JPH03253497A - Manufacture of thermal protecting member for space shuttle - Google Patents

Manufacture of thermal protecting member for space shuttle

Info

Publication number
JPH03253497A
JPH03253497A JP2051292A JP5129290A JPH03253497A JP H03253497 A JPH03253497 A JP H03253497A JP 2051292 A JP2051292 A JP 2051292A JP 5129290 A JP5129290 A JP 5129290A JP H03253497 A JPH03253497 A JP H03253497A
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
carbon fiber
carbon
thermal protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2051292A
Other languages
Japanese (ja)
Inventor
Motoyasu Taguchi
元康 田口
Masayuki Yamashita
政之 山下
Kenji Inaba
健二 稲葉
Osamu Fujishima
藤島 治
Masaji Ishihara
正司 石原
Tasuke Nose
太助 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP2051292A priority Critical patent/JPH03253497A/en
Publication of JPH03253497A publication Critical patent/JPH03253497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To easily obtain a thermal protecting member for a space shuttle by finishing the outer surface of a carbon fiber reinforced carbon complex material into rough surface, and attaching metal silicon powder to the outer surface, and subjecting the complex material to heat treatment so as to generate silicon carbonate on the outer surface to form a covering film of silicon carbonate, and impregnating the film with a mixture of boron oxide and silicon oxide. CONSTITUTION:In manufacturing a thermal protecting member which is a component member of the thermal protecting structure of a space shuttle, the outer surface of a carbon fiber reinforced carbon complex material 4 in which UD sheets comprising carbon fibers aligned in one direction are pseudo-isotropically stacked at an angle of 0 deg./90 deg./+ or -45 deg. is finished into rough surface and then metal silicon powder is attached to the outer surface. The complex material is then subjected to heat treatments under inactive atmosphere and silicon carbonate is initially formed on the outer surface to form a bed layer 5 of silicon carbonate and then a covering layer 8 made from silicon carbonate is formed on the outer surface by vapor-phase chemical reaction deposition method and then the covering layer 8 of silicon carbonate is impregnated with a mixture of boron oxide and silicon oxide so that the thermal protecting member of a space shuttle is manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、宇宙往還機に好適な熱防護部材の製法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a thermal protection member suitable for a spacecraft.

(従来の技術) 宇宙往還機が大気圏に再突入する際の空力加熱による高
温から機体を護るための熱防護システムとして、米国の
スペースシャトルでは、ノーズキャブや翼前縁部などの
特に高温になる部分を除いて、シリカ系タイルが使用さ
れている。しかし、このシリカ系タイルは強度が弱く使
用に際して損傷や欠落が問題となっており、また耐熱温
度は1280°Cと低く、より高温で使用できる高強度
の熱防護システムの開発が待たれている。そのため、軽
量かつ高強度であり熱衝撃に強く耐熱性に優れた炭素繊
維強化炭素複合材を最外層に配した熱防護システムが提
案されている。しかし、炭素繊維強化炭素複合材はすべ
て炭素で構成されているため、酸化され易く酸素含有雰
囲気中での長期間の使用は500−600°Cまでに限
られる。
(Prior technology) As a thermal protection system to protect the spacecraft from the high temperatures caused by aerodynamic heating when it re-enters the atmosphere, the U.S. Space Shuttle uses a thermal protection system that protects the spacecraft from the high temperatures caused by aerodynamic heating when it re-enters the atmosphere. Silica tiles are used in all but one area. However, this silica-based tile has low strength and is prone to damage or chipping during use, and its heat resistance is as low as 1280°C, so the development of a high-strength thermal protection system that can be used at higher temperatures is awaited. . Therefore, a thermal protection system has been proposed in which the outermost layer is made of carbon fiber-reinforced carbon composite material, which is lightweight, has high strength, is resistant to thermal shock, and has excellent heat resistance. However, since the carbon fiber reinforced carbon composite material is entirely composed of carbon, it is easily oxidized and its long-term use in an oxygen-containing atmosphere is limited to 500-600°C.

炭素繊維強化炭素複合材の耐酸化性を向上させる為に、
いくつかの努力が払われている。その一つの例として、
燐酸系または酸化ほう素系のガラスを含浸する方法があ
る。これは、含浸されたガラスが高温下の使用中に溶融
し、炭素質材の外部表面または内部表面とを覆い炭素材
料の酸化を防ぐものである。また、炭素繊維強化炭素複
合材のマトリックス中に、耐酸化性物質(例えば、Ti
In order to improve the oxidation resistance of carbon fiber reinforced carbon composite materials,
Some efforts are being made. As an example,
There is a method of impregnating phosphoric acid-based or boron oxide-based glass. This is because the impregnated glass melts during use at high temperatures and covers the external or internal surface of the carbonaceous material to prevent oxidation of the carbonaceous material. In addition, an oxidation-resistant substance (for example, Ti
.

Si、 B、 W、 Ta、  Ajりを炭化物あるい
は有機物や元素の状態で、分散させる方法が提案されて
いる。さらには、気相化学反応沈積法(以下CVD法と
略す、)で得られる緻密な炭化珪素や窒化珪素の膜で炭
素繊維強化炭素複合材の外表面を被覆する方法がある。
A method has been proposed in which Si, B, W, Ta, and Aj are dispersed in the form of carbides, organic substances, or elements. Furthermore, there is a method of coating the outer surface of the carbon fiber reinforced carbon composite material with a dense film of silicon carbide or silicon nitride obtained by vapor phase chemical reaction deposition method (hereinafter abbreviated as CVD method).

