JP2651386B2 - Thermal protection structure for space equipment - Google Patents

Thermal protection structure for space equipment

Info

Publication number
JP2651386B2
JP2651386B2 JP29296689A JP29296689A JP2651386B2 JP 2651386 B2 JP2651386 B2 JP 2651386B2 JP 29296689 A JP29296689 A JP 29296689A JP 29296689 A JP29296689 A JP 29296689A JP 2651386 B2 JP2651386 B2 JP 2651386B2
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon fiber
fiber reinforced
silicon
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29296689A
Other languages
Japanese (ja)
Other versions
JPH03153500A (en
Inventor
元康 田口
正征 大島
正元 山口
治 藤島
正司 石原
太助 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHU KAIHATSU JIGYODAN
Mitsubishi Chemical Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
UCHU KAIHATSU JIGYODAN
Mitsubishi Chemical Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHU KAIHATSU JIGYODAN, Mitsubishi Chemical Corp, Mitsubishi Heavy Industries Ltd filed Critical UCHU KAIHATSU JIGYODAN
Priority to JP29296689A priority Critical patent/JP2651386B2/en
Publication of JPH03153500A publication Critical patent/JPH03153500A/en
Application granted granted Critical
Publication of JP2651386B2 publication Critical patent/JP2651386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,特に宇宙往還機に好適な宇宙機器の熱防護
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thermal protection structure for space equipment particularly suitable for a spacecraft.

〔従来の技術〕[Conventional technology]

宇宙往還機が大気圏に再突入する際の空力加熱による
高温から機体を護るための熱防護システムとして,米国
のスペースシャトルでは,ノーズキャプや翼前縁部など
の特に高温になる部分を除いて,シリカ系タイルが使用
されている。しかし,このシリカ系タイルは強度が弱く
使用に際して損傷や欠落が問題となっており,また耐熱
温度は1280℃と低く,より高温で使用できる高強度の熱
防護システムの開発が待たれている。そのため,軽量か
つ高強度であり熱衝撃に強く耐熱性に優れた炭素繊維強
化炭素複合材を最外層に配した熱防護システムが提案さ
れている。しかし,炭素繊維強化炭素複合材はすべて炭
素で構成されているため,酸化され易く酸素含有雰囲気
中での長期間の使用は500〜600℃までに限られる。
As a thermal protection system to protect the airframe from the high temperature caused by aerodynamic heating when the spacecraft re-enters the atmosphere, the U.S. Space Shuttle uses silica, except for particularly hot parts such as the nose cap and wing leading edge. System tiles are used. However, these silica tiles have low strength, causing problems such as damage and chipping during use. The heat-resistant temperature is as low as 1280 ° C, and the development of a high-strength thermal protection system that can be used at higher temperatures is awaited. Therefore, a thermal protection system has been proposed in which a carbon fiber reinforced carbon composite material that is lightweight, high-strength, resistant to thermal shock and excellent in heat resistance is disposed on the outermost layer. However, since all carbon fiber reinforced carbon composites are composed of carbon, they are easily oxidized and long-term use in an oxygen-containing atmosphere is limited to 500 to 600 ° C.

炭素繊維強化炭素複合材の耐酸化性を向上させる為
に,いくつかの努力が払われている。その一つの例とし
て,燐酸系または酸化ほう素系のガラスを含浸する方法
がある。これは,含浸されたガラスが高温下の使用中に
溶融し,炭素質材の外部表面または内部表面とを覆い炭
素材料の強化を防ぐものである。また,炭素繊維強化炭
素複合材のマトリックス中に,耐酸化性物質(例えば,T
i,Si,B,W,Ta,Al)を炭化物あるいは有機物や元素の状態
で,分散させる方法が提案されている。さらには,気相
化学反応沈積法(以下CVD法と略す。)で得られるち密
な炭化珪素や窒化珪素の膜での炭素繊維強化炭素複合材
の外表面を被覆する方法がある。また,アルミナと炭化
珪素と金属珪素との混合粉体中に炭素材料を埋没させて
加熱するパック法や珪素含有物と炭素質基材とを直接反
応させる方法などで,炭素繊維強化炭素複合材の表面に
炭化珪素を生成させる方法なども提案されている。
Some efforts have been made to improve the oxidation resistance of carbon fiber reinforced carbon composites. One example is a method of impregnating with phosphoric acid or boron oxide glass. This is because the impregnated glass melts during use at high temperatures and covers the outer or inner surface of the carbonaceous material to prevent strengthening of the carbon material. In addition, oxidation-resistant substances (for example, T
A method of dispersing (i, Si, B, W, Ta, Al) in a state of carbide, organic matter or element has been proposed. Furthermore, there is a method of coating the outer surface of a carbon fiber reinforced carbon composite with a dense silicon carbide or silicon nitride film obtained by a gas phase chemical reaction deposition method (hereinafter abbreviated as a CVD method). In addition, a carbon fiber reinforced carbon composite material is prepared by a packing method in which a carbon material is buried in a mixed powder of alumina, silicon carbide, and metal silicon and heated, or a method in which a silicon-containing material is directly reacted with a carbonaceous substrate. For example, a method of generating silicon carbide on the surface of silicon has been proposed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながらかかる従来の技術では,下記のような問
題点がある。すなわち,燐酸や酸化ほう素系のガラスを
含浸する方法では,1000℃程度以上になると,ガラスの
蒸発が著しく有効な保護膜になりえない。たとえ他の高
融点のガラスと併用しても,高温での燐酸または酸化ほ
う素系のガラスの蒸発が激しく長い寿命は期待できな
い。またマトリックス中に耐酸化性物質を分散させる方
法においては,十分な耐酸化性をうるために多量の耐酸
化性物質が必要であり,炭素繊維強化炭素複合材の強度
低下や特有の擬延性的性質が失われる等の問題がある。
However, such a conventional technique has the following problems. In other words, in the method of impregnating glass of phosphoric acid or boron oxide, when the temperature exceeds about 1000 ° C., the evaporation of the glass cannot be a very effective protective film. Even if it is used in combination with another glass having a high melting point, the phosphoric acid or boron oxide-based glass is highly evaporated at a high temperature and a long life cannot be expected. Also, in the method of dispersing the oxidation-resistant substance in the matrix, a large amount of the oxidation-resistant substance is required to obtain sufficient oxidation resistance. There are problems such as loss of properties.

