JPH0681713B2 - Insulation - Google Patents

Insulation

Info

Publication number
JPH0681713B2
JPH0681713B2 JP2091050A JP9105090A JPH0681713B2 JP H0681713 B2 JPH0681713 B2 JP H0681713B2 JP 2091050 A JP2091050 A JP 2091050A JP 9105090 A JP9105090 A JP 9105090A JP H0681713 B2 JPH0681713 B2 JP H0681713B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
coating film
sic
sic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2091050A
Other languages
Japanese (ja)
Other versions
JPH03288639A (en
Inventor
和久 松本
美治 茅根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2091050A priority Critical patent/JPH0681713B2/en
Publication of JPH03288639A publication Critical patent/JPH03288639A/en
Publication of JPH0681713B2 publication Critical patent/JPH0681713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は断熱材に係り、特に耐風速性、耐摩耗性、耐久
性、断熱性等の各種特性に優れた断熱材に関する。
TECHNICAL FIELD The present invention relates to a heat insulating material, and more particularly to a heat insulating material excellent in various properties such as wind speed resistance, wear resistance, durability, and heat insulating property.

[従来の技術] 従来、各種高温炉の耐火断熱材としては、セラミック繊
維の織布又は不織布を所定形状に成形してなる断熱材が
一般に使用されている。
[Prior Art] Conventionally, as a refractory heat insulating material for various high temperature furnaces, a heat insulating material formed by molding a woven or non-woven fabric of ceramic fibers into a predetermined shape is generally used.

[発明が解決しようとする課題] 従来のセラミック繊維製断熱材では、次のような欠点が
あった。
[Problems to be Solved by the Invention] The conventional ceramic fiber heat insulating material has the following drawbacks.

セラミック繊維は細くて脆いので、耐風速性に劣
る。このため、含塵流体中や高速流体中では使用できな
い。
Since ceramic fibers are thin and brittle, they have poor wind resistance. Therefore, it cannot be used in a dust-containing fluid or a high-speed fluid.

セラミック同志が強く結合していないため、極めて
破損し易い。
It is extremely easy to break because the ceramics are not strongly bonded to each other.

、よりセラミックの短繊維や粉末が炉内を浮遊
し、炉内処理物を汚染する。この現象は減圧工程を含む
炉では特に著しい。
Shorter ceramic fibers and powders float in the furnace and contaminate the products in the furnace. This phenomenon is particularly remarkable in a furnace including a decompression process.

断熱材中には不純物が含まれており、この不純物が
炉内に拡散して被処理物を汚染する。
Impurities are contained in the heat insulating material, and these impurities diffuse into the furnace and contaminate the object to be treated.

例えば、従来の断熱材をSi単結晶引上げ装置(CZ法)や
GaAs単結晶引上げ装置(LEC法)の加熱溶融炉の断熱材
として用いた場合、断熱材中の不純物が引上げSi単結晶
やGaAs単結晶に拡散して単結晶の純度を低下させる。
For example, the conventional heat insulating material is a Si single crystal pulling device (CZ method)
When used as a heat insulating material for a heating and melting furnace of a GaAs single crystal pulling apparatus (LEC method), impurities in the heat insulating material diffuse into the pulled Si single crystal or GaAs single crystal and reduce the purity of the single crystal.

特に、近年、超LSIのメガビット時代を迎え、基板結晶
の高純度完全性に対する要求が厳しくなっており、上記
の問題は解決すべき重大な問題とされている。
In particular, in recent years, as the megabit era of VLSI is approached, the requirement for high-purity and completeness of the substrate crystal has become strict, and the above problem is a serious problem to be solved.

上記問題を解決するために、断熱材表面にCVD(Chemica
l Vapor Deposition)又はCVI(Chemical Vapor Impreg
nation)法により、耐火性、対摩耗性等に優れた炭化珪
素(SiC)又は窒化珪素(Si3N4)の被覆膜を形成するこ
とも考えられるが、この場合には、新たに次のような問
題が生起する。
In order to solve the above problems, CVD (Chemica
l Vapor Deposition) or CVI (Chemical Vapor Impreg)
nation method, it is conceivable to form a coating film of silicon carbide (SiC) or silicon nitride (Si 3 N 4 ) excellent in fire resistance, wear resistance, etc. The following problems occur.