また、アルミナと炭化珪素と金属珪素との混合粉体中に
炭素材料を埋没させて加熱するバック法や珪素含有物と
炭素質基材とを直接反応させる方法などで、炭素繊維強
化炭素複合材の表面に炭化珪素を生成させる方法なども
提案されている。
In addition, carbon fiber-reinforced carbon composites can be produced using methods such as the back method in which carbon materials are buried in a mixed powder of alumina, silicon carbide, and metal silicon and heated, and the method in which silicon-containing substances and carbonaceous base materials are directly reacted. A method of producing silicon carbide on the surface of the material has also been proposed.

(発明が解決しようとする課題) しかしながらかかる従来の技術では、下記のような課題
がある。すなわち、燐酸や酸化ほう素系のガラスを含浸
する方法では、1000°C程度以上になると、ガラス
の蒸発が著しく有効な保護膜になりえない。たとえ他の
高融点のガラスと併用しても、高温での燐酸または酸化
ほう素系のガラスの蒸発が激しく長い寿命は期待できな
い。またマトリックス中に耐酸化性物質を分散させる方
法においては、十分な耐酸化性をうるために多量の耐酸
化性物質が必要であり、炭素繊維強化炭素複合材の強度
低下や特有の擬延性的性質が失われる等の課題がある。
(Problems to be Solved by the Invention) However, such conventional techniques have the following problems. That is, in the method of impregnating glass with phosphoric acid or boron oxide, when the temperature exceeds about 1000°C, the glass evaporates significantly and cannot become an effective protective film. Even if used in combination with other high-melting-point glasses, phosphoric acid or boron oxide glasses tend to evaporate rapidly at high temperatures, so a long life cannot be expected. In addition, in the method of dispersing oxidation-resistant substances in the matrix, a large amount of oxidation-resistant substances is required to obtain sufficient oxidation resistance, which may cause a decrease in the strength of carbon fiber reinforced carbon composites or the peculiar pseudo-ductility. There are issues such as loss of properties.

CVD法によって緻密な炭化珪素や窒化珪素の被覆膜を
作る方法では、炭化珪素や窒化珪素の熱膨張係数が3.
5X10−’/に程度であるのに対して、炭素繊維強化
炭素複合材の熱膨張係数は一1〜IXI O−”/にで
あり、熱応力によって緻密な膜にクラックが発生し、こ
こから酸素が侵入するため十分な耐酸化性が得られない
。そこでクラックを酸化号素で封溝する4とが試みられ
たが、酸化珪素の溶融温度が1750℃と高いために、
酸化珪素の溶融温度以下で酸素の侵入を防げず十分な結
果が得られていない。さらにCVD法による膜は基材と
物理的に接合しているだけなので、熱衝撃などで剥がれ
易く信頼性に欠ける。また、バンク法や珪素含有物と炭
素材料を直接反応させて作られる炭化珪素の膜は、緻密
性に欠は有効な酸素拡散防止膜にならない。
In the method of making a dense silicon carbide or silicon nitride coating film by the CVD method, the thermal expansion coefficient of silicon carbide or silicon nitride is 3.
The coefficient of thermal expansion of carbon fiber-reinforced carbon composites is about 5X10-'/, whereas the thermal expansion coefficient of carbon fiber-reinforced carbon composites is about 11 to IXI O-'/, and thermal stress causes cracks in the dense film, which leads to Sufficient oxidation resistance could not be obtained due to the intrusion of oxygen. Therefore, attempts were made to seal the cracks with silicon oxide, but since the melting temperature of silicon oxide was as high as 1750°C,
It is not possible to prevent oxygen from entering below the melting temperature of silicon oxide, and satisfactory results have not been obtained. Furthermore, since the film produced by the CVD method is only physically bonded to the base material, it tends to peel off due to thermal shock and lacks reliability. Furthermore, silicon carbide films produced by the bank method or by directly reacting silicon-containing materials with carbon materials lack denseness and cannot be effective oxygen diffusion prevention films.

短繊維状の炭素繊維を積層面内で等方的に配した炭素複
合材では、積層面内の機械的性質は等方的になるものの
、引張強度が10kgf/ms+”程度であり、軽量か
つ高強度が要求される宇宙往還機部材用の材料としては
機械的性質が劣る。
A carbon composite material in which short carbon fibers are arranged isotropically within the laminated plane has isotropic mechanical properties within the laminated plane, but has a tensile strength of about 10 kgf/ms+'', and is lightweight and It has poor mechanical properties as a material for spacecraft components that require high strength.

(課題を解決するための手段) そこで本発明者等は、これらの課題を解決すべく鋭意検
討した結果、特定の化合物で処理した炭化珪素被覆膜を
炭素繊維を一方向に引き揃えたUDシートを0°/90
°/±45″′に疑似等方積層した炭素繊維強化炭素複
合材の外表面に設けることにより、上記の課題が解決で
きることを見い出し本発明に至った。すなわち本発明の
目的は、宇宙往還機の熱防護構部材を提供することにあ
る。
(Means for Solving the Problems) Therefore, as a result of intensive studies to solve these problems, the present inventors developed a UD in which carbon fibers are aligned in one direction using a silicon carbide coating film treated with a specific compound. Seat 0°/90
The present inventors have discovered that the above-mentioned problems can be solved by providing the carbon fiber-reinforced carbon composite material on the outer surface of a quasi-isotropically laminated carbon fiber composite material with An object of the present invention is to provide a thermal protection structural member.

