JPH01320152A - Carbon fiber reinforced carbon material - Google Patents

Carbon fiber reinforced carbon material

Info

Publication number
JPH01320152A
JPH01320152A JP15268788A JP15268788A JPH01320152A JP H01320152 A JPH01320152 A JP H01320152A JP 15268788 A JP15268788 A JP 15268788A JP 15268788 A JP15268788 A JP 15268788A JP H01320152 A JPH01320152 A JP H01320152A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
film
composite
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15268788A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hasegawa
和広 長谷川
Tsuneo Kaneshiro
庸夫 金城
Yoshiji Ito
好二 伊藤
Akihito Sakai
昭仁 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP15268788A priority Critical patent/JPH01320152A/en
Publication of JPH01320152A publication Critical patent/JPH01320152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To enable to obtain a carbon fibre reinforced carbon material with an extremely excellent heat resistance, anticorrosion and specific intensity by coating the inner layer of a silicon carbide covering film containing metallic silicon on the surface of a carbon fibre reinforced carbon material basement, and further coating the outer layer of a silicon carbide covering film on the inner layer. CONSTITUTION:A C/C composit (carbon fibre reinforced carbon material) is buried into metallic silicon powder, and reacted under the inactive gas atmosphere at the temperature of melting point or more of the metallic silicon so as to make the surface layer part of the C/C composit to be a silicon carbide. Moreover, by adding silicon carbide, alumina, boric acid and the like beside the metallic silicon powder, the content of unreacted metallic silicon into the silicon carbide covering film is made to be 1-35wt.% relative to the silicon carbide, and the film thickness of the silicon carbide film is made to be 45-700mu. Furthermore, on the silicon carbide covering film 2 of the first layer of the C composite, the silicon carbide film 3 of an outer layer is covered by CVD method.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は航空・宇宙産業の分野あるいは原子炉用部材等
の高温雰囲気において繰返し使用に耐える炭素繊維強化
炭素材料に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a carbon fiber-reinforced carbon material that can withstand repeated use in the field of aerospace industry or in high-temperature atmospheres such as parts for nuclear reactors.

〈従来の技術〉 炭素材料は、その応用の歴史的過程からも明らかなよう
に、電気・熱の良導体であると同時に無比の耐熱性、耐
食性、潤滑性など数多くのユニークな物理的・化学的な
性質を持フている。 炭素繊維強化炭素材料(以下、C
/Cコンポジットという)は、そのなかでも特に比強度
が大きく、炭素材料の持つ特性も兼ね備えているため、
従来の炭素材料では適用できない部位、例えばロケット
のノーズコーンやノズルなどへの通用が可能となる。
<Conventional technology> As is clear from the historical process of its application, carbon materials are good conductors of electricity and heat, and at the same time have many unique physical and chemical properties such as unparalleled heat resistance, corrosion resistance, and lubricity. It has certain characteristics. Carbon fiber reinforced carbon material (hereinafter referred to as C
/C composite) has particularly high specific strength and also has the characteristics of carbon materials.
It can be used in areas where conventional carbon materials cannot be used, such as rocket nose cones and nozzles.

しかしながら、C/Cコンポジットを含めて炭素材料は
、一般に500℃程度から酸化を受け、それ自身の持つ
すぐれた物理的・化学的性質が低下するため、高温大気
中での使用はごく短時間のものを除き不可能であった。
However, carbon materials, including C/C composites, generally undergo oxidation from around 500°C and their excellent physical and chemical properties deteriorate, so they can only be used in high-temperature atmosphere for a very short time. It was impossible except for something.

 この現象を防止するために、従来から炭素材料の耐酸
化処理方法については種々の検討がなされてきた。
In order to prevent this phenomenon, various studies have been made regarding oxidation-resistant treatment methods for carbon materials.

それらの方法のなかで、化学気相蒸着法(以下、CVD
法という)による炭素材料へのセラミック被覆は最も一
般的に行われている方法の一つであり、この方法により
緻密な皮膜を得ることができる。 また、この方法によ
れば、炭化けい素、炭化チタン、炭化ハフニウム、炭化
タンタル等の炭化物、窒化チタン、窒化はう素、窒化ジ
ルコニウム等の窒化物、アルミナ、ジルコニア等の酸化
物、その他はう化物の被覆を行うことができる。
Among these methods, chemical vapor deposition (CVD)
Ceramic coating on carbon materials is one of the most commonly used methods, and a dense coating can be obtained by this method. Also, according to this method, carbides such as silicon carbide, titanium carbide, hafnium carbide, and tantalum carbide, nitrides such as titanium nitride, boron nitride, and zirconium nitride, oxides such as alumina and zirconia, and other Compound coating can be performed.

しかしながら、この方法では基材となる炭素材料の温度
を1000℃前後にまで加熱しなければならない場合が
多く、基材の冷却時に表面のセラミック皮膜が剥離した
り割れを起こすことが多かった。 これは、基材と析出
させるセラミック間の熱膨張率の差が大きいため最大ひ
ずみが追随できないことが原因であり、基材の熱膨張率
を、析出させるセラミックとほぼ同程度にすることによ
り解決することができる。
However, in this method, it is often necessary to heat the carbon material serving as the base material to around 1000°C, and the ceramic coating on the surface often peels or cracks when the base material is cooled. This is because the maximum strain cannot follow the large difference in thermal expansion coefficient between the base material and the ceramic to be deposited.This can be resolved by making the coefficient of thermal expansion of the base material almost the same as that of the ceramic to be deposited. can do.

しかし、C/Cコンポジットを基材として用いる場合は
、その熱膨張率が炭素繊維自体の熱膨張率に拘束され自
由に調節することができず、またその熱膨張率に合致し
た耐熱性セラミック被覆材料もないため、CVD法によ
る優れた耐酸化皮膜を利用することができなかった。
However, when using a C/C composite as a base material, its coefficient of thermal expansion is restricted by the coefficient of thermal expansion of the carbon fiber itself and cannot be freely adjusted. Since there was no material available, it was not possible to utilize the excellent oxidation-resistant film produced by the CVD method.