繊維質断熱材は気孔率の大きな材料であるため、Si
C又はSi3N4が断熱材内部まで深く浸透し、熱伝導性の良
いSiC又はSi3N4の連続膜層が断熱材内部にまで形成され
ることとなり、断熱材の断熱性が低下する。
Since the fibrous heat insulating material has a high porosity,
C or Si 3 N 4 penetrates deeply into the heat insulating material, and a continuous film layer of SiC or Si 3 N 4 with good thermal conductivity is formed inside the heat insulating material, which lowers the heat insulating property of the heat insulating material. .

断熱材の構成繊維がSiC又はSi3N4と熱膨張係数が大
きく異なる繊維の場合、健全な被覆膜を形成することが
できず、SiC又はSi3N4被覆膜の割れや剥離が生じる。
When the constituent fiber of the heat insulating material is a fiber whose coefficient of thermal expansion is greatly different from that of SiC or Si 3 N 4 , a sound coating film cannot be formed and cracking or peeling of the SiC or Si 3 N 4 coating film occurs. Occurs.

本発明は上記従来の問題点を解決し、耐風速性、耐摩耗
性、耐久性、断熱性等の各種特性に優れ、また、使用系
内を汚染することがない断熱材を提供することを目的と
する。
The present invention solves the above-mentioned conventional problems and provides a heat insulating material which is excellent in various properties such as wind speed resistance, wear resistance, durability, and heat insulating property, and which does not pollute the inside of the system used. To aim.

[課題を解決するための手段] 本発明の断熱材は、セラミック繊維で構成された断熱材
本体の表層部に、セラミック及び耐熱金属よりなる群か
ら選ばれる少なくとも1種の粉末及び/又は短繊維が充
填されており、更にその表面にSiC被覆膜又はSi3N4被覆
膜が形成されていることを特徴とする。
[Means for Solving the Problems] The heat insulating material of the present invention comprises at least one powder and / or short fiber selected from the group consisting of ceramics and heat-resistant metals on the surface layer portion of the heat insulating material body made of ceramic fibers. And a SiC coating film or a Si 3 N 4 coating film is formed on the surface thereof.

以下に本発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の断熱材の一実施例を示す断面の模式
図、第2図は第1図のII部の拡大図である。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the heat insulating material of the present invention, and FIG. 2 is an enlarged view of a II portion of FIG.

なお、以下においては、SiC被覆膜を設ける場合につい
て説明するが、Si3N4被覆膜を設ける場合についても同
様である。
In the following, the case of providing the SiC coating film will be described, but the same applies to the case of providing the Si 3 N 4 coating film.

図示の如く、本発明の断熱材1は、セラミック繊維2で
構成された断熱材本体3の表層部に、セラミック及び耐
熱金属よりなる群から選ばれる少なくとも1種の粉末及
び/又は短繊維(以下「充填材」という。)4が充填さ
れており、(充填層5)、更にその表面にSiC被覆膜6
が形成されているものである。
As shown in the figure, the heat insulating material 1 of the present invention has at least one kind of powder and / or short fibers selected from the group consisting of ceramics and heat resistant metals (hereinafter “Filler”) 4 is filled, (filling layer 5), and the SiC coating film 6 on the surface thereof.
Are formed.

本発明において、断熱材本体3を構成するセラミック繊
維の材質としては、ジルコニア系、シリカ系、アルミナ
系、アルミナ・シリカ系、炭素系、黒鉛系、炭化珪素系
等のセラミックが挙げられる。また、断熱材の形態とし
ては特に制限はなく、フェルト状、ボード状、ブランケ
ット状、ペーパー状、ブロック状等、各種形態を採り得
る。
In the present invention, examples of the material of the ceramic fiber that constitutes the heat insulating material body 3 include zirconia-based, silica-based, alumina-based, alumina-silica-based, carbon-based, graphite-based, and silicon carbide-based ceramics. The form of the heat insulating material is not particularly limited, and various forms such as a felt form, a board form, a blanket form, a paper form, and a block form can be adopted.

本発明において、断熱材本体3は、後述の充填材の充填
効率面から、その気孔率が70〜99%程度であることが好
ましい。
In the present invention, the heat insulating material body 3 preferably has a porosity of about 70 to 99% from the viewpoint of the filling efficiency of the below-mentioned filler.