そしてかかる目的は、宇宙機器の本体−外表面上に被着
された断熱材層上に設けられた周縁部が段状に成形され
た段部が相互に嵌合する熱防護材と、一側が前記熱防護
部材に固定され断熱材層を間装しながら他側が宇宙機器
本体に固定されて熱防護部材および断熱材層を宇宙往還
機本体に固定する締結部材とを有する宇宙往還機の熱防
護構造の構成部材である熱防護部材を製造するに際して
、炭素繊維を一方向に引き揃えたUDシートを0°/9
0°/±45°に疑似等方積層した炭素繊維強化炭素複
合材の外表面を粗面化処理した後、金属珪素粉末を付着
させ、不活性雰囲気下で加熱処理し、予め該外表面に炭
化珪素を生成させた後、気相化学反応沈積法により炭化
珪素からなる被覆膜を該外表面上に形威し、次いで該炭
化珪素被膜に酸化ほう素と酸化珪素の混合物を含浸する
こと特徴とする宇宙往還機の熱防護部材の製法によって
遠戚される。
This purpose is to provide a thermal protection material whose peripheral edge is formed into a step shape and which is provided on a heat insulating material layer coated on the outer surface of the main body of a space device, and whose stepped portions fit into each other. Thermal protection of a spacecraft, which has a fastening member fixed to the thermal protection member and interposed with a heat insulating layer while the other side is fixed to the space equipment body to fix the heat protection member and the heat insulating layer to the spacecraft body. When manufacturing heat protection members that are structural components, UD sheets with carbon fibers aligned in one direction are heated at 0°/9.
After roughening the outer surface of the carbon fiber-reinforced carbon composite material laminated quasi-isotropically at 0°/±45°, metallic silicon powder is attached and heat-treated in an inert atmosphere to preliminarily coat the outer surface. After producing silicon carbide, forming a coating film made of silicon carbide on the outer surface by a vapor phase chemical reaction deposition method, and then impregnating the silicon carbide film with a mixture of boron oxide and silicon oxide. It is distantly related to the method of manufacturing thermal protection materials for spacecraft.

本発明の製造方法によって得られる熱防護部材は大気圏
再突入の際の急激な空力加熱に耐え、内部の断熱材層を
保護するので、更に断熱材層にくるまれた宇宙往還機本
体を適切な温度に保つことが出来る。
The thermal protection member obtained by the manufacturing method of the present invention withstands rapid aerodynamic heating during atmospheric reentry and protects the internal insulation layer, so it can also be used to properly protect the spacecraft body wrapped in the insulation layer. It can maintain the temperature.

以下に本発明の熱防護部材の製造方法について詳細に説
明する。
The method for manufacturing the heat protection member of the present invention will be explained in detail below.

本発明における炭素繊維強化炭素複合材は、炭素繊維を
一方向に引き揃えたUDシートをその炭素繊維の方向が
該炭素繊維強化炭素複合材の積層面上の任意の方向に対
して、0°方向、90’方向、+45°方向、−456
方向となるように4方向に配し、すなわち疑似等方積層
し、マトリックスに炭素を用いた複合材(以下、炭素繊
維強化炭素複合材と略す。)であれば、特に限定される
ものではない。例えば、炭素繊維(黒鉛化繊維を含む)
を一方向に引き揃えたUDシートをフェノール樹脂など
の熱硬化性樹脂やピッチを用いて成形し、炭化あるいは
黒鉛化して作られる。また、熱硬化性樹脂あるいはピッ
チ等で含浸と炭化または黒鉛化を繰返すか、熱分解炭素
を沈積させることによって緻密化処理した炭素繊維強化
炭素複合材でも良い。また、使用される炭素繊維として
は、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊
維やレイヨン系炭素繊維などの一般に炭素繊維と言われ
る繊維もしくは、その前駆体が用いられる。好ましくは
高弾性率の炭素繊維がよい。また本発明の炭素繊維強化
炭素複合材の板厚は、通常0.5〜100問程度から選
ばれ、好ましくは0.7〜10ma+程度である。
The carbon fiber-reinforced carbon composite material of the present invention has a UD sheet in which carbon fibers are aligned in one direction so that the direction of the carbon fibers is 0° with respect to any direction on the laminated surface of the carbon fiber-reinforced carbon composite material. Direction, 90' direction, +45° direction, -456
It is not particularly limited as long as it is a composite material that is arranged in four directions, that is, pseudo-isotropically laminated, and uses carbon as a matrix (hereinafter abbreviated as carbon fiber reinforced carbon composite material). . For example, carbon fiber (including graphitized fiber)
It is made by molding a UD sheet that is aligned in one direction using a thermosetting resin such as phenolic resin or pitch, and then carbonizing or graphitizing it. It may also be a carbon fiber-reinforced carbon composite material that has been densified by repeating impregnation and carbonization or graphitization with a thermosetting resin or pitch, or by depositing pyrolytic carbon. Further, as the carbon fibers used, fibers generally referred to as carbon fibers, such as polyacrylonitrile carbon fibers, pitch carbon fibers, and rayon carbon fibers, or their precursors are used. Preferably, carbon fiber with a high elastic modulus is used. Further, the plate thickness of the carbon fiber reinforced carbon composite material of the present invention is usually selected from about 0.5 to 100 mm, preferably about 0.7 to 10 ma+.