特開昭61−26563号公報には、有機けい崇高分子
化合物を溶融状態でC/Cコンポジットに強制含浸した
後、不活性雰囲気中で1200〜2000℃の温度で高
温焼成して含浸物を炭化けい素に転化する方法が開示さ
れている。  しかしながら、この方法ではC/Cコン
ポジットの密度が高い場合には、溶融状態の有機けい崇
高分子化合物を均一に含浸することができず、その結果
アンカー効果が乏しくなるためにC/Cコンポジットと
十分に密着した炭化けい素皮膜を得ることができない。
JP-A No. 61-26563 discloses that after a C/C composite is forcibly impregnated with an organic silicon high molecular compound in a molten state, the impregnated material is carbonized by firing at a high temperature of 1200 to 2000°C in an inert atmosphere. A method of converting to silicon is disclosed. However, in this method, when the density of the C/C composite is high, it is not possible to uniformly impregnate the molten organic silicon high molecular compound, and as a result, the anchoring effect becomes poor. It is not possible to obtain a silicon carbide film that adheres closely to the surface.

 このような炭化けい素皮膜では、繰返し高温で使用す
る場合には剥離が起こり易く、C/Cコンポジットの耐
酸化保護皮膜としては適さない。
Such silicon carbide films tend to peel off when used repeatedly at high temperatures, and are not suitable as oxidation-resistant protective films for C/C composites.

また、特開昭62−153164号公報には、C/Cコ
ンポジット表面に熱硬化性樹脂と有機りん化合物の混合
物を付与した後、該混合物を硬化および炭化処理すると
いう方法が開示されている。 しかし、同公報の実施例
に示されるように、上記処理を施したC/Cコンポジッ
トにおいても1000℃以下の温度で10%程度の重量
減少があり、例えばスペースシャトルの外装材としての
応用を考えたとき、これが大気圏に突入するときに16
00℃程度と極めて高温に達するという事実を考えた場
合、前述の方法は実際的でない。
Further, Japanese Patent Application Laid-Open No. 153164/1984 discloses a method in which a mixture of a thermosetting resin and an organic phosphorus compound is applied to the surface of a C/C composite, and then the mixture is hardened and carbonized. However, as shown in the examples in the same publication, even in the C/C composite treated as described above, there is a weight loss of about 10% at temperatures below 1000°C. 16 when it enters the atmosphere
Considering the fact that extremely high temperatures of around 00°C are reached, the above-mentioned method is not practical.

さらに、特開昭61−27248号公報には、C/Cコ
ンポジットに拡散法による炭化けい素被覆を行い、その
外表面にCVD法により窒化けい素皮膜を被覆すること
が示されている。 この方法によれば、ある程度有効な
耐酸化皮膜の形成は可能であるが、窒化けい素を用いて
いるために使用可能温度が約1300’Cと低く、致命
的な欠陥を有しているために実用に供される可能性に乏
しい。 すなわち、その致命的な欠陥とは、緻密な膜、
つまりこの方法ではCVD法により析出させた窒化けい
素皮膜は、急激な熱衝翳により必ず微細な割れが発生す
るということであり、その微細な割れから酸素が拡散し
てC/Cコンポジットの性能を低下せしめるのである。
Further, JP-A No. 61-27248 discloses that a C/C composite is coated with silicon carbide by a diffusion method, and its outer surface is coated with a silicon nitride film by a CVD method. According to this method, it is possible to form a somewhat effective oxidation-resistant film, but because silicon nitride is used, the usable temperature is as low as approximately 1300'C, and it has a fatal flaw. There is little possibility that it will be put to practical use. In other words, the fatal defect is the dense membrane,
In other words, with this method, the silicon nitride film deposited by the CVD method will inevitably develop minute cracks due to rapid thermal bombardment, and oxygen will diffuse from these minute cracks, improving the performance of the C/C composite. This results in a decrease in

 上述の技術では、その現象への対応策がなされていな
いため、繰返し高温で使用する部位への利用には適した
ものではなかフた。
The above-mentioned technology does not take measures to deal with this phenomenon, and therefore is not suitable for use in parts that are repeatedly used at high temperatures.

〈発明が解決しようとする課題〉 C/Cコンポジットへの耐酸化被覆方法には前述のよう
に種々のものがあるが、それらには下記のような問題点
がある。
<Problems to be Solved by the Invention> As mentioned above, there are various methods for coating C/C composites with oxidation resistance, but they have the following problems.

(1)CVD法によってC/Cコンポジット上に析出さ
せた耐酸化皮膜には、必ず熱膨張率の違いによる割れ、
剥離が生じ、そのままでは実用に適さない。
(1) The oxidation-resistant film deposited on the C/C composite by the CVD method always has cracks and cracks due to differences in the coefficient of thermal expansion.
Peeling occurs, making it unsuitable for practical use as it is.

(2)耐酸化皮膜成分を含む液体を含浸させる場合には
、用いるC/Cコンポジットの密度が高いと中まで含浸
が行えず、それ故アンカー効果による耐酸化皮膜の密着
性が失われるため、剥離が起こる原因となる。  しか
も、−見密着性のよさそうな皮膜であっても、C/Cコ
ンポジットとの熱膨張率差が大きすぎるために一回以上
の熱サイクル負荷によりすぐに割れや剥離を生じる。
(2) When impregnating with a liquid containing oxidation-resistant film components, if the density of the C/C composite used is high, impregnation cannot be carried out to the inside, and therefore the adhesion of the oxidation-resistant film due to the anchor effect is lost. This may cause peeling. Moreover, even if the film appears to have good adhesion, the difference in coefficient of thermal expansion between the film and the C/C composite is too large, so it will easily crack or peel off when subjected to one or more thermal cycles.