このような断熱材本体3の表層に充填する充填材として
は、黒鉛、炭素、SiC,B4C,AlN,TiB2,MoSi2,TaN,WC,W2C
等のセラミック、及びW,Mo等の耐熱金属よりなる群から
選ばれる1種又は2種以上の粉末及び/又は短繊維が挙
げられる。本発明においては、特に、これらのうち断熱
材本体3と形成するSiC被覆膜6との熱膨張差を緩和し
得るもの、例えば、等方性黒鉛、SiC、B4C、AlN、Ti
B2、MoSi2、Mo、W等が好ましい。なお、Si3N4被覆膜の
場合の充填材としては、Si3N4が好ましい。充填材4が
粉末である場合は、その平均粒径は0.2〜100μm程度と
するのが好ましい。また、短繊維である場合、その平均
繊維径は0.2〜30μm、平均繊維長さは20〜200μmであ
ることが好ましい。
Examples of the filler to be filled in the surface layer of the heat insulating material body 3 include graphite, carbon, SiC, B 4 C, AlN, TiB 2 , MoSi 2 , TaN, WC, W 2 C
And one or more kinds of powders and / or short fibers selected from the group consisting of ceramics such as W and Mo and heat-resistant metals such as W and Mo. In the present invention, in particular, those capable of relaxing the thermal expansion difference between the heat insulating material body 3 and the SiC coating film 6 to be formed, for example, isotropic graphite, SiC, B 4 C, AlN, Ti.
B 2 , MoSi 2 , Mo, W and the like are preferable. As the filler when the Si 3 N 4 coating film, Si 3 N 4 are preferred. When the filler 4 is a powder, its average particle size is preferably about 0.2 to 100 μm. In the case of short fibers, the average fiber diameter is preferably 0.2 to 30 μm and the average fiber length is preferably 20 to 200 μm.

このような充填材4を断熱材本体3の表層に充填する方
法としては特に制限はないが、次のA,B等の方法が挙げ
られる。
The method for filling the surface layer of the heat insulating material body 3 with such a filler 4 is not particularly limited, but the following methods A, B and the like can be mentioned.

A:接着法1 − 充填材を断熱材本体の表面へふりかける。A: Adhesion method 1-Sprinkle the filler on the surface of the heat insulating material.

− ハケ又はヘラで余分の充填材を除去する。-Remove excess filler with a brush or spatula.

− フェノール樹脂等の接着材をスプレーガン等で
吹きつける。
-Spray adhesive such as phenol resin with a spray gun.

− 接着剤を硬化させる。-Curing the adhesive.

− 接着剤を無機化する。-Mineralize the adhesive.

B:接着法2 − 断熱材本体表面へフェノール樹脂等の接着剤を
スプレーガン又はハケにて塗布する。
B: Adhesion method 2-Apply an adhesive such as phenolic resin to the surface of the heat insulating material with a spray gun or a brush.

− 充填材をふりかける。-Sprinkle the filling material.

− ハケ又はヘラで余分の充填材を除去する。-Remove excess filler with a brush or spatula.

− 接着剤を硬化させる。-Curing the adhesive.

− 接着剤を無機化する。-Mineralize the adhesive.

本発明において、充填材4の充填量には特に制限はない
が、断熱材本体3の表層に形成される充填層5の厚さt
が0.01〜0.2mm程度となるようにするのが好ましい。充
填層5の厚さtが0.01mm未満では本発明による十分な効
果が得られず、0.2mmを越えても効果に差異はなく、コ
ストが高騰し好ましくない。
In the present invention, the filling amount of the filling material 4 is not particularly limited, but the thickness t of the filling layer 5 formed on the surface layer of the heat insulating material body 3 is t.
Is preferably about 0.01 to 0.2 mm. If the thickness t of the filling layer 5 is less than 0.01 mm, the sufficient effect according to the present invention cannot be obtained, and if it exceeds 0.2 mm, there is no difference in the effect and the cost rises undesirably.

なお、断熱材本体3に充填材4を充填すると、断熱材本
体3の表面から充填材が若干はみ出した状態となる。こ
の充填材のはみ出し厚さδが1mm以上となると後述のSiC
被覆膜の形成にあたり、SiCを断熱材本体3の内部まで
密着して形成し難くなり、膜剥離等が生起し易くなる。
このため、この断熱材本体3からの充填材4のはみ出し
厚さδは1.0mm未満となるようにするのが好ましい。
When the heat insulating material body 3 is filled with the filling material 4, the filling material is slightly protruded from the surface of the heat insulating material body 3. If the protruding thickness δ of this filler is 1 mm or more, the SiC
When forming the coating film, it becomes difficult to adhere SiC to the inside of the heat insulating material main body 3 and it becomes easy to cause film peeling or the like.
Therefore, it is preferable that the protruding thickness δ of the filler 4 from the heat insulating material body 3 is less than 1.0 mm.