次に、炭素繊維強化炭素複合材(第2図における 4)
の表面を粗面化処理する。具体的には、圧縮空気などで
炭化珪素などの硬い粒子を、炭素繊維強化炭素複合材の
表面に吹き付けるなどの方法が使用できる。
Next, carbon fiber reinforced carbon composite material (4 in Figure 2)
The surface is roughened. Specifically, a method can be used in which hard particles such as silicon carbide are sprayed onto the surface of the carbon fiber-reinforced carbon composite material using compressed air or the like.

更に、炭素繊維強化炭素複合材の表面に、炭素繊維強化
炭素複合材の炭素と珪素を反応させて、炭素繊維強化炭
素複合材とよく接着した炭化珪素の下地層(5)をつく
る。具体的には、金属珪素と反応しない液体、例えば、
イソプロピルアルコールに、金属珪素粉末を分散させた
けん濁液を、炭素繊維強化炭素複合材の表面に塗布し、
液体を蒸発させて、金属珪素粉末を炭素繊維強化炭素複
合材に付着させる。これを不活性雰囲気中で金属珪素の
融点以上、2300″C以下に加熱し、炭素繊維強化炭
素複合材の炭素と金属珪素とを反応させて炭化珪素の下
地層をつくる。
Further, on the surface of the carbon fiber-reinforced carbon composite material, carbon and silicon of the carbon fiber-reinforced carbon composite material are reacted to form a base layer (5) of silicon carbide that is well adhered to the carbon fiber-reinforced carbon composite material. Specifically, a liquid that does not react with metal silicon, for example,
A suspension of metal silicon powder dispersed in isopropyl alcohol is applied to the surface of the carbon fiber reinforced carbon composite material.
The liquid is evaporated to deposit the metallic silicon powder onto the carbon fiber reinforced carbon composite. This is heated in an inert atmosphere to a temperature above the melting point of metal silicon and below 2300''C to cause the carbon of the carbon fiber-reinforced carbon composite material to react with the metal silicon to form a silicon carbide base layer.

得られる炭化珪素の下地層は、二つの層からなる。外層
は、粒径が3−10t!mのSiCが、粒子同士の接触
点でわずかに一体化した、厚さが20−30μmの多孔
質な層である。この多孔質層(第3図における 6)の
下には、あたかも炭化珪素のくさびを炭素繊維強化炭素
複合材へ打ち込んだような、炭化珪素と炭素の混合物層
(7)が生成する。これは、溶融状態の金属珪素が、基
材である炭素繊維強化炭素複合材の気孔内部に、侵入し
て反応するためである。この混合物層の厚さは、反応前
に付着させる金属珪素の量によって制御することができ
、望ましくは550−200IJが良い。ただし該混合
物中に未反応の珪素が残っても良い。
The resulting silicon carbide base layer consists of two layers. The particle size of the outer layer is 3-10t! m SiC is a porous layer 20-30 μm thick, slightly integrated at the points of contact between the particles. Under this porous layer (6 in FIG. 3), a mixture layer (7) of silicon carbide and carbon is generated, as if a wedge of silicon carbide was driven into the carbon fiber-reinforced carbon composite material. This is because metal silicon in a molten state penetrates into the pores of the carbon fiber-reinforced carbon composite material that is the base material and reacts with it. The thickness of this mixture layer can be controlled by the amount of metallic silicon deposited before the reaction, and is preferably 550-200 IJ. However, unreacted silicon may remain in the mixture.

前記炭化珪素下地層の上に、CVD法により炭化珪素被
覆膜(第2図または第3図における 8)を形成する。
A silicon carbide coating film (8 in FIG. 2 or 3) is formed on the silicon carbide underlayer by CVD.

具体的な方法として、例えば四塩化珪素を水素で還元し
メタンのような炭化水素を反応させる方法や、メチルト
リクロロシランを熱分解する方法などが使用できる。C
−V D法による炭化珪素膜の厚さは、10μm程度以
上あれば良いが望ましくは100μm程度がよく、通常
50−1000μmである。
Specific methods include, for example, reducing silicon tetrachloride with hydrogen and reacting with a hydrocarbon such as methane, and thermally decomposing methyltrichlorosilane. C
The thickness of the silicon carbide film formed by the -VD method may be about 10 μm or more, preferably about 100 μm, and usually 50 to 1000 μm.

炭化珪素の下地層の上にCVD法による炭化珪素を沈積
させると、CVD法による炭化珪素が多孔質炭化珪素層
の気孔内にも沈積するため、CVD法による炭化珪素膜
の基材への接着力が向上する。炭化珪素と炭素の混合物
層は、この接着をより確かなものにする。さらに、該混
合物層の炭化珪素は、炭素繊維強化炭素複合材の気孔内
に生威しやすく、炭素繊維強化炭素複合材表面付近の気
孔を塞ぎ、より内部への酸素の浸透を低減することが期
待される。また、混合物層内では、炭化珪素の炭素に対
する比が、基材内部に向かって減少するので、組成の傾
斜化によってCVD法による炭化珪素被覆膜に発生する
熱応力が緩和されることが期待される。
When silicon carbide is deposited by the CVD method on a silicon carbide base layer, the silicon carbide deposited by the CVD method is also deposited in the pores of the porous silicon carbide layer, so the adhesion of the silicon carbide film by the CVD method to the base material is reduced. Strength improves. The silicon carbide and carbon mixture layer makes this adhesion more reliable. Furthermore, silicon carbide in the mixture layer tends to grow in the pores of the carbon fiber-reinforced carbon composite, and can block the pores near the surface of the carbon fiber-reinforced carbon composite to further reduce the penetration of oxygen into the interior. Be expected. In addition, within the mixture layer, the ratio of silicon carbide to carbon decreases toward the inside of the base material, so it is expected that the thermal stress generated in the silicon carbide coating film by CVD method will be alleviated by grading the composition. be done.