CVD法によって緻密な炭化珪素や窒化珪素の被覆膜を
作る方法では,炭化珪素や窒化珪素の熱膨張係数が3.5
×10-6/゜K程度であるのに対して,炭素繊維強化炭素複
合材の熱膨張係数は−1〜1×10-6/゜Kであり,熱応力
によって緻密な膜にクラックが発生し,ここから酸素が
浸入するため十分な耐酸化性が得られない。そこでクラ
ックを酸化珪素で封溝することが試みられたが,酸化珪
素の溶融温度が1750℃と高いために,酸化珪素の溶融温
度以下で酸素の浸入が防げず十分な結果が得られていな
い。さらにCVD法による膜は基材と物理的に接合してい
るだけなので,熱衝撃などで剥がれ易く信頼性に欠け
る。また,パック法や珪素含有物と炭素材料を直接反応
させて作られる炭化珪素の膜は,緻密性に欠け有効な酸
素拡散防止膜にならない。
In the method of forming a dense silicon carbide or silicon nitride coating film by the CVD method, the thermal expansion coefficient of silicon carbide or silicon nitride is 3.5
Whereas a × 10 -6 / ° about K, the thermal expansion coefficient of the carbon fiber-reinforced carbon composite material is -1 to 1 × 10 -6 / ° K, a crack occurs in dense film by thermal stress However, sufficient oxygen resistance cannot be obtained because oxygen enters from here. Attempts were made to seal the cracks with silicon oxide. However, since the melting temperature of silicon oxide was as high as 1750 ° C, sufficient results could not be obtained because oxygen intrusion could not be prevented below the melting temperature of silicon oxide. . Furthermore, since the film formed by the CVD method is only physically bonded to the substrate, it is easily peeled off due to thermal shock or the like, and lacks reliability. Further, a silicon carbide film formed by a pack method or by directly reacting a silicon-containing substance with a carbon material lacks denseness and cannot be an effective oxygen diffusion preventing film.

〔問題点を解決するための手段〕[Means for solving the problem]

そこで本発明者等は,これらの問題を解決すべく鋭意
検討した結果,特定の化合物で処理した特定形状の炭化
珪素被覆膜を炭素繊維強化炭素複合材の外表面に設ける
ことにより,上記の問題点が解決できることを見い出し
本発明に至った。すなわち本発明の目的は,宇宙往還機
などの宇宙機器が大気圏に再突入するに際して好適な宇
宙機器の熱防護構造を提供することにある。
The present inventors have conducted intensive studies to solve these problems, and as a result, by providing a silicon carbide coating film of a specific shape treated with a specific compound on the outer surface of the carbon fiber reinforced carbon composite material, The inventors have found that the problem can be solved, and have reached the present invention. That is, an object of the present invention is to provide a thermal protection structure of a space device suitable for a space device such as a space shuttle vehicle to re-enter the atmosphere.

そしてかかる目的は,宇宙機器の本体外表面上に被着
された断熱材層と,その周縁部が段状に形成され段部が
相互に勘合して前記断熱材層上に設けられた熱防護部材
であって表面が凹凸処理された炭素繊維強化炭素複合材
の外表面に炭化珪素被覆膜が形成され,かつ該炭化珪素
被覆膜と炭化繊維強化炭素複合材との間に炭素繊維強化
複合材の炭素と反応して得られる炭化珪素層を有し更に
炭化珪素被覆膜が酸化ほう素と酸化珪素の混合物で封孔
処理された熱防護部材と,一側が前記熱防護部材に固定
され断熱材層を間装しながら他側が宇宙機器本体に固定
されて熱防護部材及び断熱材層を宇宙機器本体に固定す
る締結部材とを有する宇宙機器の熱防護構造とすること
により達成される。
The purpose is to provide a heat insulating material layer applied on the outer surface of the main body of the space device and a heat protection layer provided on the heat insulating material layer so that the peripheral edge is formed in a stepped shape and the steps are engaged with each other. A silicon carbide coating film is formed on an outer surface of a carbon fiber reinforced carbon composite material whose surface is roughened, and carbon fiber reinforced between the silicon carbide coating film and the carbon fiber reinforced carbon composite material. A heat protection member having a silicon carbide layer obtained by reacting with carbon of the composite material and further having a silicon carbide coating film sealed with a mixture of boron oxide and silicon oxide; and one side fixed to the heat protection member This is achieved by providing a space device heat protection structure having a heat protection member and a fastening member fixing the heat insulation material layer to the space device body while the other side is fixed to the space device body while interposing the heat insulation material layer. .