このようにして充填層5が形成された断熱材本体3の表
面にSiC被覆膜6を形成する方法としては特に制限はな
いが、緻密で高純度、高特性の膜を容易に得ることがで
きることからCVD法又はCVI法を採用するのが好ましい。
There is no particular limitation on the method of forming the SiC coating film 6 on the surface of the heat insulating material body 3 on which the filling layer 5 is formed in this manner, but a dense, highly pure, and highly characteristic film can be easily obtained. It is preferable to adopt the CVD method or the CVI method because it is possible.

CVI法又はCVD法の好適なSiCの蒸着条件の一例を下記第
1表に示す。
Table 1 below shows an example of suitable SiC deposition conditions for the CVI method or the CVD method.

このようなSiC被覆膜6の形成にあたり、SiCは充填層5
の充填材4や断熱材本体3の表層部のセラミック繊維2
間にも蒸着されるため、SiC被覆膜6は断熱材本体3の
表面に極めて強固に密着形成される。
In forming the SiC coating film 6 as described above, SiC is used as the filling layer 5
Of the filler 4 and the ceramic fiber 2 of the surface layer of the heat insulating material body 3
Since the SiC coating film 6 is also vapor-deposited in the gap, the SiC coating film 6 is extremely firmly adhered to the surface of the heat insulating material body 3.

なお、SiC被覆膜6の厚さTは、用いる充填材4の大き
さとの関係で十分に緻密な被覆膜を得るために、次のよ
うな厚さとするのが好ましい。
The thickness T of the SiC coating film 6 is preferably set to the following thickness in order to obtain a sufficiently dense coating film in relation to the size of the filler 4 used.

充填材4が粉末の場合: 平均粒径の10倍以上 充填材4が短繊維の場合: 平均繊維径の20倍以上 SiC被覆膜6の厚さTは厚過ぎてもコスト高騰、膜の割
れや剥離、断熱性低下等の不具合をひき起こすため、厚
さTの上限は2mm以下とするのが好ましい。
When the filler 4 is a powder: 10 times or more of the average particle diameter When the filler 4 is a short fiber: 20 times or more of the average fiber diameter The cost T of the SiC coating film 6 is too high, the cost rises. It is preferable that the upper limit of the thickness T is 2 mm or less because it causes problems such as cracking, peeling and deterioration of heat insulation.

本発明の断熱材は、例えば次のような使用形態で使用す
るのが好適である。
The heat insulating material of the present invention is preferably used in the following usage forms, for example.

I 断熱材の耐風速性、耐摩耗性のみを向上させる場
合: 高速流体、含塵流体が衝突、接触する面のみ又は全面に
設ける。
I When improving only the wind speed resistance and wear resistance of the heat insulating material: Provide it only on the surface where the high-speed fluid or the dust-containing fluid collides with, or on the entire surface.

II 断熱材中の不純物の炉内拡散を防止する場合:全面
に設ける。
II To prevent the diffusion of impurities in the insulation material in the furnace: Provide it on the entire surface.

ただし、I、IIのいずれにおいても、全面に設ける場合
には温度変化、圧力変化によりSiC被覆膜に圧力が作用
しないように、一部分例えば炉の排気口周辺はSiC被覆
膜を形成しないものとする。
However, in both cases I and II, when the SiC coating film is provided on the entire surface, the SiC coating film is not formed in a part such as around the exhaust port of the furnace so that the pressure does not act on the SiC coating film due to temperature change and pressure change. And

[作 用] 以下においてはSiC被覆を行なう場合について述べる
が、Si3N4被覆についても同様である。
[Operation] The case of performing SiC coating will be described below, but the same applies to Si 3 N 4 coating.

前述の如く、繊維質断熱材は気孔率の大きな材料である
ため、CVD法又はCVI法でSiC被覆を行なうと、断熱材内
部にまで熱伝導性の良いSiC膜が形成され、断熱性が低
下するが、本発明によれば、断熱材の表層部のみSiC被
覆を行なうことができ、断熱材の断熱性を低下させるこ
とがない。
As mentioned above, since the fibrous heat insulating material has a large porosity, if the SiC coating is performed by the CVD method or the CVI method, a SiC film with good thermal conductivity is formed even inside the heat insulating material, and the heat insulating property deteriorates. However, according to the present invention, only the surface layer portion of the heat insulating material can be coated with SiC, and the heat insulating property of the heat insulating material is not deteriorated.

また、SiCと熱膨張係数が大きく異なる繊維から構成さ
れる断熱材本体表面に直接SiC被覆膜を形成すると膜に
剥離、割れなどの欠陥が発生するが、断熱材本体の表層
部に充填材の充填層を形成することにより、表面に健全
なSiC被覆膜を形成することが可能とされる。
Also, when a SiC coating film is formed directly on the surface of a heat insulating material body composed of fibers whose coefficient of thermal expansion is greatly different from that of SiC, defects such as peeling and cracking occur in the film, but the filler material is applied to the surface layer of the heat insulating material body. By forming the filling layer of, it is possible to form a sound SiC coating film on the surface.