以上の粗面化処理、炭化珪素下地層、およびCVD法に
よる炭化珪素被覆は、炭素繊維強化炭素複合材の側面を
含めた全外表面に施すことが望ましい。
The above-described surface roughening treatment, silicon carbide base layer, and silicon carbide coating by CVD method are preferably applied to the entire outer surface of the carbon fiber-reinforced carbon composite material, including the side surfaces.

最後に、CVD法による炭化珪素被覆膜に生じたクラン
クを、酸化ほう素と酸化珪素の混合物(第2図における
 9)で針溝処理する。酸化ほう素の融点が480°C
であり、炭素繊維強化炭素複合材が酸化を始める温度(
500−600’C)で酸化ほう素は液体になり炭化珪
素膜のクランクを完全に針溝し、酸化ほう素が著しく蒸
発するような高温では、酸化珪素またはほう珪酸ガラス
が液体となってクラックを完全に針溝しく10)、炭化
珪素被覆膜に生したクラックから酸素が進入するのを防
く。酸化ほう素と酸化珪素の混合物は、CVD法による
炭化珪素膜のクランクの中にあればよく、炭化珪素膜の
上または炭素繊維強化炭素複合材の気孔内部に存在して
もなんら問題はない。
Finally, the crank formed in the silicon carbide coating film formed by the CVD method is treated with a needle groove treatment using a mixture of boron oxide and silicon oxide (9 in FIG. 2). The melting point of boron oxide is 480°C
is the temperature at which carbon fiber-reinforced carbon composites begin to oxidize (
At temperatures of 500-600'C), boron oxide becomes a liquid and completely penetrates the crank of the silicon carbide film, and at high temperatures where boron oxide significantly evaporates, silicon oxide or borosilicate glass becomes a liquid and cracks. 10) to prevent oxygen from entering through cracks formed in the silicon carbide coating film. The mixture of boron oxide and silicon oxide may be present in the crank of the silicon carbide membrane formed by the CVD method, and there is no problem even if the mixture is present on the silicon carbide membrane or inside the pores of the carbon fiber-reinforced carbon composite material.

酸化ほう素は、CVD法による炭化珪素を被覆した炭素
繊維強化炭素複合材の単位表面積当り、0.2〜100
 mg/ci含浸されていればよく、好ましくは0.5
〜10mg/cil!含浸されていればよい。
The amount of boron oxide is 0.2 to 100 per unit surface area of the carbon fiber reinforced carbon composite material coated with silicon carbide by CVD method.
It is sufficient if it is impregnated with mg/ci, preferably 0.5
~10mg/cil! It is sufficient if it is impregnated.

酸化珪素は、重量で酸化ほう素の50%以上、好ましく
は1から4倍あればよい。
The amount of silicon oxide may be at least 50%, preferably 1 to 4 times, the weight of boron oxide.

酸化ほう素あるいは酸化珪素を直接含浸しても良いが、
CVD法による炭化珪素の膜のクラックの幅が狭いので
、直接含浸するには、高温高圧の設備が必要であり経済
的でない。従って、低粘度で炭化珪素と濡れの良い有機
前駆体を含浸して、その後、酸化ほう素あるいは酸化珪
素に変換する方法が適している。かかる条件を満たす有
機前駆体の一つは、ほう素あるいは珪素のアルコオキサ
イドと、水及び、両者を溶解し得る溶剤との溶液である
It is also possible to directly impregnate boron oxide or silicon oxide, but
Since the width of cracks in the silicon carbide film produced by the CVD method is narrow, direct impregnation requires high temperature and high pressure equipment, which is not economical. Therefore, a method is suitable in which silicon carbide is impregnated with an organic precursor that has good wettability and is then converted into boron oxide or silicon oxide. One of the organic precursors that satisfies these conditions is a solution of boron or silicon alkoxide, water, and a solvent that can dissolve both.