(3)特開昭61−27248号公報に開示されている
複層被覆法によれば、前述の2つの方法に比べてはるか
に安定な耐酸化皮膜を得ることができるが、CVD法に
より被覆した膜は1回の熱サイクル負荷によって容易に
微細な割れを生じ、そこから酸素が拡散していくために
C/Cコンポジットの強度低下が起こる。
(3) According to the multi-layer coating method disclosed in JP-A-61-27248, it is possible to obtain a much more stable oxidation-resistant film than the two methods mentioned above, but the CVD method The resulting film easily develops fine cracks due to one thermal cycle load, and oxygen diffuses through the cracks, resulting in a decrease in the strength of the C/C composite.

本発明は、従来法の欠点である耐酸化皮膜の剥離が押え
られ、しかも熱サイクル負荷による微細な割れが生じた
場合でも、自己修復機能を有するために酸化劣化を防止
することができる炭素繊維強化炭素材料を提供すること
を目的としている。
The present invention suppresses the peeling of the oxidation-resistant film, which is a drawback of conventional methods, and also has a self-healing function that prevents oxidative deterioration even when microscopic cracks occur due to thermal cycle loads. The aim is to provide reinforced carbon materials.

く課題を解決するための手段〉 上記目的を達成するために、本発明によれば炭素繊維強
化炭素材料基材の表面に、耐酸化皮膜として、金属けい
素を含む炭化けい素皮膜の内層を有し、さらに該内層上
に炭化けい素皮膜の外層を有することを特徴とする炭素
繊維強化炭素材料が提供される。
Means for Solving the Problems> In order to achieve the above object, according to the present invention, an inner layer of a silicon carbide film containing metallic silicon is provided on the surface of a carbon fiber-reinforced carbon material base material as an oxidation-resistant film. Provided is a carbon fiber-reinforced carbon material, further comprising an outer layer of silicon carbide film on the inner layer.

前記内層は1〜35重量%の金属けい素を含み、かつ4
5〜700μmの膜厚であ、す、前記外層は50〜50
0μmの膜厚であるのが好ましい。
The inner layer contains 1 to 35% by weight of silicon metal, and 4
The outer layer has a thickness of 5 to 700 μm, and the outer layer has a thickness of 50 to 50 μm.
Preferably, the film thickness is 0 μm.

また、前記内層が拡散法により形成されるのが好ましい
Moreover, it is preferable that the inner layer is formed by a diffusion method.

さらに、前記内層はほう素を含むものであるのが好まし
い。
Furthermore, it is preferable that the inner layer contains boron.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の炭素繊維強化炭素材料は、第1図に示すように
、炭素繊維強化炭素材料基材1の上に内層2を有し、さ
らに該内層上に外層3を有する。  4は内層中に含ま
れる金属けい素である。
As shown in FIG. 1, the carbon fiber-reinforced carbon material of the present invention has an inner layer 2 on a carbon fiber-reinforced carbon material base material 1, and further has an outer layer 3 on the inner layer. 4 is metal silicon contained in the inner layer.

基材となるC/Cコンポジットを構成する炭素繊維とし
て、平織、朱子織、綾織などの二次元織布、−次元配向
材、三次元配向材、フェルト、トウなどが用いられ、バ
インダーとしてはフェノール樹脂、フラン樹脂などの熱
硬化性物質、タールピッチのような熱可塑性物質を用い
ることがでとる。 前記炭素繊維は、含浸、塗布などの
方法によりプリプレグ化し、積層加圧成形して成形体と
する。 この成形体は、熱処理によってバインダーを硬
化させ、その後常法に従って焼成し、さらに必要に応じ
て黒鉛化することによりC/Cコンポジットとする。 
その後、用途に応じて含浸法、CVD法などにより#密
化を繰り返すことにより、さらに高強度のC/Cコンポ
ジットとすることもできる。
Two-dimensional woven fabrics such as plain weave, satin weave, and twill weave, -dimensionally oriented materials, three-dimensionally oriented materials, felt, tow, etc. are used as the carbon fibers constituting the C/C composite that is the base material, and phenol is used as the binder. Thermosetting substances such as resins and furan resins, and thermoplastic substances such as tar pitch can be used. The carbon fiber is made into a prepreg by a method such as impregnation or coating, and then laminated and pressure-molded to form a molded body. This molded body is made into a C/C composite by hardening the binder by heat treatment, then firing in accordance with a conventional method, and further graphitizing if necessary.
Thereafter, a C/C composite with even higher strength can be obtained by repeating #densification by an impregnation method, a CVD method, etc. depending on the application.

C/Cコンポジット上の第一層目すなわち内層の炭化け
い素皮膜は拡散法によって行うことができる。 この方
法は、けい素を含むガスおよび/またはけい素を含む液
体とC/Cコンポジットとを反応させて、C/Cコンポ
ジットの表面を炭化けい素に転化する方法である。 こ
の方法によれば、C/Cコンポジットの表層部を炭化け
い素化するので、C/Cコンポジットとの密着性が強固
になり、熱衝撃によっても容易に剥離を起こさないとい
う長所がある。
The first or inner silicon carbide coating on the C/C composite can be formed by a diffusion method. This method is a method in which a silicon-containing gas and/or a silicon-containing liquid reacts with a C/C composite to convert the surface of the C/C composite into silicon carbide. According to this method, since the surface layer of the C/C composite is made into silicon carbide, the adhesiveness with the C/C composite is strong, and there is an advantage that peeling does not easily occur even under thermal shock.