更に、繊維質の断熱材本体へ直接SiC被覆膜を形成する
と、熱膨張係数の差や繊維の異方性によりSiC被覆膜に
剥離や割れが発生するが、本発明では、極めて変形能の
大きい繊維質断熱材本体の表層へ、上述のような健全な
SiC被覆膜を形成すると共に、充填材により熱膨張差を
緩和することができるので、SiC被覆膜に割れ、剥離が
発生しない。
Furthermore, when the SiC coating film is formed directly on the fibrous heat insulating material body, peeling or cracking occurs in the SiC coating film due to the difference in the coefficient of thermal expansion or the anisotropy of the fiber, but in the present invention, the deformability is extremely high. To the surface of the large fibrous insulation body
Since the SiC coating film can be formed and the thermal expansion difference can be relaxed by the filler, the SiC coating film does not crack or peel.

[実施例] 以下にSiC被覆膜を形成する場合について実施例、比較
例及び参考例を挙げて本発明をより具体的に説明する。
[Examples] Hereinafter, the present invention will be described more specifically with reference to Examples, Comparative Examples, and Reference Examples in the case of forming a SiC coating film.

実施例1〜4,比較例1 第2表に示す断熱材本体の表層部に、第2表に示す充填
材の充填層を第2表に示す方法にて形成した後、第2表
に示す方法により第2表に示す厚さのSiC被覆膜を形成
し、本発明の断熱材を製造した。
Examples 1 to 4, Comparative Example 1 After forming a filling layer of the filler shown in Table 2 on the surface layer portion of the heat insulating material body shown in Table 2 by the method shown in Table 2, shown in Table 2 A SiC coating film having a thickness shown in Table 2 was formed by the method to manufacture the heat insulating material of the present invention.

各断熱材を供試材として、第3図に示す試験装置にて熱
サイクルテストを行なった。また、比較のため「ファイ
バーキャスト#1000」を50mm×50mm×20mm厚さに成形し
たもの(比較例1)についても同様に熱サイクルテスト
を行なった。
A heat cycle test was conducted using the test equipment shown in FIG. 3 with each heat insulating material as a test material. Further, for comparison, a heat cycle test was similarly performed on a product (Comparative Example 1) formed by molding “Fiber Cast # 1000” into a thickness of 50 mm × 50 mm × 20 mm.

なお、第3図において、11は耐火断熱レンガであり、12
は燃焼器、13は燃焼器内筒である。14はテストセクショ
ンであり供試材15を耐火レンガ11に埋め込んでセットし
た。
In addition, in FIG. 3, 11 is a refractory insulation brick, and 12
Is a combustor, and 13 is a combustor inner cylinder. Reference numeral 14 is a test section, in which the test material 15 was embedded in the refractory brick 11 and set.

テストは、配管16よりプロパンを燃焼器12に導入して燃
焼させて1200℃の燃焼ガスを50m/Sで1時間テストセク
ション14に送給した後、冷却した。この加熱、冷却を10
回繰返した。
In the test, propane was introduced into the combustor 12 through the pipe 16 and burned, and a combustion gas at 1200 ° C. was fed to the test section 14 at 50 m / S for 1 hour, and then cooled. This heating, cooling 10
Repeated times.

その結果、実施例1〜4のものはいずれも表面のSiC被
覆膜に剥離や割れは認められなかったが、比較例1のも
のは表面に割れが発生し、数ヶ所に剥離が認められた。
As a result, in any of Examples 1 to 4, no peeling or cracking was observed on the SiC coating film on the surface, but in Comparative Example 1, cracking occurred on the surface and peeling was observed at several places. It was

実施例5〜8,参考例1 第3表に示す断熱材本体の表層部に、第3表に示す充填
材の充填層を第3表に示す方法にて形成した後、第3表
に示す方法により第3表に示す厚さのSiC被覆膜を形成
し、本発明の断熱材を製造した。
Examples 5 to 8, Reference Example 1 After forming a filling layer of the filler shown in Table 3 on the surface layer portion of the heat insulating material body shown in Table 3 by the method shown in Table 3, shown in Table 3 A SiC coating film having a thickness shown in Table 3 was formed by the method to manufacture the heat insulating material of the present invention.