具体的には、ほう素のアルコオキサイドとしては、トリ
エチルオルツボレイトB (0CzHs )sC以下、
TEOBと略す。)を、珪素のアルコオキサイドとして
はテトラエチルオルソシリケイトSi(0CZH5)4
(以下、TE01と略す。)を、共通溶媒としてはエチ
ルアルコールやメチルアルコールを、それぞれ使用する
ことができる。また、TE01やTEOBは、溶液の粘
度が約IFを越えない程度に、予め縮重合させておいて
も良い。TEO3/水/エタノール溶液または、TEO
B/水/エタノール溶液は、被処理物に含浸した後、大
気中で約120℃で熱処理(以後、硬化処理という。)
することで、約80wt%の酸化ほう素または酸化珪素
を含む化合物になる。炭素繊維強化炭素複合材を入れた
容器を減圧にし、つづいて、減圧下で有機前駆体を導入
した後に常圧に戻す真空含浸法や、真空含浸後さらに圧
力を加える真空加圧含浸法や、被処理物を有機前駆体溶
液に浸すだけのデインピング含浸法などが利用できる。
Specifically, the boron alkoxides include triethyl orthoborate B (0CzHs)sC and below;
It is abbreviated as TEOB. ), and the silicon alkoxide is tetraethyl orthosilicate Si(0CZH5)4
(hereinafter abbreviated as TE01), ethyl alcohol or methyl alcohol can be used as a common solvent. Further, TE01 and TEOB may be subjected to condensation polymerization in advance to such an extent that the viscosity of the solution does not exceed about IF. TEO3/water/ethanol solution or TEO
After the B/water/ethanol solution is impregnated into the object to be treated, it is heat-treated at about 120°C in the atmosphere (hereinafter referred to as hardening treatment).
This results in a compound containing about 80 wt% boron oxide or silicon oxide. There are vacuum impregnation methods in which a container containing carbon fiber reinforced carbon composite material is reduced in pressure, then an organic precursor is introduced under reduced pressure and then returned to normal pressure, and a vacuum pressure impregnation method in which further pressure is applied after vacuum impregnation. A method such as a deimpinging method, in which the object to be treated is simply immersed in an organic precursor solution, can be used.

所定の有機前駆体の含浸硬化処理が終了したのち、使用
前に500−1500℃で熱処理して、酸化ほう素を溶
融させて酸化ほう素によるクランクの針溝をより確かな
ものにする。
After completion of the impregnation and hardening treatment with a predetermined organic precursor, heat treatment is performed at 500-1500° C. before use to melt the boron oxide and make the crank needle groove formed by the boron oxide more reliable.

得られた熱防護部材は、例えば、アルミ合金等からなる
機体本体(第1図における1)の上にアルミナ繊維等か
らなる断熱材層(2)を配し、その上を大気圏再突入に
よる急激な加熱と空力学的外力を支えうる薄い高強度の
耐熱材(3)で覆い、この耐熱材を機体本体にファスナ
等の締結部材で固定した宇宙往還機の機態防護構造にお
いて、前記耐熱材として使用することができる。その他
、従来シリカ系タイルが使用されていた部位のみならず
、大気圏に再突入する際に特に高温となる部位、例えば
、ノーズコーン、翼前縁部、垂直尾翼、ボディフラップ
等の部位にも使用することができる。尚ノーズコーンや
翼に用いる場合、熱防護部材と機体本体との間に断熱材
層を介さないで用いることも可能である。
The obtained thermal protection member is constructed by placing a heat insulating material layer (2) made of alumina fiber etc. on the fuselage body (1 in Figure 1) made of aluminum alloy etc. In the airframe protection structure of a spacecraft, the spacecraft is covered with a thin, high-strength heat-resistant material (3) that can support heating and aerodynamic external forces, and this heat-resistant material is fixed to the fuselage body with fastening members such as fasteners. It can be used as In addition to areas where silica tiles have traditionally been used, they are also used in areas that become particularly hot during re-entry into the atmosphere, such as nose cones, leading edges of wings, vertical stabilizers, and body flaps. can do. When used in a nose cone or wing, it is also possible to use it without interposing a heat insulating layer between the heat protection member and the fuselage body.

(実施例) 以下、実施例によりさらに詳細に説明する。(Example) Hereinafter, it will be explained in more detail with reference to Examples.

実施例及び比較例 炭素繊維を一方向に引き揃えたUDシートのフェノール
プリプレグを製造し、このプリプレグを+45°層/9
0°層/−45°層10°層10゜層/−45°層/9
0°層/+45°層と8枚積層し加圧加熱形成した後、
非酸化性雰囲気中で焼威し、その後炭素前駆体の含浸焼
成を繰り返し繊維体積含有率50vo1%の炭素繊維強
化炭素複合材を得た。得られた炭素繊維強化炭素複合材
を所定の寸法に加工した後に、該炭素繊維強化炭素複合
材に圧縮空気で炭化珪素粉末を吹き付けて、炭素繊維強
化炭素複合材の表面を粗面化した。つづいて、金属珪素
粉末100部をイソプロピルアルコール40部に分散し
たけん濁液を、炭素繊維強化炭素複合材の表面に塗布し
、イソプロピルアルコールを蒸発させた後に、アルゴン
中で2000°Cに加熱して、基材炭素繊維強化炭素複
合材に良く接着した炭化珪素の下地層を作った。続いて
、メチルトリクロロシランを用いてCVD法によって、
SiCを100μ−沈積させた。以上の処理を炭素繊維
強化炭素複合材の全外表面に施した。
Examples and Comparative Examples A UD sheet phenol prepreg made by aligning carbon fibers in one direction was produced, and this prepreg was layered at +45° layer/9.
0° layer/-45° layer 10° layer 10° layer/-45° layer/9
After laminating 8 layers (0° layer/+45° layer) and forming under pressure and heat,
Firing was performed in a non-oxidizing atmosphere, and then impregnation and firing with a carbon precursor was repeated to obtain a carbon fiber-reinforced carbon composite material with a fiber volume content of 50 vol%. After processing the obtained carbon fiber-reinforced carbon composite material into a predetermined size, silicon carbide powder was sprayed onto the carbon fiber-reinforced carbon composite material using compressed air to roughen the surface of the carbon fiber-reinforced carbon composite material. Next, a suspension of 100 parts of metal silicon powder dispersed in 40 parts of isopropyl alcohol was applied to the surface of the carbon fiber-reinforced carbon composite material, and after evaporating the isopropyl alcohol, it was heated to 2000°C in argon. A base layer of silicon carbide that adhered well to the base carbon fiber-reinforced carbon composite material was created. Subsequently, by CVD method using methyltrichlorosilane,
100μ of SiC was deposited. The above treatment was applied to the entire outer surface of the carbon fiber reinforced carbon composite material.