以下に本発明について説明する。本発明は,宇宙機器
本体上の断熱材層と,断熱材層の外側にあっては締結部
材により宇宙機器の本体に固着される熱防護部材とを具
備している。この熱防護部材は大気圏再突入の際の急激
な空気加熱に耐え,内部の断熱材層を保護するので,更
に断熱材層にくるまれた宇宙機器本体を適切な温度に保
つことができる。
Hereinafter, the present invention will be described. The present invention includes a heat insulating material layer on a space device main body, and a heat protection member fixed to the space device main body by a fastening member outside the heat insulating material layer. This thermal protection member withstands rapid air heating upon re-entry into the atmosphere and protects the internal heat insulating material layer, so that the space equipment body wrapped by the heat insulating material layer can be kept at an appropriate temperature.

以下に熱防護部材について詳細に説明する。 Hereinafter, the heat protection member will be described in detail.

本発明における炭素繊維強化炭素複合材は,炭素繊維
を補強材としマトリックスに炭素を用いた複合材であれ
ば,特に限定されるものではない。例えば,炭素繊維
(黒鉛化繊維を含む)をフェノール樹脂などの熱硬化性
樹脂やピッチを用いて成形し,炭化あるいは黒鉛化して
作られる。また,熱硬化性樹脂あるいはピッチ等で含浸
と炭化または黒鉛化を繰返すか,熱分解炭素を沈積させ
ることによって緻密化処理した炭素繊維強化炭素複合材
でも良い。また,使用される炭素繊維としては,ポリア
クリロニトリル系炭素繊維,ピッチ系炭素繊維やレイヨ
ン系炭素繊維などの一般に炭素繊維と言われる繊維もし
くは,その前駆体が用いられる。炭素繊維の補強形態と
しては特に限定されるものではなくクロス積層や三次元
織物や短繊維状などいずれの形態でも良い。
The carbon fiber reinforced carbon composite material in the present invention is not particularly limited as long as it is a composite material using carbon fiber as a reinforcing material and carbon as a matrix. For example, carbon fibers (including graphitized fibers) are formed using a thermosetting resin such as a phenol resin or pitch, and carbonized or graphitized. Alternatively, a carbon fiber reinforced carbon composite material obtained by repeating impregnation and carbonization or graphitization with a thermosetting resin or pitch or densifying by depositing pyrolytic carbon may be used. As the carbon fiber to be used, a fiber generally called a carbon fiber such as polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, or a precursor thereof is used. The reinforcing form of the carbon fiber is not particularly limited, and may be any form such as lamination of cloth, three-dimensional woven fabric, or short fiber form.

本発明ではまず,炭素繊維強化炭素複合材(第2図に
おける4)の表面を凹凸処理する。具体的には,圧縮空
気などで炭化珪素などの硬い粒子を,炭素繊維強化炭素
複合材の表面に吹き付けるなどの方法が使用できる。
In the present invention, first, the surface of the carbon fiber reinforced carbon composite material (4 in FIG. 2) is subjected to unevenness treatment. Specifically, a method of spraying hard particles such as silicon carbide on the surface of the carbon fiber reinforced carbon composite material with compressed air or the like can be used.

次に,炭素繊維強化炭素複合材の表面に,炭素繊維強
化炭素複合材の炭素と珪素を反応させて,炭素繊維強化
炭素複合材とよく接着した炭化珪素の下地層(5)をつ
くる。具体的には,金属珪素と反応しない液体,例え
ば,イソプロピルアルコールに,金属珪素粉末を分散さ
せたけん濁液を,炭素繊維強化炭素複合材の表面に塗布
し,液体を蒸発させて,金属珪素粉末を炭素繊維強化炭
素複合材に付着させる。これを不活性雰囲気中で1700〜
2300℃に加熱し,炭素繊維強化炭素複合材の炭素と金属
珪素とを反応させて炭化珪素の下地層をつくる。
Next, carbon and silicon of the carbon fiber reinforced carbon composite are reacted on the surface of the carbon fiber reinforced carbon composite to form an underlayer (5) of silicon carbide which is well bonded to the carbon fiber reinforced carbon composite. Specifically, a suspension in which metal silicon powder is dispersed in a liquid that does not react with metal silicon, for example, isopropyl alcohol, is applied to the surface of the carbon fiber reinforced carbon composite material, and the liquid is evaporated to form a metal silicon powder. To the carbon fiber reinforced carbon composite. 1700 ~ in an inert atmosphere
Heat to 2300 ° C to react the carbon of the carbon fiber reinforced carbon composite with metallic silicon to form an underlayer of silicon carbide.