得られた断熱材を試料として、下記方法により断熱材本
体の不純物拡散テストを行ない、結果を第4表に示し
た。
Using the obtained heat insulating material as a sample, an impurity diffusion test of the heat insulating material body was conducted by the following method, and the results are shown in Table 4.

試験方法 CVD−SiC被覆膜を形成した高純度黒鉛製容器の中へ
各試料を入れ、蓋をする。
Test method Put each sample in a container made of high-purity graphite on which a CVD-SiC coating film is formed, and cover.

1300℃の電気炉内で5000時間保持する。 Hold in an electric furnace at 1300 ℃ for 5000 hours.

10×10mmのサンプルを切り出し、SiC被覆膜の断熱
材側から50μm、表面側から50μm研削除去する。
A 10 × 10 mm sample is cut out, and 50 μm is ground from the heat insulating material side of the SiC coating film and 50 μm from the surface side.

10×10×0.1mmのSiC被覆膜中の不純物量を放射化分
析によって求める。
The amount of impurities in the 10 × 10 × 0.1 mm SiC coating film is determined by activation analysis.

同様の不純物拡散テストを、高純度黒鉛の全面に第1表
に示すCVD法でSiC被覆膜を200μm形成したもの(参考
例1)についても行ない、結果を第4表に示した。な
お、この場合、テスト後のSiC被覆膜の研削は黒鉛側か
らのみ100μm行なった。
The same impurity diffusion test was conducted on a high-purity graphite having a 200 μm SiC coating film formed by the CVD method shown in Table 1 (Reference Example 1), and the results are shown in Table 4. In this case, the SiC coating film after the test was ground to 100 μm only from the graphite side.

第4表より、実施例5〜8の断熱材のSiC被覆膜はいず
れも参考例1のものと同程度の純度であり、SiC被覆膜
が断熱材本体中の不純物拡散のバリヤーとして十分に機
能していることが明らかである。
From Table 4, all of the SiC coating films of the heat insulating materials of Examples 5 to 8 have the same degree of purity as that of Reference Example 1, and the SiC coating films are sufficient as barriers for impurity diffusion in the heat insulating material body. It is clear that it is working.

参考例2 SiC被覆膜の膜厚を第5表に示す厚さとしたこと以外
は、それぞれ実施例1〜8のうちの第5表に示す実施例
(第5表においては、「供試実施例」と記す。)と同様
にして断熱材を製造し、各断熱材について下記方法によ
りSiC被覆膜の緻密性を調べ、結果を第5表に示した。
Reference Example 2 An example shown in Table 5 among Examples 1 to 8 except that the thickness of the SiC coating film was set to the thickness shown in Table 5 (in Table 5, "Test execution" Example)), a heat insulating material was manufactured in the same manner as described above, and the denseness of the SiC coating film was examined for each heat insulating material by the following method, and the results are shown in Table 5.

試験方法 各々の断熱材を直径20mmの円板に切断し(厚さはも
との断熱材と同じ)、実施例1〜8と同様にしてSiC被
覆膜を形成する。ただし、円筒面には、直径5mmの未被
覆部がある。
Test method Each heat insulating material is cut into a disc having a diameter of 20 mm (the thickness is the same as the original heat insulating material), and a SiC coating film is formed in the same manner as in Examples 1 to 8. However, the cylindrical surface has an uncoated portion with a diameter of 5 mm.

第4図に示す如く、N2導入管21と圧力計22及び排気
バルブ27とを備えるSUS円管20の一端のSUSフランジ23に
SUS蓋24をボルトとナット25を用いて取り付けて密封
し、他端に試料26を挿入して蓋着する。試料26は、エポ
キシ系接着剤でSUS円管20に接着した後室温、常圧で乾
燥し、更に室温、1Torrで24時間乾燥する。
As shown in FIG. 4, on the SUS flange 23 at one end of the SUS circular pipe 20 equipped with the N 2 introduction pipe 21, the pressure gauge 22 and the exhaust valve 27.
A SUS lid 24 is attached using bolts and nuts 25 and sealed, and a sample 26 is inserted into the other end to attach the lid. The sample 26 is bonded to the SUS circular tube 20 with an epoxy adhesive, dried at room temperature and atmospheric pressure, and further dried at room temperature and 1 Torr for 24 hours.

N2導入管21よりSUS円管20内に0.1kgf/cm2のN2圧を
封入する。
A N 2 pressure of 0.1 kgf / cm 2 is sealed in the SUS circular pipe 20 from the N 2 introduction pipe 21.

圧力変化を調べる。 Examine pressure changes.