つぎに、TEO3100部、エタノール60部。Next, 3100 parts of TEO and 60 parts of ethanol.

水26部の混合溶液と、TE01100部、エタノール
100部、水20部の混合溶液を、交互にそれぞれ3回
ずつ含浸した。TEO3溶液あるいはTEOB溶液含浸
後は、それぞれ乾燥後120°Cで硬化させた。この時
の酸化ほう素含浸量は、1.6g/ciiであり、酸化
珪素の含浸量は4.8g/dであった。最後に、アルゴ
ン中で1000°Cに加熱した。
A mixed solution of 26 parts of water and a mixed solution of 1100 parts of TE01, 100 parts of ethanol, and 20 parts of water were alternately impregnated three times each. After impregnation with TEO3 solution or TEOB solution, each was dried and cured at 120°C. The amount of boron oxide impregnated at this time was 1.6 g/cii, and the amount of silicon oxide impregnated was 4.8 g/d. Finally, it was heated to 1000°C under argon.

このように処理した宇宙往還機用熱防護部材試験片(3
0X30X1.5a+i)を、大気中で熱流束0、05
 kcal/cm”secのアルゴンプラズマを360
秒間照射するテストを5回繰り返した。実施例の重量減
少が0.6wt%であった。
A test piece of thermal protection material for a spacecraft treated in this way (3
0X30X1.5a+i) in the atmosphere with a heat flux of 0.05
360 kcal/cm”sec argon plasma
The second irradiation test was repeated five times. The weight loss in the example was 0.6 wt%.

以下に比較例を説明する。長さ20mmに切断した炭素
繊維集合体にフェノール樹脂を含浸した後、加熱しなが
ら一方向から加圧して成形棒を得、続いて非酸化性雰囲
気中で焼威し、その後炭素前駆体の含浸焼成を繰り返し
繊維体積含有率45vo1%の炭素繊維強化炭素複合材
を得た。その後実施例と同じ方法で試験片を調製した。
A comparative example will be explained below. After impregnating a carbon fiber aggregate cut to a length of 20 mm with phenolic resin, it was heated and pressed from one direction to obtain a shaped rod, then burned out in a non-oxidizing atmosphere, and then impregnated with a carbon precursor. Firing was repeated to obtain a carbon fiber-reinforced carbon composite material with a fiber volume content of 45vol%. Thereafter, test pieces were prepared in the same manner as in the examples.

表1に有効長301、タブ部長さ35IIIIで行った
実施例および比較例の室温に置ける引張強度を示した。
Table 1 shows the tensile strength at room temperature of Examples and Comparative Examples in which the effective length was 301 and the tab length was 35III.

同表より機械的性質は実施例が勝ることが判った。すな
わち、本実施例の熱防護部材は高強度でありかつ大気圏
再突入の際にも内部の炭素繊維強化炭素複合材の酸化消
耗が起きないので、宇宙往還機の熱防護部材に好適であ
る。
From the same table, it was found that the examples were superior in mechanical properties. That is, the heat protection member of this example has high strength and the internal carbon fiber-reinforced carbon composite material does not undergo oxidative consumption even upon re-entry into the atmosphere, so it is suitable as a heat protection member for a spacecraft.