さらに、適当な炭化けい素の焼結助剤、例えばほう素等
を金属けい素に対して数%添加することにより、緻密な
炭化けい素皮膜を得ることができる。 拡散法の長所は
そればかりではなく、未反応の金属けい素を容易に炭化
けい素皮膜の中に介在させ得ることにもある。
Furthermore, a dense silicon carbide film can be obtained by adding a suitable silicon carbide sintering aid, such as boron, in a few percent to the amount of silicon metal. The advantage of the diffusion method is not only that, but also that unreacted metallic silicon can be easily interposed in the silicon carbide film.

その具体的な方法としては、金属けい素粉末的部にC/
Cコンポジットを埋没させ、不活性ガス雰囲気下金属け
い素の融点(1390℃)以上の温度で反応を行わせ、
C/Cコンポジットの表層部を炭化けい素化するという
のが代表的な方法である。
As a specific method, C/
The C composite is buried and the reaction is carried out at a temperature higher than the melting point of silicon metal (1390°C) in an inert gas atmosphere,
A typical method is to convert the surface layer of a C/C composite into silicon carbide.

このときに、C/Cコンポジット全体を炭化けい素化す
るのに要する金属けい素の1,3〜7.5重量倍の金属
けい素を使用することにより、得られる炭化けい素皮膜
内の金属けい素の量を調節すること・ができる。  ま
た、金属けい素粉束のみを反応に用いると、反応中に焼
結が起こってC/Cコンポジットを取り出せなくなるの
で、高温で安定なセラミック粉末、例えば炭化けい素、
アルミナ、シリカ等を加えてやることによりハンドリン
グ性が向上する。
At this time, by using metal silicon in an amount of 1.3 to 7.5 times the weight of the metal silicon required to silicon carbide the entire C/C composite, the metal in the silicon carbide film obtained is The amount of silicon can be adjusted. Furthermore, if only a metal silicon powder bundle is used in the reaction, sintering will occur during the reaction and the C/C composite cannot be taken out.
Handling properties are improved by adding alumina, silica, etc.

拡散法によってC/Cコンポジット表層部に形成された
炭化けい麦皮膜は、未反応の金属けい素を介在させるた
めにも必要であるが、後述する第二層目のCVD法によ
り析出された炭化けい麦皮膜の密着強度を向上させるた
めに必要である。 すなわち、直接C/Cコンポジット
にCVD法で均一な炭化けい麦皮膜を析出させようとし
ても、熱膨張率の差により必ず剥離を生じるからである
The silicon carbide film formed on the surface layer of the C/C composite by the diffusion method is necessary to interpose unreacted silicon metal, but the silicon carbide film formed by the CVD method in the second layer described below It is necessary to improve the adhesion strength of the walnut film. That is, even if an attempt is made to directly deposit a uniform silicon carbide film on a C/C composite by the CVD method, peeling will inevitably occur due to the difference in the coefficient of thermal expansion.

拡散法において用いられる金属けい素は、純度95%以
上、粒径100μm以下であることが必要であり、その
なかでも純度99%以上で、マグネシウム、アルミニウ
ム、鉄および/またはそれらの酸化物の含有量の合計が
1重量%以下、粒径10μm以下であることが特に好ま
しい。 すなわち、純度が95%未満であり、しかも前
述の不純物が含まれていると、C/Cコンポジットの表
層部に生成した炭化けい麦皮膜の酸化開始温度を低下さ
せるからである。 この傾向は、特にマグネシウムおよ
び/またはマグネシウムの酸化物が含まれている場合に
著しい。 粒径が100μmより大きい場合は前述のセ
ラミック粉末を加える場合に金属けい素との均一な混合
が難しくなるため好ましくない。
Metallic silicon used in the diffusion method must have a purity of 95% or more and a particle size of 100 μm or less, and in particular must have a purity of 99% or more and contain magnesium, aluminum, iron, and/or their oxides. It is particularly preferred that the total amount is 1% by weight or less and the particle size is 10 μm or less. That is, if the purity is less than 95% and the above-mentioned impurities are contained, the oxidation start temperature of the carbonized silica film formed on the surface layer of the C/C composite will be lowered. This tendency is particularly remarkable when magnesium and/or magnesium oxides are included. If the particle size is larger than 100 μm, it is not preferable because it becomes difficult to mix uniformly with metal silicon when adding the above-mentioned ceramic powder.

未反応の金属けい素の炭化けい素皮膜内への含有量は、
該炭化けい麦皮膜に対し1〜35重量%にすることが好
ましい。 前記含有量が1重量%未満では、後述するC
VD法によって析出させた炭化けい麦皮膜に割れが生じ
た場合、封孔処理剤として働き難くなり、逆に35重量
%を超えると、金属けい素の融点以上の温度で使用した
場合、未反応の金属けい素の流動が激しくなり炭化けい
麦皮膜の剥離を促すことになるため好ましくない。
The content of unreacted metallic silicon in the silicon carbide film is
The amount is preferably 1 to 35% by weight based on the carbonized silica film. If the content is less than 1% by weight, C
If cracks occur in the silicon carbide film deposited by the VD method, it becomes difficult to work as a sealing agent, and conversely, if it exceeds 35% by weight, it may become unreacted if used at a temperature above the melting point of silicon metal. This is not preferable because the flow of silicon metal becomes intense and promotes peeling of the silicon carbide film.

微少な未反応金属けい素が存在する炭化けい麦皮膜の膜
厚は、45〜700μmの範囲であることが望ましい。
The thickness of the silicon carbide film in which a small amount of unreacted metal silicon is present is preferably in the range of 45 to 700 μm.