圧力低下の有無から、緻密性を下記基準で評価し
た。
The denseness was evaluated based on the presence or absence of pressure drop according to the following criteria.

△:圧力低下あり、緻密性に若干問題あり。Δ: There is a decrease in pressure, and there is a slight problem in denseness.

○:圧力低下なし、緻密性良好。◯: No pressure drop, good compactness.

第5表より、SiC被覆膜の厚さを充填材が粉末の場合に
はその平均粒径の10倍以上、充填材が短繊維の場合には
その平均繊維径の20倍以上の厚さとすることにより、極
めて緻密なSiC被覆膜を形成することができることが明
らかである。
From Table 5, the thickness of the SiC coating should be 10 times or more the average particle diameter when the filler is powder and 20 times or more the average fiber diameter when the filler is short fiber. By doing so, it is apparent that an extremely dense SiC coating film can be formed.

[発明の効果] 以上詳述した通り、本発明の断熱材によれば、耐風速
性、耐摩耗性等に優れ、かつ緻密で高特性のSiC被覆膜
又はSi3N4被覆膜を、割れ、剥離等の問題を生起するこ
となく、また、断熱性を損なうことなく、断熱材本体に
密着性良く形成することができるため、 断熱材の耐風速性、耐摩耗性を向上させることがで
きる。
[Effects of the Invention] As described in detail above, according to the heat insulating material of the present invention, a dense or high-characteristic SiC coating film or Si 3 N 4 coating film having excellent wind speed resistance, wear resistance, etc. can be obtained. Since it can be formed with good adhesion to the body of the heat insulating material without causing problems such as cracking, peeling, etc., and without impairing the heat insulating property, improving the wind speed resistance and wear resistance of the heat insulating material. You can

断熱材本体の不純物の拡散を防ぎ、不純物による系
内の汚染を防止することができる。
It is possible to prevent diffusion of impurities in the heat insulating material body and prevent contamination of the system by impurities.

断熱材の断熱性は著しく高く、しかも軽量である。 The heat insulating properties of the heat insulating material are remarkably high and the weight is light.

等の優れた効果が奏される。And so on.

本発明の断熱材は、熱風炉、バーナ・ノズル等に用い
て、その耐風速性、耐摩耗性、軽量性、断熱性の向上を
図ることができる。また、Si単結晶やGaAs単結晶の引上
げ装置に用いた場合には、不純物による汚染が防止さ
れ、Si単結晶やGaAs単結晶の高純度化が可能となり、メ
ガビット時代を迎えた超LSI用基板として適した単結晶
を得ることを可能とする。
INDUSTRIAL APPLICABILITY The heat insulating material of the present invention can be used in hot blast stoves, burners, nozzles, etc. to improve wind speed resistance, wear resistance, light weight, and heat insulating properties. In addition, when used in Si single crystal or GaAs single crystal pulling equipment, contamination by impurities is prevented, and Si single crystal or GaAs single crystal can be highly purified. It is possible to obtain a single crystal suitable as.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の断熱材の一実施例を示す断熱材の模式
図、第2図は第1図のII部の拡大図である。第3図は実
施例1〜4で用いた試験装置を示す概略断面図、第4図
は参考例2で用いた試験装置を示す概略断面図である。 1……断熱材、2……セラミック繊維、 3……断熱材本体、4……充填材、 5……充填層、 6……SiC被覆膜(又はSi3N4被覆膜)。
FIG. 1 is a schematic view of a heat insulating material showing an embodiment of the heat insulating material of the present invention, and FIG. 2 is an enlarged view of a II portion of FIG. FIG. 3 is a schematic sectional view showing the test device used in Examples 1 to 4, and FIG. 4 is a schematic sectional view showing the test device used in Reference Example 2. 1 ... Insulating material, 2 ... Ceramic fiber, 3 ... Insulating material body, 4 ... Filling material, 5 ... Packing layer, 6 ... SiC coating film (or Si 3 N 4 coating film).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミック繊維で構成された断熱材本体の
表層部に、セラミック及び耐熱金属よりなる群から選ば
れる少なくとも1種の粉末及び/又は短繊維が充填され
ており、更にその表面にSiC又はSi3N4よりなる被覆膜が
形成されていることを特徴とする断熱材。
1. A surface layer portion of a main body of a heat insulating material composed of ceramic fibers is filled with at least one kind of powder and / or short fibers selected from the group consisting of ceramics and heat-resistant metals, and the surface thereof is further covered with SiC. Alternatively, a heat insulating material having a coating film made of Si 3 N 4 formed thereon.
JP2091050A 1990-04-05 1990-04-05 Insulation Expired - Lifetime JPH0681713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091050A JPH0681713B2 (en) 1990-04-05 1990-04-05 Insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2091050A JPH0681713B2 (en) 1990-04-05 1990-04-05 Insulation