表1 引張強度の比較Table 1 Comparison of tensile strength

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の熱防護部材の使用例を示した概略断
面図、第2図は本発明に於ける宇宙往還機用熱防護部材
の概略断面図、第3図は第2図A部の拡大図である。 1:機体構造材、2:断熱材層、3:熱防護部材、4:
炭素繊維を一方向に引き揃えたUDシートを0°/90
’ /±45°に疑似等方積層した炭素繊維強化炭素複
合材、5:炭化珪素下地層、6:炭化珪素下地層中の多
孔質層、7:炭化珪素下地層中の炭化珪素と炭素の混合
物層、8:炭化珪素被覆層、9二酸化ほう素と酸化珪素
の混合物、10:溶融した酸化ほう素または酸化珪素、
12:ファスナ。 (発明の効果) 本発明によれば、大気圏に再突入する宇宙往還機用熱防
護部材を容易に得ることができる。
FIG. 1 is a schematic sectional view showing an example of the use of the thermal protection member of the present invention, FIG. 2 is a schematic sectional view of the thermal protection member for a spacecraft according to the present invention, and FIG. 3 is FIG. FIG. 1: Airframe structural material, 2: Heat insulation layer, 3: Heat protection member, 4:
UD sheet with carbon fibers aligned in one direction at 0°/90
'/±45° pseudo-isotropically laminated carbon fiber-reinforced carbon composite material, 5: silicon carbide base layer, 6: porous layer in silicon carbide base layer, 7: silicon carbide and carbon in silicon carbide base layer Mixture layer, 8: silicon carbide coating layer, 9: mixture of boron dioxide and silicon oxide, 10: molten boron oxide or silicon oxide,
12: Fastener. (Effects of the Invention) According to the present invention, a heat protection member for a spacecraft re-entering the atmosphere can be easily obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)宇宙往還機の本体外表面上に被着された断熱材層
上に設けられた周縁部が段状に成形された段部が相互に
嵌合する熱防護部材と、一側が前記熱防護部材に固定さ
れ断熱材層を間装しながら他側が宇宙往還機本体に固定
されて熱防護部材および断熱材層を宇宙往還機本体に固
定する締結部材とを有する宇宙往還機の熱防護構造の構
成部材である熱防護部材を製造するに際して、炭素繊維
を一方向に引き揃えたUDシートを0°/90°/±4
5°に疑似等方積層した炭素繊維強化炭素複合材の外表
面を粗面化処理した後、金属珪素粉末を付着させ、不活
性雰囲気下で加熱処理し、予め該外表面に炭化珪素を生
成させた後、気相化学反応沈積法により炭化珪素からな
る被覆膜を該外表面上に形成し、次いで該炭化珪素被膜
に酸化ほう素と酸化珪素の混合物を含浸することを特徴
とする宇宙往還機の熱防護部材の製法。
(1) A thermal protection member having a stepped peripheral edge formed on a heat insulating material layer coated on the outer surface of the main body of the spacecraft and having stepped portions that fit into each other; A thermal protection structure for a spacecraft having a fastening member fixed to a protective member and interposed with a heat insulating layer while the other side is fixed to the spacecraft body to fix the thermal protection member and the heat insulating layer to the spacecraft body. When manufacturing a thermal protection member that is a component of
After roughening the outer surface of the carbon fiber-reinforced carbon composite material laminated quasi-isotropically at 5°, metallic silicon powder is attached and heat-treated in an inert atmosphere to form silicon carbide on the outer surface in advance. After that, a coating film made of silicon carbide is formed on the outer surface by a vapor phase chemical reaction deposition method, and then the silicon carbide film is impregnated with a mixture of boron oxide and silicon oxide. Manufacturing method for thermal protection materials for shuttle planes.
JP2051292A 1990-03-02 1990-03-02 Manufacture of thermal protecting member for space shuttle Pending JPH03253497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2051292A JPH03253497A (en) 1990-03-02 1990-03-02 Manufacture of thermal protecting member for space shuttle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2051292A JPH03253497A (en) 1990-03-02 1990-03-02 Manufacture of thermal protecting member for space shuttle

Publications (1)

Publication Number Publication Date
JPH03253497A true JPH03253497A (en) 1991-11-12

Family

ID=12882847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2051292A Pending JPH03253497A (en) 1990-03-02 1990-03-02 Manufacture of thermal protecting member for space shuttle

Country Status (1)

Country Link
JP (1) JPH03253497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626951A (en) * 1995-04-03 1997-05-06 Rockwell International Corporation Thermal insulation system and method of forming thereof
CN103538732A (en) * 2013-09-30 2014-01-29 中国人民解放军国防科学技术大学 Circumferential thermal protection device of axial-symmetry hypersonic aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626951A (en) * 1995-04-03 1997-05-06 Rockwell International Corporation Thermal insulation system and method of forming thereof
CN103538732A (en) * 2013-09-30 2014-01-29 中国人民解放军国防科学技术大学 Circumferential thermal protection device of axial-symmetry hypersonic aircraft

Similar Documents

Publication Publication Date Title
US5051300A (en) Composite material with carbon reinforcing fibers and its production process
US4613522A (en) Oxidation resistant carbon-carbon composites
MXPA03006171A (en) Thermal protection system having a variable density of fibers.
KR20020025875A (en) Composite Carbonaceous Heat Insulator
CA2053742A1 (en) Carbon-containing composite material part protected against oxidation and its production process
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
US5284685A (en) Composite material with carbon reinforced fibers and its production
US20080220256A1 (en) Methods of coating carbon/carbon composite structures
JPH03253497A (en) Manufacture of thermal protecting member for space shuttle
JP2651386B2 (en) Thermal protection structure for space equipment
JPH03253499A (en) Manufacture of thermal protecting member for space shuttle
JPH03253498A (en) Manufacture of thermal protecting member for space shuttle
JPH06345572A (en) Oxidation resistant coating layer of c/c composite material
JP3219314B2 (en) Method for producing boron carbide-based carbon material
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH11292645A (en) Oxidation resistant c/c composite material and its production
JPH05306180A (en) Production of carbon fiber reinforced carbon-inorganic compound composite material
JPH11314985A (en) Heat resistant/oxidation resistant carbon fiber reinforced carbon material
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH0269382A (en) Carbon fiber-reinforced (carbon) composite material having oxidation resistance and its production
JP3461424B2 (en) Method for producing oxidation resistant C / C composite
JPH03252361A (en) Carbon-fiber reinforced carbon composite material having oxidation resistance and production thereof
JPH03252362A (en) Carbon-fiber reinforced carbon composite material having oxidation resistance and production thereof
JPH11322476A (en) Composite material having thermally sprayed layer and its production
JP3967797B2 (en) COATING METHOD AND COATING MATERIAL FOR OXIDATION-RESISTANT MULTILAYER COATING OF CARBON FIBER REINFORCED CARBON COMPOSITE