得られる炭化珪素の下地層は,二つの層からなる。外
層は,粒系が3〜10μmのSiCが,粒子同士の接触点が
わずかに一体化した,厚さが20〜30μmの多孔質な層で
ある。この多孔質層(第3図における6)の下には,あ
たかも炭化珪素のくさびを炭素繊維強化炭素複合材へ打
ち込んだような,炭化珪素と炭素の混合物層(7)が生
成する。これは,溶融状態の金属珪素が,基材である炭
素繊維強化炭素複合材の気孔内部に,浸入して反応する
ためである。この混合物層の厚さは,反応前に付着させ
る金属珪素の量によって制御することができ,望ましく
は100〜200μmが良い。ただし該混合物層中に未反応の
珪素が残っても良い。
The resulting silicon carbide underlayer consists of two layers. The outer layer is a porous layer having a thickness of 20 to 30 μm, in which SiC having a particle system of 3 to 10 μm has a slightly integrated contact point between particles. Under the porous layer (6 in FIG. 3), a mixture layer of silicon carbide and carbon (7) is formed as if a wedge of silicon carbide was driven into a carbon fiber reinforced carbon composite material. This is because the metallic silicon in the molten state penetrates into the pores of the carbon fiber reinforced carbon composite material as the base material and reacts. The thickness of this mixture layer can be controlled by the amount of metallic silicon deposited before the reaction, and preferably 100 to 200 μm. However, unreacted silicon may remain in the mixture layer.

前記炭化珪素下地層の上に,CVD法により炭化珪素被覆
膜(第2図または第3図における8)を形成する。具体
的に方法として,例えば四塩化珪素を水素で還元しメタ
ンのような炭化水素を反応させる方法や,メチルトリク
ロロシランを熱分解する方法などが使用できる。CVD法
による炭化珪素膜の厚さは,10μm程度以上あれば良い
が望ましくは100μm程度がよく,通常50〜1000μmで
ある。
A silicon carbide coating film (8 in FIG. 2 or 3) is formed on the silicon carbide underlayer by a CVD method. Specifically, for example, a method of reducing silicon tetrachloride with hydrogen to react with a hydrocarbon such as methane, a method of thermally decomposing methyltrichlorosilane, and the like can be used. The thickness of the silicon carbide film formed by the CVD method may be about 10 μm or more, preferably about 100 μm, and usually 50 to 1000 μm.

炭化珪素の下地層の上にCVD法による炭化珪素を沈積
させると,CVD法による炭化珪素が多孔質炭化珪素層の気
孔内にも沈積するため,CVD法による炭化珪素膜の基材へ
の接着力が向上する。炭化珪素と炭素の混合物層は,こ
の接着をより確かなものにする。さらに,該混合物層の
炭化珪素は,炭素繊維強化炭素複合材の気孔内に生成し
やすく,炭素繊維強化炭素複合材表面付近の気孔を塞
ぎ,より内部への酸素の浸透を低減することが期待され
る。また,混合物層内では,炭化珪素の炭素に対する比
が,基材内部に向かって減少するので,組成の傾斜化よ
ってCVD法による炭化珪素被覆膜に発生する熱応力が緩
和されることが期待される。
When silicon carbide is deposited by CVD on the silicon carbide underlayer, the silicon carbide deposited by CVD also deposits in the pores of the porous silicon carbide layer. Power improves. A layer of a mixture of silicon carbide and carbon makes this adhesion more secure. Further, the silicon carbide of the mixture layer is easily generated in the pores of the carbon fiber reinforced carbon composite material, and is expected to close the pores near the surface of the carbon fiber reinforced carbon composite material and further reduce the penetration of oxygen into the interior. Is done. In the mixture layer, the ratio of silicon carbide to carbon decreases toward the inside of the base material, so it is expected that the thermal stress generated in the silicon carbide coating film by the CVD method will be reduced by the composition gradient. Is done.

以上の凹凸処理,炭化珪素下地層,およびCVD法によ
る炭化珪素被覆は,炭素繊維強化炭素複合材の側面を含
めた全外表面に施すことが望ましい。
It is preferable that the above-mentioned unevenness treatment, the silicon carbide underlayer, and the silicon carbide coating by the CVD method be applied to the entire outer surface including the side surfaces of the carbon fiber reinforced carbon composite material.

最後に,CVD法による炭化珪素被覆膜に生じたクラック
を,酸化ほう素と酸化珪素の混合物(第2図における
9)で封溝処理する。酸化ほう素の融点が480℃であ
り,炭素繊維強化炭素複合材が酸化が始める温度(500
〜600℃)で酸化ほう素は液体になり炭化珪素膜のクラ
ックを完全に封溝し,酸化ほう素が著しく蒸発するよう
な高温では,酸化珪素またはほう珪酸ガラスが液体とな
ってクラックを完全に封溝し(10),炭化珪素被覆膜に
生じたクラックから酸素が進入するのを防ぐ。酸化ほう
素と酸化珪素の混合物は,CVD法による炭化珪素膜のクラ
ックの中にあればよく,炭化珪素膜の上または炭素繊維
強化炭素複合材の気孔内部に存在してもなんら問題はな
い。
Finally, the cracks generated in the silicon carbide coating film by the CVD method are subjected to groove sealing with a mixture of boron oxide and silicon oxide (9 in FIG. 2). The melting point of boron oxide is 480 ° C, and the temperature at which carbon fiber reinforced carbon composite material starts to oxidize (500
(Up to 600 ° C), the boron oxide becomes liquid and completely closes the cracks in the silicon carbide film. At high temperatures where the boron oxide evaporates significantly, the silicon oxide or borosilicate glass becomes liquid and completes the cracks. (10) to prevent oxygen from entering through cracks formed in the silicon carbide coating film. The mixture of boron oxide and silicon oxide only needs to be present in the cracks of the silicon carbide film formed by the CVD method, and there is no problem if it is present on the silicon carbide film or in the pores of the carbon fiber reinforced carbon composite material.