 膜厚が45μm未満では、後述するCVD法によって
形成される炭化けい麦皮膜とC/Cコンポジットとの結
合の強固なものが得られない。 つまり、第一層目は耐
酸化皮膜として働くだけでなく、熱膨張率の差を緩和す
る緩衝層としても働いているのである。 逆に、膜厚が
700μmを超える被覆も拡散法においては可能である
が、厚膜化しすぎると、急激な熱サイクルによって炭化
けい麦皮膜が破壊し易くなる。 さらに、拡散法の性質
上C/Cコンポジットの強度を低下せしめるため好まし
くない。
If the film thickness is less than 45 μm, a strong bond between the carbonized silica film formed by the CVD method described below and the C/C composite cannot be obtained. In other words, the first layer not only functions as an oxidation-resistant film, but also as a buffer layer that alleviates the difference in coefficient of thermal expansion. On the other hand, it is possible to form a coating with a thickness exceeding 700 μm using the diffusion method, but if the film is made too thick, the carbonized silica film is likely to be destroyed by rapid thermal cycles. Furthermore, due to the nature of the diffusion method, it is undesirable because it reduces the strength of the C/C composite.

C/Cコンポジットの第一層目の炭化けい麦皮膜の上に
形成される第二層目のすなわち外層の炭化けい麦皮膜は
、CVD法で行うことができる。 CVD法による炭化
けい素の被覆は、最も一般的に行われている方法の一つ
であり、例えば四塩化けい素、メタン、水素、アルゴン
の混合気体(体積比1:1:5:1)を、5゜〜400
 mmHgの減圧下、1000〜15oo℃の温度で2
0〜300分程度反応程度ることにより得ることができ
る。 但し、CVD法の反応条件は、析出させる炭化け
い素の結晶構造、用いる原料ガスの種類によって非常に
異なり、必ずしも上述の反応条件に限定されるものでは
ない。
The second layer, ie, the outer layer, of the carbonized silicone film formed on the first layer of the carbonized silicone film of the C/C composite can be formed by a CVD method. Silicon carbide coating by CVD is one of the most commonly used methods, for example, using a mixed gas of silicon tetrachloride, methane, hydrogen, and argon (volume ratio 1:1:5:1). , 5°~400
2 at a temperature of 1000-150°C under a reduced pressure of mmHg.
It can be obtained by reacting for about 0 to 300 minutes. However, the reaction conditions of the CVD method vary greatly depending on the crystal structure of silicon carbide to be deposited and the type of raw material gas used, and are not necessarily limited to the above-mentioned reaction conditions.

CVD法によって被覆された炭化けい素皮膜の膜厚は、
50〜500μmの範囲にあることが必要である。 膜
厚が50μm未満では、C/Cコンポジットへの酸素の
拡散バリヤーとして十分な機能を果たさず、逆に膜厚が
500μmを超える場合は、析出に要する時間が極めて
長くなり実用的でないことおよび熱衝撃により皮膜の割
れ、欠けが発生しやすくなるため好ましくない。
The thickness of the silicon carbide film coated by the CVD method is
It is necessary that the thickness be in the range of 50 to 500 μm. If the film thickness is less than 50 μm, it will not function sufficiently as a barrier for oxygen diffusion into the C/C composite, and if the film thickness exceeds 500 μm, the time required for precipitation will be extremely long, making it impractical and causing heat problems. This is not preferable because the film is likely to crack or chip due to impact.

従来の耐酸化被覆方法によるC/Cコンポジットは、被
覆がたとえある程度の水準にあったとしてもそれが・割
れた場合の修復機能を有していないため、使用条件の苛
酷な場合には、その割れから酸素が拡散し基材であるC
/Cコンポジットの特性を劣化せしめることが通常であ
った。 それに対して、本発明のC/Cコンポジットは
、仮に外層の炭化けい素皮膜に割れが生じた場合でも、
内部に存在する未反応金属けい素の蒸気がその部分を通
って表面に出てくるために酸素の拡散が抑制され、C/
Cコンポジット自体の本来の特性は損なわれない。 し
かも、金属けい素蒸気の一部と酸素の反応によりシリカ
を生成し、これが炭化けい素皮膜に生じた割れを塞ぐ封
孔処理剤として機能も果たすことができる。
C/C composites made using conventional oxidation-resistant coating methods do not have the ability to repair cracks even if the coating is of a certain level, so under severe usage conditions, Oxygen diffuses from the crack and the base material C
/C usually deteriorated the properties of the composite. In contrast, in the C/C composite of the present invention, even if cracks occur in the outer silicon carbide film,
The vapor of unreacted metal silicon existing inside comes out to the surface through that part, suppressing the diffusion of oxygen and causing C/
The original properties of the C composite itself are not impaired. Furthermore, silica is produced by the reaction of a portion of the metal silicon vapor with oxygen, and this can also function as a sealing agent for sealing cracks that occur in the silicon carbide film.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1) 基材として用いるC/Cコンポジットは、以下に述べる
方法によって作成した。
(Example 1) A C/C composite used as a base material was created by the method described below.

熱融着性を示すフェノールホルムアルデヒド樹脂(鐘紡
(株)製部品名ベルバール)が25重量%になるように
メタノールで溶解希釈した後、東邦レーヨン(株)製炭
素繊維クロス゛°ベスファイト”#3101(高強度タ
イプ炭素繊維使用)に樹脂目付は量として85g/rn
’を含浸させた。
Phenol formaldehyde resin (manufactured by Kanebo Co., Ltd., part name: Belbar), which exhibits heat-fusibility, was dissolved and diluted with methanol to 25% by weight, and then carbon fiber cross "Besphite"#3101 (manufactured by Toho Rayon Co., Ltd.) was dissolved and diluted with methanol to a concentration of 25% by weight. High-strength type carbon fiber is used) and the resin basis weight is 85g/rn.
Impregnated with '.