Publications (2)

Publication Number Publication Date
JPH03288639A JPH03288639A (en) 1991-12-18
JPH0681713B2 true JPH0681713B2 (en) 1994-10-19

Family

ID=14015680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091050A Expired - Lifetime JPH0681713B2 (en) 1990-04-05 1990-04-05 Insulation

Country Status (1)

Country Link
JP (1) JPH0681713B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173597A1 (en) * 2003-03-03 2004-09-09 Manoj Agrawal Apparatus for contacting gases at high temperature
JP4883805B2 (en) * 2005-04-22 2012-02-22 株式会社クレハ Thermal insulation coating layer, thermal insulation laminate, thermal insulation coating agent, and method for producing thermal insulation coating agent
WO2008149435A1 (en) * 2007-06-06 2008-12-11 Ibiden Co., Ltd. Jig for firing and process for producing honeycomb structure
US20150354897A1 (en) * 2013-02-05 2015-12-10 Sach Sisolar ,Inc. Crucible liner
CN108660617A (en) * 2018-06-21 2018-10-16 滁州市三和纤维制造有限公司 A kind of ceramic fiber blanket

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167482A (en) * 1982-03-24 1983-10-03 昭和電工株式会社 Flame sprayed formed body of silicon carbide
JPS6345190A (en) * 1986-06-19 1988-02-26 サンドビック アクティエボラーグ Coated whisker reinforced ceramic sintered body
JPH0274670A (en) * 1988-09-08 1990-03-14 Kawasaki Steel Corp Oxidation-resistant carbon fiber-reinforced material and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167482A (en) * 1982-03-24 1983-10-03 昭和電工株式会社 Flame sprayed formed body of silicon carbide
JPS6345190A (en) * 1986-06-19 1988-02-26 サンドビック アクティエボラーグ Coated whisker reinforced ceramic sintered body
JPH0274670A (en) * 1988-09-08 1990-03-14 Kawasaki Steel Corp Oxidation-resistant carbon fiber-reinforced material and production thereof

Also Published As

Publication number Publication date
JPH03288639A (en) 1991-12-18

Similar Documents

Publication Publication Date Title
McKee Oxidation protection of carbon materials
EP0447630B1 (en) Coated welding cups
Roy et al. Oxidation behaviour of silicon carbide-a review
JP2680439B2 (en) Composite material containing carbon reinforcing fibers and method for producing the same
CN108530110A (en) A kind of superhigh temperature ceramics coating of C/C composite materials and preparation method thereof
EP2548855A1 (en) Ceramic composite article having laminar ceramic matrix
Wang et al. Oxidation protective ZrB2–SiC coatings with ferrocene addition on SiC coated graphite
Taguchi et al. Effect of thick SiC interphase layers on microstructure, mechanical and thermal properties of reaction-bonded SiC/SiC composites
Zhi-Qiao et al. A multilayer coating of dense SiC alternated with porous Si–Mo for the oxidation protection of carbon/carbon silicon carbide composites
Jiang et al. A dense structure Si-SiC coating for oxidation and ablation protection of graphite fabricated by impregnation-pyrolysis and gaseous silicon infiltration
US4717693A (en) Process for producing beta silicon nitride fibers
CN106567246A (en) Method used for preparing SiC reinforced low-density porous carbon fiber thermal insulation composite material via chemical vapor infiltration
JPH03187989A (en) Process for forming composite material protected against oxidation and material obtained by said process
US5284685A (en) Composite material with carbon reinforced fibers and its production
RU2082694C1 (en) Method for production of protective coatings on materials and articles having carbon-containing base
US20080220256A1 (en) Methods of coating carbon/carbon composite structures
JPH0681713B2 (en) Insulation
Zhang et al. A thick SiC-Si coating prepared by one-step pack cementation for long-term protection of carbon/carbon composites against oxidation at 1773 K
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
CN117836257A (en) Method for producing a coated substrate, coated substrate and use thereof
Koh et al. Improvement in oxidation resistance of carbon by formation of a protective SiO2 layer on the surface
JP2684106B2 (en) Graphite base material for ceramic coating and internal parts for CVD furnace
KR100727639B1 (en) Oxidation resistant multi-layer coating film for carbon/carbon composites and its manufacturing process
JP2812019B2 (en) Carbon fiber / carbon composite
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material