酸化ほう素は,CVD法による炭化珪素を被覆した炭素繊
維強化炭素複合材の単位表面積当り,1〜200mg/cm2含浸
されていればよく,好ましくは0.10〜100mg/cm2含浸さ
れていればよい。酸化珪素は,重量で酸化ほう素の10%
以上,好ましくは30〜400%あればよい。
Boron oxide is per unit surface area of the carbon fiber reinforced carbon composite material coated with silicon carbide by the CVD method, only to be impregnated 1 to 200 mg / cm 2, if preferably is impregnated 0.10~100mg / cm 2 Good. Silicon oxide is 10% of boron oxide by weight
Above, preferably 30 to 400%.

酸化ほう素あるいは酸化珪素を直接含浸しても良い
が,CVD法による炭化珪素の膜のクラックの幅が狭いの
で,直接含浸するには,高温高圧の設備が必要であり経
済的でない。従って低粘度で炭化珪素と濡れの良い有機
前駆体を含浸して,その後,酸化ほう素あるいは酸化珪
素に変換する方法が適している。かかる条件を満たす有
機前駆体の一つは,ほう素あるいは珪素のアルコオキサ
イドと,水及び,両者を溶解し得る溶剤との溶液であ
る。
Boron oxide or silicon oxide may be directly impregnated, but since the width of cracks in the silicon carbide film formed by the CVD method is narrow, direct impregnation requires high-temperature and high-pressure equipment and is not economical. Therefore, a method of impregnating a low-viscosity silicon carbide and an organic precursor having good wettability and then converting the same into boron oxide or silicon oxide is suitable. One of the organic precursors that satisfies such conditions is a solution of boron or silicon alkoxide, water, and a solvent capable of dissolving both.

具体的には,ほう素のアルコオキサイドとしては,ト
リエチルオルソボレイトB(OC2H5(以下,TEOBと略
す。)を,珪素のアルコオキサイドとしてはテトラエチ
ルオルソシリケイトSi(OC2H5(以下,TEOSと略
す。)を,共通溶媒としてはエチルアルコールやメチル
アルコールを,それぞれ使用することができる。また,T
EOSやTEOBは,溶液の粘度が約1Pを超えない程度に,予
め縮重合させておいても良い。TEOS/水/エタノール溶
液または,TEOB/水/エタノール溶液は、被処理物に含浸
した後,大気中で約120℃で熱処理(以後,硬化処理と
いう。)することで,約80wt%の酸化ほう素または酸化
珪素を含む化合物になる。炭素繊維強化炭素複合材を入
れた容器を減圧にし,つづいて,減圧下で有機前駆体を
導入した後に常圧に戻す真空含浸法や,真空含浸後にさ
らに圧力を加える真空加圧含浸法や,被処理物を有機前
駆体溶液に浸すだけのディッピング含浸法などが利用で
きる。
Specifically, triethyl orthoborate B (OC 2 H 5 ) 3 (hereinafter abbreviated as TEOB) is used as the boron alkoxide, and tetraethyl orthosilicate Si (OC 2 H 5 ) is used as the silicon alkoxide. 4 ) (hereinafter abbreviated as TEOS), and ethyl alcohol or methyl alcohol can be used as the common solvent. Also, T
EOS or TEOB may be prepolymerized so that the viscosity of the solution does not exceed about 1P. The TEOS / water / ethanol solution or TEOB / water / ethanol solution is impregnated with the object to be treated and then heat-treated at about 120 ° C. in the air (hereinafter referred to as “hardening treatment”) to obtain an oxide of about 80 wt%. It becomes a compound containing silicon or silicon oxide. The container containing the carbon fiber reinforced carbon composite material is evacuated, followed by a vacuum impregnation method in which the organic precursor is introduced under reduced pressure and then returned to normal pressure, a vacuum impregnation method in which further pressure is applied after vacuum impregnation, A dipping impregnation method in which an object to be treated is simply immersed in an organic precursor solution can be used.

所定の有機前駆体の含浸硬化処理が終了したのち,使
用前に500〜1400℃で熱処理して,酸化ほう素を溶融さ
せて酸化ほう素によるクラックの封溝をより確かなもの
にする。
After the impregnation and curing treatment of the predetermined organic precursor is completed, heat treatment is performed at 500 to 1400 ° C. before use to melt the boron oxide, thereby making the cracks of the boron oxide more reliable.