その後、オーブン中で80℃、30分間乾燥してメタノ
ールを揮散させ、樹脂含浸炭素繊維シートを得た。 こ
のシートを10枚積層しホットプレスにより100kg
/crn’の圧力下150℃で60分間加熱加圧成形し
、炭素繊維強化プラスチツク板を得た。 つぎに、該炭
素繊維強化プラスチツク板をアルゴンガス雰囲気中で2
0℃/ Hrの昇温速度で2000℃まで焼成して厚さ
2mmのC/Cコンポジットを得た。 このようにして
得られたC/Cコンポジットは、さらにフラン樹脂の含
浸−焼成という緻密化処理を4回繰り返して行い、曲げ
強度24kg/mm”、眉間剪断強度1.86kg/m
m2、密度1.65g/cm3の高強度C/Cコンポジ
ットとした。
Thereafter, it was dried in an oven at 80° C. for 30 minutes to volatilize methanol to obtain a resin-impregnated carbon fiber sheet. Stack 10 of these sheets and press them to produce 100 kg.
/crn' at 150° C. for 60 minutes to obtain a carbon fiber reinforced plastic board. Next, the carbon fiber reinforced plastic plate was placed in an argon gas atmosphere for 2 hours.
A C/C composite with a thickness of 2 mm was obtained by firing to 2000° C. at a temperature increase rate of 0° C./Hr. The C/C composite thus obtained was further subjected to a densification process of furan resin impregnation and firing four times, resulting in a bending strength of 24 kg/mm" and a glabella shear strength of 1.86 kg/m.
m2 and a high strength C/C composite with a density of 1.65 g/cm3.

以上の方法により得られたC/Cコンポジットを101
00x30x2の大きさに切り出し、金属けい素(粒径
10μm以下、純度99.9%、高純度化学(株)製)
70重1%、炭化けい素(平均粒径1.0μm、純度9
9.7%昭和電工(株)製)28重量%およびほう素(
粒径10μm以下、純度99.5%、H,C,5tar
k (株)製)2重量%をボールミル中で6時間混合し
た混合物中に埋没させるようにして黒鉛るつぼの中に入
れた。 このときの金属けい素の量は、C/Cコンポジ
ットを完全に炭化けい素化させるのに必要な量の3.5
倍とした。 このようにして調製した試料を高周波誘導
加熱炉内に静置し、アルゴンガス101/分流通下16
50℃で4時間反応を行わせ、C/Cコンポジットに平
均膜厚485μmの炭化けい素皮膜を被覆した。 この
炭化けい素皮膜内に含まれる未反応の金属けい素は、酸
洗法による重量減少から計算したところ、炭化けい素皮
膜に対して18重量%であった。
The C/C composite obtained by the above method was
Cut into 00 x 30 x 2 pieces of metal silicon (particle size 10 μm or less, purity 99.9%, manufactured by Kojundo Kagaku Co., Ltd.)
70% by weight, silicon carbide (average particle size 1.0μm, purity 9
9.7% manufactured by Showa Denko Co., Ltd.) 28% by weight and boron (
Particle size 10μm or less, purity 99.5%, H, C, 5tar
2 wt. The amount of metallic silicon at this time is 3.5, which is the amount required to completely convert the C/C composite into silicon carbide.
It was doubled. The sample prepared in this way was placed in a high-frequency induction heating furnace, and the sample was placed in a high-frequency induction heating furnace for 16 hours under a flow of argon gas at 101/min.
The reaction was carried out at 50° C. for 4 hours, and the C/C composite was coated with a silicon carbide film having an average thickness of 485 μm. The unreacted metallic silicon contained in this silicon carbide film was calculated from the weight loss due to the pickling method, and was 18% by weight based on the silicon carbide film.

上述の方法によって得られた、遊離金属けい素を介在さ
せた炭化けい素皮膜を有するC/Cコンポジットに、さ
らにCVD法により炭化けい素皮膜を被覆した。 この
CVD法は、減圧−常圧に戻す操作を繰り返すパルスC
VD法によって行い、反応ガスとしてメチルトリクロロ
シランを約5重量%含有する水素ガスを反応室内に送り
込んだ。
The C/C composite having a silicon carbide film with free metal silicon interposed therein obtained by the above method was further coated with a silicon carbide film by a CVD method. This CVD method uses a pulse C that repeats the operation of reducing the pressure and returning it to normal pressure.
The VD method was used, and hydrogen gas containing about 5% by weight of methyltrichlorosilane was fed into the reaction chamber as a reaction gas.

反応室内の温度は1200℃、1パルス当たりの反応時
間は1.5秒、パルス数は6000とした。 CVD法
としてパルスCVD法を選択した理由は、反応ガスの拡
散を速やかに行わせ、できる限り短時間で所定の膜厚の
炭化けい素皮膜を得ようとしたからである。 この方法
により、膜厚150μmの炭化けい素皮膜を生成させた
The temperature inside the reaction chamber was 1200° C., the reaction time per pulse was 1.5 seconds, and the number of pulses was 6000. The reason why the pulse CVD method was selected as the CVD method was to cause the reaction gas to diffuse quickly and to obtain a silicon carbide film of a predetermined thickness in as short a time as possible. By this method, a silicon carbide film with a thickness of 150 μm was produced.

以上の方法によって得られた耐酸化被覆されたC/Cコ
ンポジットを空気中マツハ2のアルゴンプラズマに30
分間当て、そのときの重量減少量および強度変化につい
て調べた。 アルゴンプラズマが照射されるC/Cコン
ポジット上の温度は1500℃とした。 この結果を表
1に示した。
The oxidation-resistant coated C/C composite obtained by the above method was placed in the argon plasma of Matsuha 2 in the air for 30 minutes.
The weight loss amount and strength change during that time were examined. The temperature on the C/C composite irradiated with argon plasma was 1500°C. The results are shown in Table 1.

