgf/cm”の圧力下150℃で6
0分間加熱加圧成形し、炭素繊維強化プラスチック(F
RP)とした。
Thereafter, the methanol was volatilized by drying in an oven at 80°C for 30 minutes to obtain a resin-impregnated carbon fiber cloth (prepreg) containing molybdenum powder.The resin content of this prepreg was 37wt% (not including metal molybdenum powder). , the content of metallic molybdenum is 610g/m
Six sheets of this prepreg were laminated and heated at 150°C under a pressure of 2 kgf/cm in an autoclave.
Heat and pressure mold for 0 minutes, carbon fiber reinforced plastic (F
RP).

つぎに、該炭素繊維強化プラスチツク板をアルゴンガス
雰囲気中で10℃/ Hrの昇温速度で1000℃まで
焼成して厚さ1.9mmのC70を得た。 さらに同一
の焼成炉で2600℃まで加熱し6時間保持することに
よリ、該C/Cの表層部を炭化モリブデン層に改質せし
めた。
Next, the carbon fiber reinforced plastic plate was fired to 1000°C at a heating rate of 10°C/Hr in an argon gas atmosphere to obtain C70 with a thickness of 1.9 mm. Furthermore, the surface layer of the C/C was modified into a molybdenum carbide layer by heating to 2600° C. and holding it for 6 hours in the same firing furnace.

このようにして得られた改買表層部を有するC70にさ
らにプラズマ溶射法によりMo5izを被覆した。 用
いた装置は、プラズマ技研■製であった。
C70 having the recycled surface layer thus obtained was further coated with Mo5iz by plasma spraying. The equipment used was manufactured by Plasma Giken ■.

用いたMo5t、  の平均粒子径は1.5μm、アウ
トサイド粉末供給方式により30g/分の溶射条件によ
り溶射を行った。 用いたプラズマガスはアルゴン、プ
ラズマジェット速度はマツハ1であフた。 このプラズ
マ溶射によりM o S i z皮膜を500μm被覆
した。
The Mo5t used had an average particle size of 1.5 μm, and thermal spraying was carried out using an outside powder supply method at a spraying rate of 30 g/min. The plasma gas used was argon, and the plasma jet speed was Matsuha 1. A 500 μm thick MoS iz film was coated by this plasma spraying.

以上の方法により得られた耐酸化被覆されたC70につ
いて空気雰囲気下電気炉内で、1300℃の温度で1時
間保持し、そのときの重量減少率を調べたところ、0.
91wt%であった。
The oxidation-resistant coated C70 obtained by the above method was held at a temperature of 1300°C for 1 hour in an electric furnace in an air atmosphere, and the weight loss rate at that time was examined, and it was found to be 0.
It was 91 wt%.

〈発明の効果〉 本発明の結果得られる耐酸化性C/Cは、その耐°熱性
、耐酸化性、比強度に優れ、航空・宇宙分野や原子力産
業では欠くことのできない素材として用いることができ
る。
<Effects of the Invention> The oxidation-resistant C/C obtained as a result of the present invention has excellent heat resistance, oxidation resistance, and specific strength, and can be used as an indispensable material in the aerospace field and the nuclear industry. can.

また本発明の被覆方法は、まずプリプレグに含有された
モリブデンを利用したC70の表面改質の後、プラズマ
溶射により金属シリサイドを被覆するという簡単なもの
であるため、実際上試料の大きさに限定されずに全面均
一コーティングを行うことが可能となる。
In addition, the coating method of the present invention is a simple method in which the surface of C70 is first modified using molybdenum contained in the prepreg, and then the metal silicide is coated by plasma spraying, so it is practically limited to the size of the sample. This makes it possible to uniformly coat the entire surface without any damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、C70に直接CVD法によりセラミック被覆
を施したときの概要を示す説明図である。 符号の説明 1・・・炭素繊維強化炭素複合材料、 2・・・セラミック皮膜、 3・・・割れ、 4・・・剥離部分 FIG、1
FIG. 1 is an explanatory diagram showing an overview of applying a ceramic coating to C70 directly by the CVD method. Explanation of symbols 1...Carbon fiber reinforced carbon composite material, 2...Ceramic film, 3...Crack, 4...Peeling part FIG, 1

Claims (9)

【特許請求の範囲】[Claims] (1)モリブデン炭化物を含有する表層部およびその上
に金属シリサイド皮膜を有することを特徴とする炭素繊
維強化炭素複合材料。
(1) A carbon fiber-reinforced carbon composite material characterized by having a surface layer containing molybdenum carbide and a metal silicide film thereon.
(2)前記金属シリサイドを構成する金属が、チタン、
ジルコニウム、タンタル、モリブデン、マンガンのなか
から選ばれる少なくとも1種である請求項1に記載の炭
素繊維強化炭素複合材料。
(2) The metal constituting the metal silicide is titanium,
The carbon fiber reinforced carbon composite material according to claim 1, which is at least one selected from zirconium, tantalum, molybdenum, and manganese.
(3)炭素繊維プリフォームと、該炭素繊維プリフォー
ム構造内の表層部および/または全体に含浸されている
モリブデン粉末が混入された樹脂とを一体的に焼成する
ことにより、表層部をモリブデン炭化物層に改質し、し
かる後該表層部上に金属シリサイドを被覆することを特
徴とする炭素繊維強化炭素複合材料の製造方 法。
(3) By integrally firing the carbon fiber preform and the resin mixed with molybdenum powder that is impregnated into the surface layer and/or the entire structure of the carbon fiber preform, the surface layer becomes molybdenum carbide. A method for producing a carbon fiber-reinforced carbon composite material, which comprises modifying the material into layers, and then coating the surface layer with metal silicide.
(4)前記金属粉末は、含浸樹脂量に対して10〜50
重量%の範囲で含有されている請求項3に記載の炭素繊
維強化炭素複合材料の製造方法。
(4) The metal powder has a content of 10 to 50% relative to the amount of impregnated resin.
The method for producing a carbon fiber-reinforced carbon composite material according to claim 3, wherein the carbon fiber-reinforced carbon composite material is contained in a range of % by weight.
(5)前記モリブデン粉末の粒径は100μm以下であ
る請求項3または4に記載の炭素繊維強化炭素複合材料
の製造方法。
(5) The method for producing a carbon fiber-reinforced carbon composite material according to claim 3 or 4, wherein the molybdenum powder has a particle size of 100 μm or less.
(6)前記樹脂の含浸量がプリプレグの状態において、
25〜60重量%の範囲である請求項3〜5のいずれか
に記載の炭素繊維強化炭素複合材料の製造方法。
(6) When the amount of resin impregnated is in the prepreg state,
The method for producing a carbon fiber reinforced carbon composite material according to any one of claims 3 to 5, wherein the content is in the range of 25 to 60% by weight.
(7)前記焼成温度は1400〜3000℃の範囲であ
る請求項3〜6のいずれかに記載の炭素繊維強化炭素複
合材料の製造方法。
(7) The method for producing a carbon fiber reinforced carbon composite material according to any one of claims 3 to 6, wherein the firing temperature is in a range of 1400 to 3000°C.
(8)前記金属シリサイドの被覆はプラズマ溶射による
請求項3〜7のいずれかに記載の炭素繊維強化炭素複合
材料の製造方法。
(8) The method for producing a carbon fiber reinforced carbon composite material according to any one of claims 3 to 7, wherein the metal silicide coating is performed by plasma spraying.
(9)前記金属シリサイド皮膜は100〜 1000μmの範囲である請求項8に記載の炭素繊維強
化炭素複合材料の製造方法。
(9) The method for producing a carbon fiber reinforced carbon composite material according to claim 8, wherein the metal silicide film has a thickness in the range of 100 to 1000 μm.
JP1336958A 1989-12-26 1989-12-26 Carbon fiber-reinforced composite material and its production Pending JPH03197377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336958A JPH03197377A (en) 1989-12-26 1989-12-26 Carbon fiber-reinforced composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336958A JPH03197377A (en) 1989-12-26 1989-12-26 Carbon fiber-reinforced composite material and its production

Publications (1)

Publication Number Publication Date
JPH03197377A true JPH03197377A (en) 1991-08-28

Family

ID=18304190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336958A Pending JPH03197377A (en) 1989-12-26 1989-12-26 Carbon fiber-reinforced composite material and its production

Country Status (1)

Country Link
JP (1) JPH03197377A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367040A1 (en) 2002-05-24 2003-12-03 Mitsubishi Chemical Functional Products, Inc. Friction material
WO2012032858A1 (en) * 2010-09-06 2012-03-15 東洋炭素株式会社 Carbon material and process for producing same
WO2012090535A1 (en) * 2010-12-27 2012-07-05 東洋炭素株式会社 Carbon material, jig, and method for producing carbon material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367040A1 (en) 2002-05-24 2003-12-03 Mitsubishi Chemical Functional Products, Inc. Friction material
US7449234B2 (en) 2002-05-24 2008-11-11 Mitsubishi Chemical Functional Products, Inc. Sliding material
WO2012032858A1 (en) * 2010-09-06 2012-03-15 東洋炭素株式会社 Carbon material and process for producing same
WO2012090535A1 (en) * 2010-12-27 2012-07-05 東洋炭素株式会社 Carbon material, jig, and method for producing carbon material
JP2012136383A (en) * 2010-12-27 2012-07-19 Toyo Tanso Kk Carbon material, jig, and method for producing carbon material

Similar Documents

Publication Publication Date Title
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
JP2000169249A (en) Ceramic composite material
WO2002081405A1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
EP3072864B1 (en) Method of making a self-coating carbon/carbon composite member
JPH03197377A (en) Carbon fiber-reinforced composite material and its production
JPH0274670A (en) Oxidation-resistant carbon fiber-reinforced material and production thereof
JPH06183863A (en) Production of oxidation-resistant carbon fiber-reinforced carbon composite material
JP3562989B2 (en) Composite having thermal sprayed layer and method for producing the same
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof
JPH0274669A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof
JPH0291270A (en) Oxidation-resistant carbon fiber-reinforced carbon material and production thereof
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material
JPH03205358A (en) Production of carbon fiber-reinforced carbon composite material
JPH0274668A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof
JPH0648867A (en) Production of boron carbide-coated carbon material
JPH1112038A (en) Production of silicon carbide fiber-reinforced silicon carbide composite material
JP2976369B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JPH1160357A (en) Oxidation resistant c/c composite material and its production
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JPH05170577A (en) Method for anti-oxidizing coating of carbon fiber reinforced carbon composite material using coating method
JPH03177358A (en) Carbon fiber-reinforced carbon composite material and its production