得られた熱防護部材は,例えば,アルミ合金やポリイ
ミド系複合材料等からなる機体構造材(第1図における
1)の上にアルミナ繊維等からなる断熱材層(2)を配
し,その上を空力学的外力を支えうる薄い高強度の耐熱
材(3)で覆い,この耐熱材を機体構造材にファスナ等
の締結部材で固定した宇宙往還機熱用熱防護構造として
使用することができる。その他,従来シリカ系タイルが
使用されていた部位のみならず,大気圏に再突入する際
に特に高温となる部位,例えばノーズコーン,翼前縁
部,垂直尾翼,ボディフラップ等の部位にも使用するこ
とができる。尚ノーズコーンや翼に用いる場合,熱防護
部材と機体本体の間の断熱材層を介さないで用いる事も
可能である。
The heat protection member obtained is obtained by disposing a heat insulating material layer (2) made of alumina fiber or the like on an airframe structural material (1 in FIG. 1) made of, for example, an aluminum alloy or a polyimide-based composite material. Is covered with a thin high-strength heat-resistant material (3) that can support aerodynamic external force, and this heat-resistant material is fixed to the fuselage structural material with fasteners or other fasteners, which can be used as a heat protection structure for space shuttle vehicles. . In addition, it is used not only in areas where conventional silica tiles were used, but also in areas that are particularly hot when re-entering the atmosphere, such as nose cones, wing leading edges, vertical tails, body flaps, etc. be able to. When used for a nose cone or a wing, it can be used without a heat insulating layer between the thermal protection member and the body of the machine.

〔実施例〕〔Example〕

以下,実施例によりさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

第1図に本発明の一実施例としての宇宙往還機用の熱
防護構造を示す。宇宙往還機の本体1の表面にはシリカ
繊維及びアルミナ繊維の混合繊維からなる断熱材層2が
設けられ,更に断熱材層2の外表面が後術する熱防護部
材3により覆われている。熱防護部材3はタイル状にな
っているが,熱防護部材3の端部は段状に形成されてお
り,隣接する熱防護部材3と段部が重なりあっている。
熱防護部材3の中央部及び一端側にそれぞれ,締結部材
としてのニオブ製ファスナ12が挿着されて断熱材層2を
間装しながら熱防護部材3を宇宙往還機の本体1に固着
している。ここでファスナ12の下端は,宇宙往還機の本
体1に設けられたクリップ13により固着されている。本
実施例に用いる熱防護部材3は次に述べる方法で製造し
た。
FIG. 1 shows a thermal protection structure for a spacecraft as one embodiment of the present invention. A heat insulating material layer 2 made of a mixed fiber of silica fiber and alumina fiber is provided on the surface of the main body 1 of the spacecraft, and the outer surface of the heat insulating material layer 2 is covered with a heat protection member 3 to be described later. Although the heat protection member 3 has a tile shape, the end portion of the heat protection member 3 is formed in a step shape, and the step portion overlaps with the adjacent heat protection member 3.
A niobium fastener 12 as a fastening member is inserted into the central portion and one end of the thermal protection member 3, respectively, and the thermal protection member 3 is fixed to the main body 1 of the spacecraft while interposing the heat insulating material layer 2. I have. The lower end of the fastener 12 is fixed by a clip 13 provided on the main body 1 of the spacecraft. The thermal protection member 3 used in this example was manufactured by the method described below.

まず,圧縮空気で炭化珪素粉末を,炭素繊維クロスを
積層した平板状炭素繊維強化炭素複合材に吹き付けて,
炭素繊維強化炭素複合材の表面を凹凸にした。つづい
て,金属珪素粉末100部をイソプロピルアルコール40部
に分散したけん濁液を,炭素繊維強化炭素複合材の表面
に塗布し,イソプロピルアルコールを蒸発させた後に,
アルゴン中で2000℃に加熱して,基材炭素繊維強化炭素
複合材に良く接着した炭化珪素の下地層を作った。つい
で,メチルトリクロロシランを用いてCVD法によって,Si
Cを100μm沈積させた。以上の処理を炭素繊維強化炭素
複合材の全外表面を施した。つぎに,TEOS100部,エタノ
ール60部,水26部の混合溶液と,TEOB100部,エタノール
100部,水20部の混合溶液を,交互にそれぞれ3回ずつ
含浸した。TEOS溶液あるいはTEOB溶液含浸後は,それぞ
れ乾燥後120℃で硬化させた。この時の酸化ほう素含浸
量は,16mg/cm2であり,酸化珪素の含浸量は48mg/cm2
あった。最後に,アルゴン中で800℃に加熱した。
First, silicon carbide powder was sprayed with compressed air on a flat carbon fiber reinforced carbon composite material laminated with carbon fiber cloth,
The surface of the carbon fiber reinforced carbon composite was made uneven. Subsequently, a suspension obtained by dispersing 100 parts of metal silicon powder in 40 parts of isopropyl alcohol was applied to the surface of the carbon fiber reinforced carbon composite material, and after the isopropyl alcohol was evaporated,
Heating to 2,000 ° C in argon produced an underlayer of silicon carbide that adhered well to the base carbon fiber reinforced carbon composite. Next, the silicon was deposited by CVD using methyltrichlorosilane.
C was deposited 100 μm. The above process was performed on the entire outer surface of the carbon fiber reinforced carbon composite material. Next, a mixed solution of 100 parts of TEOS, 60 parts of ethanol and 26 parts of water, and 100 parts of TEOB and ethanol
A mixed solution of 100 parts and 20 parts of water was alternately impregnated three times each. After impregnation with TEOS solution or TEOB solution, each was dried and cured at 120 ° C. The boron oxide impregnation amount at this time was 16 mg / cm 2 , and the silicon oxide impregnation amount was 48 mg / cm 2 . Finally, it was heated to 800 ° C. in argon.