(比較例1) 拡散法によりC/Cコンポジットに炭化けい素皮膜を被
覆する場合に、金属けい素の量をC/Cコンポジット全
体が完全に炭化けい素化されるのに必要な量の1.0倍
としたほかは、実施例1と同様の材料および方法で炭化
けい素被覆を行った。 このときの皮膜の厚さは平均4
79μmであった。 また、このC/Cコンポジットを
さらに1800℃で12時間保持し、残存している未反
応の金属けい素を完全に炭化けい素化せしめた。 この
後、さらに実施例1と同様の方法でCVD法による炭化
けい素皮膜を生成させた。
(Comparative Example 1) When coating a C/C composite with a silicon carbide film by the diffusion method, the amount of metallic silicon is reduced to 1 of the amount required for the entire C/C composite to be completely silicon carbide. Silicon carbide coating was performed using the same materials and method as in Example 1, except that the thickness was increased to 0.0 times. The average thickness of the film at this time is 4
It was 79 μm. Further, this C/C composite was further held at 1800° C. for 12 hours to completely convert remaining unreacted metallic silicon to silicon carbide. Thereafter, a silicon carbide film was further formed by CVD in the same manner as in Example 1.

以上の方法によって得られた耐酸化被覆されたC/Cコ
ンポジットを、実施例1と同様の方法で試験した。  
この結果を表1に示した。
The oxidation-resistant coated C/C composite obtained by the above method was tested in the same manner as in Example 1.
The results are shown in Table 1.

(比較例2) 実施例1で用いたものと同じ耐酸化被覆未処理のC/C
コンポジットを100x30x2mmの大きさに切り出
し、実施例1と同様の拡散法により平均膜厚482μm
の炭化けい素皮膜を形成させた。 この炭化けい素皮膜
内に含まれる未反応金属けい素は、酸洗法による重量減
少から計算したところ、炭化けい素皮膜に対し17.4
重量%であった。
(Comparative Example 2) C/C without oxidation-resistant coating, same as that used in Example 1
The composite was cut into a size of 100 x 30 x 2 mm, and the average film thickness was 482 μm using the same diffusion method as in Example 1.
A silicon carbide film was formed. The amount of unreacted metal silicon contained in this silicon carbide film was calculated from the weight loss due to the pickling method, and it was found that the amount of unreacted metal silicon contained in the silicon carbide film was 17.4% compared to the silicon carbide film.
% by weight.

上記の方法によって得られた未反応の金属シリコンを介
在させた炭化けい素皮膜を有するC/Cコンポジットを
空気中マツハ2のアルゴンプラズマに30分間当て、そ
のときの重量減少量および強度変化について調べた。 
なお、アルゴンプラズマが照射されるC/Cコンポジッ
ト上の温度は1500℃とした。 この結果を表1に示
した。
The C/C composite having a silicon carbide film with unreacted metal silicon interposed therein obtained by the above method was exposed to Matsuha 2's argon plasma in the air for 30 minutes, and the amount of weight loss and strength change at that time was investigated. Ta.
Note that the temperature on the C/C composite to which the argon plasma was irradiated was 1500°C. The results are shown in Table 1.

(比較例3) 拡散法によりC/Cコンポジットに炭化けい素皮膜を被
覆する場合に、金属けい素30重量%、炭化けい素70
重量%のほう素を含まない粉末を用いたほかは、実施例
1と同様の方法で炭化けい素被覆を行った。 得られた
皮膜の厚さは約460μmであった。 さらに、その上
部に実施例1と同じ方法でCVD法を行い、膜厚150
μmの炭化けい素皮膜を析出させた。
(Comparative Example 3) When coating a C/C composite with a silicon carbide film by a diffusion method, 30% by weight of metallic silicon and 70% by weight of silicon carbide were used.
Silicon carbide coating was performed in the same manner as in Example 1, except that powder containing no boron at % by weight was used. The thickness of the obtained film was approximately 460 μm. Furthermore, the CVD method was applied to the upper part in the same manner as in Example 1, and the film thickness was 150.
A micron silicon carbide film was deposited.

このようにして得られた試料を、実施例1の方法に従っ
て酸化試験を行った。 この結果を表1に示した。
The sample thus obtained was subjected to an oxidation test according to the method of Example 1. The results are shown in Table 1.

表     1 〈発明の効果〉 本発明は、以上説明したように構成されているので、そ
の耐熱性、耐食性、比強度が極めて優れており、特に航
空・宇宙産業や原子力産業では欠くことのでない素材と
して用いることができる。
Table 1 <Effects of the Invention> Since the present invention is configured as explained above, its heat resistance, corrosion resistance, and specific strength are extremely excellent, and it is a material that is indispensable especially in the aerospace industry and the nuclear power industry. It can be used as

本発明のC/Cコンポジットは、未反応の金属けい素を
介在させた炭化けい素皮膜およびその上に形成された炭
化けい素皮膜からなる特殊な二層構造をとっており、仮
に外層の炭化けい素皮膜に割れが生じた場合でも、その
下層に存在する金属けい素の蒸気がその部分を通って表
面に出てくるために外部からの酸素の拡散が抑制され、
C/Cコンポジットの有する本来の特性は損なわれず、
しかも金属けい素蒸気と酸素の反応によりシリカを生成
するため、外層の炭化けい素皮膜に生じた割れを塞ぐ封
孔処理剤としての機能を有している。
The C/C composite of the present invention has a special two-layer structure consisting of a silicon carbide film with unreacted metal silicon interposed therein and a silicon carbide film formed thereon. Even if a crack occurs in the silicon film, the metal silicon vapor that exists in the underlying layer will pass through the crack and come out to the surface, suppressing the diffusion of oxygen from the outside.
The original characteristics of C/C composite are not impaired,
Moreover, since silica is produced by the reaction between metal silicon vapor and oxygen, it has the function of a sealing agent that seals cracks that occur in the outer silicon carbide film.

本発明のC/Cコンポジットは、基材となっているC/
Cコンポジットの損傷を最少限に押さえることができる
ため、熱サイクル負荷の極めて苛酷な場合にも十分に対
応できる。
The C/C composite of the present invention has a C/C composite as a base material.
Since damage to the C composite can be kept to a minimum, it can adequately handle even extremely severe thermal cycle loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の炭素繊維強化炭素材料の概念図である
。 符号の説明 1・・・炭素繊維強化炭素材料基材、 2・・・内層、 3・・・外層、 4・・・けい素
FIG. 1 is a conceptual diagram of the carbon fiber reinforced carbon material of the present invention. Explanation of symbols 1...Carbon fiber reinforced carbon material base material, 2...Inner layer, 3...Outer layer, 4...Silicon

Claims (4)

【特許請求の範囲】[Claims] (1)炭素繊維強化炭素材料基材の表面に、耐酸化皮膜
として、金属けい素を含む炭化けい素皮膜の内層を有し
、さらに該内層上に炭化けい素皮膜の外層を有すること
を特徴とする炭素繊維強化炭素材料。
(1) The surface of the carbon fiber-reinforced carbon material base material has an inner layer of a silicon carbide film containing metal silicon as an oxidation-resistant film, and further has an outer layer of a silicon carbide film on the inner layer. Carbon fiber reinforced carbon material.
(2)前記内層は1〜35重量%の金属けい素を含み、
かつ45〜700μmの膜厚であり、前記外層は50〜
500μmの膜厚である請求項1記載の炭素繊維強化炭
素材料。
(2) the inner layer contains 1 to 35% by weight of silicon metal,
and has a film thickness of 45 to 700 μm, and the outer layer has a thickness of 50 to 700 μm.
The carbon fiber reinforced carbon material according to claim 1, which has a film thickness of 500 μm.
(3)前記内層が拡散法により形成される請求項1また
は2記載の炭素繊維強化炭素材料。
(3) The carbon fiber reinforced carbon material according to claim 1 or 2, wherein the inner layer is formed by a diffusion method.
(4)前記内層はほう素を含むものである請求項1〜3
のいずれかに記載の炭素繊維強化炭素材料。
(4) Claims 1 to 3, wherein the inner layer contains boron.
The carbon fiber-reinforced carbon material according to any one of the above.
JP15268788A 1988-06-21 1988-06-21 Carbon fiber reinforced carbon material Pending JPH01320152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15268788A JPH01320152A (en) 1988-06-21 1988-06-21 Carbon fiber reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15268788A JPH01320152A (en) 1988-06-21 1988-06-21 Carbon fiber reinforced carbon material

Publications (1)

Publication Number Publication Date
JPH01320152A true JPH01320152A (en) 1989-12-26

Family

ID=15545933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15268788A Pending JPH01320152A (en) 1988-06-21 1988-06-21 Carbon fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JPH01320152A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278339A (en) * 1991-03-07 1992-10-02 Mitsui Eng & Shipbuild Co Ltd High temperature heat-resistant strength member
WO2002044106A2 (en) * 2000-11-08 2002-06-06 Honeywell International Inc. Carbon barrier controlled metal infiltration layer for enhanced oxidation protection
JP2003524540A (en) * 2000-01-21 2003-08-19 アドヴァンスト セラミックス リサーチ インコーポレイテッド Continuous composite coextrusion method, apparatus, and composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278339A (en) * 1991-03-07 1992-10-02 Mitsui Eng & Shipbuild Co Ltd High temperature heat-resistant strength member
JP2003524540A (en) * 2000-01-21 2003-08-19 アドヴァンスト セラミックス リサーチ インコーポレイテッド Continuous composite coextrusion method, apparatus, and composition
JP4795600B2 (en) * 2000-01-21 2011-10-19 ビーエーイー システムズ アンマンド エアクラフト プログラムズ インコーポレイテッド Continuous composite coextrusion method, apparatus, and composition
WO2002044106A2 (en) * 2000-11-08 2002-06-06 Honeywell International Inc. Carbon barrier controlled metal infiltration layer for enhanced oxidation protection
WO2002044106A3 (en) * 2000-11-08 2003-04-03 Honeywell Int Inc Carbon barrier controlled metal infiltration layer for enhanced oxidation protection

Similar Documents

Publication Publication Date Title
US6291058B1 (en) Composite material with ceramic matrix and SiC fiber reinforcement, method for making same
Morimoto et al. Multilayer coating for carbon-carbon composites
Naslain et al. CVD-processing of ceramic-ceramic composite materials
US4752503A (en) Process for the manufacture of a composite material with refractory fibrous reinforcement and ceramic matrix
CN113321510B (en) High-entropy ceramic matrix composite and preparation method thereof
EP0662491A1 (en) Prepreg, process for preparation of prepreg, and products derived therefrom
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
WO2002098819A1 (en) Method for producing sic fiber-reinforced sic composite material
EP0678083B1 (en) Thermostructural composite articles and method for making same
JPH0585841A (en) Process for producing precrack fiber coating for reinforcing ceramic fiber matrix composite material
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
KR20060052933A (en) Protection against the oxidation of composite material parts containing carbon and parts thus protected
Weiß Carbon/carbons and their industrial applications
JPH01320152A (en) Carbon fiber reinforced carbon material
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof
JPH0291270A (en) Oxidation-resistant carbon fiber-reinforced carbon material and production thereof
JPH0274670A (en) Oxidation-resistant carbon fiber-reinforced material and production thereof
JP3562989B2 (en) Composite having thermal sprayed layer and method for producing the same
Koh et al. Strengthening and prevention of oxidation of aluminum nitride by formation of a silica layer on the surface
JPH0274668A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof
Nakano et al. SIC and Si {sub 3} N {sub 4}-matrix composites according to the hot-pressing route
JPH0274669A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof
JPH06183863A (en) Production of oxidation-resistant carbon fiber-reinforced carbon composite material
WO2023167191A1 (en) Silicon carbide ceramic and production method therefor
JPH03197377A (en) Carbon fiber-reinforced composite material and its production