比較例として,凹凸処理をせず炭化珪素の下地層を作
らずに,直接炭素繊維強化炭素複合材にCVD法で炭化珪
素被覆膜を形成した以外は,実施例と同様に調製した熱
防護部材も作製した。
As a comparative example, a thermal protection prepared in the same manner as in the example except that a silicon carbide coating film was directly formed on a carbon fiber reinforced carbon composite material by a CVD method without forming a silicon carbide underlayer without performing unevenness treatment. Members were also made.

このようにして処理した宇宙往還機用熱防護部材試験
片(30×30×5mm)を,大気圏再突入時の空力加熱を模
擬する条件として大気中で熱流束0.05Kcal/cm2secのア
ルゴンプラズマを360秒間照射するテストを,10回繰り返
した。実施例は,重量減少が0.27wt%であったのに対し
て,比較例は1回のアルゴンプラズマ照射で,炭化珪素
被覆膜が剥離した。
A test piece (30 × 30 × 5 mm) of the thermal protection member for spacecraft was treated in this way as an argon plasma with a heat flux of 0.05 Kcal / cm 2 sec in air as a condition to simulate aerodynamic heating when re-entering the atmosphere. Was repeated 10 times. In the example, the weight loss was 0.27 wt%, whereas in the comparative example, the silicon carbide coating film was peeled off by one argon plasma irradiation.

従って,本実施例の熱防護部材をはりつけた熱防護構
造であれば,大気圏再突入の際にも炭化珪素被覆膜の剥
離によって内部の炭素繊維強化炭素複合材の酸化消失と
いう事態がおきないので,断熱作用が十分確保され,宇
宙往還機を常温のままに保つことができる。
Therefore, in the case of the thermal protection structure to which the thermal protection member of the present embodiment is attached, even when re-entering the atmosphere, the situation in which the internal carbon fiber reinforced carbon composite material is oxidized and lost due to peeling of the silicon carbide coating film does not occur. Therefore, sufficient heat insulation can be secured, and the spacecraft can be kept at room temperature.

〔発明の効果〕〔The invention's effect〕

本発明によれば,大気圏に再突入する宇宙往還機用熱
防護構造として好適な宇宙機器の熱防護構造を得ること
ができる。
ADVANTAGE OF THE INVENTION According to this invention, the thermal protection structure of space equipment suitable as a thermal protection structure for space shuttle vehicles reentering the atmosphere can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は,本発明の熱防護の使用例を示した概略断面
図,第2図は本発明に於ける宇宙往還機用熱防護の概略
断面図,第3図は第2図A部の拡大図である。 1……機体構造材,2……断熱材層,3……熱防護部材,4…
…炭素繊維強化炭素複合材,5……炭化珪素下地層,6……
炭化珪素下地層中の多孔質層,7……炭化珪素下地層中の
炭化珪素と炭素の混合物層,8……炭化珪素被覆膜,9……
酸化ほう素と酸化珪素の混合物,10……溶融した酸化ほ
う素または酸化珪素,12……ファスナ。
FIG. 1 is a schematic sectional view showing an example of use of the thermal protection of the present invention, FIG. 2 is a schematic sectional view of the thermal protection for a spacecraft in the present invention, and FIG. It is an enlarged view. 1 ... Airframe structural material, 2 ... Thermal insulation layer, 3 ... Thermal protection member, 4 ...
... Carbon fiber reinforced carbon composite material, 5 ... SiC underlayer, 6 ...
Porous layer in silicon carbide underlayer, 7 ... mixture layer of silicon carbide and carbon in silicon carbide underlayer, 8 ... silicon carbide coating film, 9 ...
A mixture of boron oxide and silicon oxide, 10 molten boron oxide or silicon oxide, 12 fasteners.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大島 正征 愛知県名古屋市港区大江町10番地 三菱 重工業株式会社名古屋航空機製作所内 (72)発明者 山口 正元 愛知県名古屋市港区大江町10番地 三菱 重工業株式会社名古屋航空機製作所内 (72)発明者 藤島 治 香川県坂出市番の州町1番地 三菱化成 株式会社坂出工場内 (72)発明者 石原 正司 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社総合研究所内 (72)発明者 野瀬 太助 香川県坂出市番の州町1番地 三菱化成 株式会社坂出工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayuki Oshima 10 Oecho, Minato-ku, Nagoya, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. Address: Mitsubishi Heavy Industries, Ltd., Nagoya Aircraft Works (72) Inventor: Osamu Fujishima 1st Bancho, Sakaide-shi, Kagawa Prefecture Mitsubishi Kasei Co., Ltd. Within the Research Institute, Inc. (72) Inventor Tasuke Nose 1st Bancho, Sakaide-shi, Kagawa Prefecture Mitsubishi Sakaide Plant

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】宇宙機器の本体外表面上に被着された断熱
材層と,その周縁部が段状に形成され段部が相互に嵌合
して前記断熱材層上に設けられた熱防護部材であって表
面が凹凸処理された炭素繊維強化炭素複合材の外表面に
炭化珪素被覆膜が形成され,かつ該炭化珪素被覆膜と炭
素繊維強化炭素複合材との間に炭素繊維強化複合材の炭
素と反応して得られる炭化珪素層を有し更に炭化珪素被
覆膜が酸化ほう素と酸化珪素の混合物で封孔処理された
熱防護部材と,一側が前記熱防護部材に固定され断熱材
層を間装しながら他側が宇宙機器本体に固定されて熱防
護部材及び断熱材層を宇宙機器本体に固定する締結部材
とを有する宇宙機器の熱防護構造。
A heat insulating material layer provided on an outer surface of a main body of a space device, and a heat insulating material layer provided on the heat insulating material layer, the peripheral edge portion of which is formed in a stepped shape and the steps are fitted to each other. A silicon carbide coating film is formed on an outer surface of a carbon fiber reinforced carbon composite material whose surface is roughened, and a carbon fiber is provided between the silicon carbide coating film and the carbon fiber reinforced carbon composite material. A heat protection member having a silicon carbide layer obtained by reacting with carbon of the reinforced composite material and further having a silicon carbide coating film sealed with a mixture of boron oxide and silicon oxide; A heat protection structure for a space device, comprising: a heat protection member fixed to the space device body on the other side while fixing the heat insulation material layer and a fastening member fixing the heat insulation material layer to the space device body.
JP29296689A 1989-11-10 1989-11-10 Thermal protection structure for space equipment Expired - Fee Related JP2651386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29296689A JP2651386B2 (en) 1989-11-10 1989-11-10 Thermal protection structure for space equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29296689A JP2651386B2 (en) 1989-11-10 1989-11-10 Thermal protection structure for space equipment

Publications (2)

Publication Number Publication Date
JPH03153500A JPH03153500A (en) 1991-07-01
JP2651386B2 true JP2651386B2 (en) 1997-09-10

Family

ID=17788736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29296689A Expired - Fee Related JP2651386B2 (en) 1989-11-10 1989-11-10 Thermal protection structure for space equipment

Country Status (1)

Country Link
JP (1) JP2651386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103640319A (en) * 2013-11-25 2014-03-19 宜兴市飞舟高新科技材料有限公司 Making method for carbon fiber composite board preform

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107487054B (en) * 2016-06-12 2023-08-08 中国科学院宁波材料技术与工程研究所 Multilayer composite film, method for the production thereof and use thereof as a joining material for fiber-reinforced composite materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103640319A (en) * 2013-11-25 2014-03-19 宜兴市飞舟高新科技材料有限公司 Making method for carbon fiber composite board preform

Also Published As

Publication number Publication date
JPH03153500A (en) 1991-07-01

Similar Documents

Publication Publication Date Title
JP2680439B2 (en) Composite material containing carbon reinforcing fibers and method for producing the same
MXPA03006171A (en) Thermal protection system having a variable density of fibers.
JP4361636B2 (en) Composite carbonaceous heat insulating material and method for producing the same
US4613522A (en) Oxidation resistant carbon-carbon composites
JPH0647513B2 (en) Composite material with matrix and carbon reinforcing fibers and method of making the same
CN107459359A (en) A kind of titanium dioxide silicon substrate light ceramics thermally protective materials and its preparation method and application
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
CN108947591A (en) A kind of high temperature insulating protective coating structure and preparation method thereof
JP2651386B2 (en) Thermal protection structure for space equipment
US5736232A (en) High temperature composite and method
JPH06345572A (en) Oxidation resistant coating layer of c/c composite material
JPH03253499A (en) Manufacture of thermal protecting member for space shuttle
JPH03253497A (en) Manufacture of thermal protecting member for space shuttle
JPH03253498A (en) Manufacture of thermal protecting member for space shuttle
JP3967797B2 (en) COATING METHOD AND COATING MATERIAL FOR OXIDATION-RESISTANT MULTILAYER COATING OF CARBON FIBER REINFORCED CARBON COMPOSITE
JPH0725612B2 (en) Carbon fiber reinforced carbon composite material having oxidation resistance and method for producing the same
JPH11292645A (en) Oxidation resistant c/c composite material and its production
JPH11314985A (en) Heat resistant/oxidation resistant carbon fiber reinforced carbon material
JPH05124884A (en) Carbon fiber/carbon composite material
US20240141179A1 (en) High temperature coatings
EP3321244B1 (en) Oxidation protection for carbon-carbon composites
JPH09278567A (en) Production of heat-resistant, oxidation-resistant carbon material
JP2827388B2 (en) Corrosion-resistant and oxidation-resistant material and method for producing the same
JPH08253876A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JP3818606B2 (en) Carbon fiber reinforced carbon composite

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees