JPH069269A - Carbon fiber-reinforced carbon composite material excellent in oxidation resistance - Google Patents
Carbon fiber-reinforced carbon composite material excellent in oxidation resistanceInfo
- Publication number
- JPH069269A JPH069269A JP4168812A JP16881292A JPH069269A JP H069269 A JPH069269 A JP H069269A JP 4168812 A JP4168812 A JP 4168812A JP 16881292 A JP16881292 A JP 16881292A JP H069269 A JPH069269 A JP H069269A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- composite
- carbon fiber
- oxidation resistance
- carbon composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00982—Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐酸化性に優れた炭素
繊維強化複合材料に関する。TECHNICAL FIELD The present invention relates to a carbon fiber reinforced composite material having excellent oxidation resistance.
【0002】[0002]
【従来の技術】炭素繊維強化炭素複合材料いわゆるC/
Cコンポジットは炭素繊維を補強材とし、炭素をマトリ
ックスとした複合材料であって、耐熱性、耐薬品性、耐
磨耗性に優れ、かつ高強度で軽量なためロケットノズル
や航空機のブレーキディスクパッド等に使用されてい
る。しかしながら、C/Cコンポジットを含めて、炭素
材料は一般に500℃程度から酸化を受け、それ自身の
持つ優れた物理的、化学的性質が低下するため、高温大
気中での使用は極く短時間の場合を除き不可能であっ
た。この現象を防止するために従来から炭素材料の耐酸
化性を高める方法について種々の検討がなされてきた。2. Description of the Related Art Carbon fiber reinforced carbon composite material C /
C-composite is a composite material that uses carbon fiber as a reinforcing material and carbon as a matrix. It has excellent heat resistance, chemical resistance, and abrasion resistance, as well as high strength and lightweight, so it is a rocket nozzle or aircraft brake disc pad. It is used for etc. However, carbon materials, including C / C composites, are generally oxidized at about 500 ° C and their excellent physical and chemical properties deteriorate, so use in high temperature atmosphere for an extremely short time It was impossible except for. In order to prevent this phenomenon, various studies have hitherto been made on methods for increasing the oxidation resistance of carbon materials.
【0003】それらの方法の中で化学蒸着法(CVD)
によるセラミックスの被覆はもっとも一般的に行われて
いる方法の一つであり、この方法により緻密な皮膜を得
ることができる。しかしながら、この方法では被覆時
に、基材となる炭素材料を1000℃前後の温度まで加
熱しなければならない場合が多く、被覆処理後冷却時に
表面のセラミックス皮膜が剥離したり割れを起こすこと
が多かった。これは、基材と析出させるセラミックス間
の熱膨張率の差が大きいことが原因である。C/Cコン
ポジットを用いる場合は、その熱膨張率が炭素繊維自体
の熱膨張率に拘束され自由に調節することができず、ま
た、その熱膨張率に合致した耐熱性セラミックス被覆材
料もないため、CVD法による緻密な被覆膜を利用する
ことができなかった。Of those methods, chemical vapor deposition (CVD)
Coating of ceramics by is one of the most commonly used methods, and a dense film can be obtained by this method. However, in this method, it is often necessary to heat the carbon material as a base material to a temperature of around 1000 ° C. during coating, and the ceramic film on the surface often peels or cracks during cooling after the coating treatment. . This is because the difference in the coefficient of thermal expansion between the base material and the ceramic to be deposited is large. When a C / C composite is used, its coefficient of thermal expansion is restricted by the coefficient of thermal expansion of the carbon fiber itself and cannot be adjusted freely, and there is no heat resistant ceramic coating material that matches the coefficient of thermal expansion. It was not possible to use a dense coating film by the CVD method.
【0004】特開平3−253498号にはCVD法に
よりSiCを被覆する前に、C/Cコンポジットの表層
に金属硅素を被覆したのちこれをSiC化させ、CVD
SiC層との密着性を高める方法が記載されている。こ
の方法は密着性を高める上では優れているが、C/Cコ
ンポジットの表層をSiC化するため材料強度が低下し
てしまうという問題があった。JP-A-3-253498 discloses that the surface layer of a C / C composite is coated with metal silicon before being coated with SiC by a CVD method, and then this is converted into SiC, and then CVD is performed.
A method for increasing the adhesion with the SiC layer is described. This method is excellent in enhancing the adhesiveness, but there is a problem that the material strength is lowered because the surface layer of the C / C composite is made of SiC.
【0005】[0005]
【発明が解決しようとする課題】本発明はセラミックス
被覆膜とC/Cコンポジットとの密着性に優れ、強度の
高い耐酸化被覆を施した炭素繊維強化炭素複合材料を提
供することを目的とするものである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a carbon fiber reinforced carbon composite material which is excellent in adhesion between a ceramic coating film and a C / C composite and has a high strength oxidation resistant coating. To do.
【0006】[0006]
【問題を解決するための手段】本発明は、C/Cコンポ
ジットの表面に高融点金属を被覆し、さらにその上に炭
化硅素、窒化硅素などのセラミックスを被覆した耐酸化
性C/Cコンポジットおよびその耐酸化性C/Cコンポ
ジットにさらにガラス状物質を被覆したC/Cコンポジ
ットを提供するものである。高融点金属は、B,Cr,
Hf,Ir,Mo,Nb,Pt,Ta,Ti,V,Wお
よびZrから選ばれた少なくとも1種類の金属である。The present invention relates to an oxidation-resistant C / C composite in which the surface of a C / C composite is coated with a refractory metal, and further a ceramic such as silicon carbide or silicon nitride is coated thereon. It is intended to provide a C / C composite in which the oxidation resistant C / C composite is further coated with a glassy material. Refractory metals are B, Cr,
It is at least one kind of metal selected from Hf, Ir, Mo, Nb, Pt, Ta, Ti, V, W and Zr.
【0007】本発明のC/Cコンポジットは、熱膨張率
の違いは高温において塑性変形する金属層により緩和さ
れるため、その外層に被覆する炭化硅素または窒化硅素
などのセラミックスとC/Cコンポジットの密着性に優
れ、熱サイクル環境下において、界面の密着強度低下が
ほとんど起こらない。In the C / C composite of the present invention, the difference in the coefficient of thermal expansion is mitigated by the metal layer which is plastically deformed at high temperature, so that the ceramics such as silicon carbide or silicon nitride coated on the outer layer thereof and the C / C composite. It has excellent adhesiveness, and under the heat cycle environment, the adhesive strength at the interface hardly decreases.
【0008】[0008]
【作用】以下に本発明をさらに詳細に説明する。基材と
なるC/Cコンポジットを構成する炭素繊維として、平
織り、朱子織り、綾織りなどの二方向織布、一方向配向
材、三方向配向材、n方向配向材、フェルト、トウなど
が用いられ、バインダーとしてはフェノール樹脂、フラ
ン樹脂などの熱硬化性物質、タール、ピッチのような熱
可塑性物質を用いることができる。C/Cコンポジット
の製造方法としては、例えば、前記炭素繊維をバインダ
ーの含浸、塗布などの方法によりプリプレグ化し、加圧
加熱して成型体とする。この成型体は熱処理によってバ
インダーを完全に硬化させ、その後常法によって焼成
し、さらに必要に応じて黒鉛化することによりC/Cコ
ンポジットとする。その後、用途に応じて熱硬化性物
質、ピッチ類などの含浸、再炭化を行う含浸法、例えば
メタン、プロパンなどの炭化水素ガスを熱分解して炭素
を得るCVD法などにより緻密化を繰り返し行い、さら
に高強度のC/Cコンポジットとすることもできる。The present invention will be described in more detail below. As the carbon fiber constituting the base material C / C composite, bidirectional woven fabric such as plain weave, satin weave, and twill weave, unidirectionally oriented material, tridirectionally oriented material, n-directionally oriented material, felt, toe, etc. are used. As the binder, thermosetting substances such as phenol resin and furan resin, and thermoplastic substances such as tar and pitch can be used. As a method for producing the C / C composite, for example, the carbon fiber is made into a prepreg by a method such as impregnation of a binder and coating, and heated under pressure to obtain a molded body. The molded body is heat treated to completely cure the binder, then fired by a conventional method, and then graphitized as required to obtain a C / C composite. Then, densification is repeatedly performed by an impregnation method of impregnating a thermosetting substance, pitches, etc. and re-carbonization according to the application, for example, a CVD method of thermally decomposing hydrocarbon gas such as methane or propane to obtain carbon. It is also possible to use a C / C composite having higher strength.
【0009】前記のようにして得たC/Cコンポジット
の表層にはじめにB,Cr,Hf,Ir,Mo,Nb,
Pt,Ta,Ti,V,WおよびZrよりなる群から選
ばれた1種類以上の金属を被覆する。前記金属が選ばれ
る理由は高い融点を有していることによる。融点が15
00℃以下では、通常C/Cコンポジットが使われる1
500℃以上の温度において完全に溶融し最外層の炭化
硅素、窒化硅素が剥離してしまうため使用できない。前
記金属を被覆する方法としては、気相蒸着法、スパッタ
法、鍍金法など通常金属被覆に用いられる方法が使用で
きる。高融点金属被覆層の膜厚は状況によって変える
が、1μm以上がよい。1μm未満では緩和層としての
効果が低くなり、亀裂の発生率が高くなる。On the surface layer of the C / C composite obtained as described above, firstly B, Cr, Hf, Ir, Mo, Nb,
It is coated with at least one metal selected from the group consisting of Pt, Ta, Ti, V, W and Zr. The reason why the metal is selected is that it has a high melting point. Melting point 15
Below 00 ℃, C / C composite is usually used 1
It cannot be used because it is completely melted at a temperature of 500 ° C. or higher and the silicon carbide and silicon nitride in the outermost layer are peeled off. As a method for coating the metal, a method generally used for metal coating such as a vapor deposition method, a sputtering method, a plating method can be used. Although the film thickness of the high melting point metal coating layer varies depending on the situation, it is preferably 1 μm or more. If it is less than 1 μm, the effect as a relaxation layer is low and the crack generation rate is high.
【0010】高融点金属の被覆層上には、炭化硅素また
は窒化硅素の被覆層(セラミックス層)を形成するが、
これらが選ばれる理由は、高温における低い蒸発性、炭
素との低い反応性、及び低い酸素透過性による。これら
のセラミックスを被覆する方法としては、反応法、気相
蒸着法、焼結法などが挙げられるが、緻密な皮膜を得ら
れることから気相蒸着法が好ましい。A coating layer (ceramic layer) of silicon carbide or silicon nitride is formed on the coating layer of refractory metal.
The reason they are chosen is their low volatility at high temperatures, their low reactivity with carbon, and their low oxygen permeability. Examples of the method for coating these ceramics include a reaction method, a vapor deposition method, a sintering method and the like, but the vapor deposition method is preferable because a dense film can be obtained.
【0011】ここで、被覆したセラミックスに亀裂、ピ
ンホールなどの欠陥が発生すると、この欠陥から酸素が
進入し、C/Cコンポジットが酸化される。これに対
し、硅素、硼素、アルミニウム、ナトリウム、リチウム
およびチタンの酸化物から選ばれた少なくとも1種類の
ガラス状物質の被覆層を上記セラミックス層上に形成す
ることにより酸素の侵入を防ぎ、C/Cコンポジットの
酸化を抑えることができる。硝子状物質はセラミックス
皮膜の欠陥内に存在すれば酸化を防ぐことができるが、
C/Cコンポジット使用時に万一新たな欠陥が発生した
場合のことを考えて、セラミックス層上にもある方が好
ましい。硅素、硼素、アルミニウム、ナトリウム、リチ
ウムおよびチタンの酸化物から選ばれる理由は、これら
は炭素が酸化する500℃以上の温度で溶融軟化して、
欠陥を防ぐこと、高温での蒸気圧が高くないことであ
る。硝子を得る方法としては、例えば、溶融硝子を直接
付着させる方法、反応により硝子化する溶液を塗布(含
浸)する方法などをあげることができる。反応により硝
子化する溶液としては、具体的には、B2 O3 は硼酸ト
リエチル、SiO2 は硅酸テトラエチル、Al2 O3 は
燐酸アルミニウムなどをあげることができる。When defects such as cracks and pinholes occur in the coated ceramics, oxygen penetrates through these defects and the C / C composite is oxidized. On the other hand, by forming a coating layer of at least one glassy substance selected from oxides of silicon, boron, aluminum, sodium, lithium and titanium on the ceramic layer, oxygen invasion is prevented and C / Oxidation of the C composite can be suppressed. The vitreous substance can prevent oxidation if it exists in the defects of the ceramic film,
In consideration of a case where a new defect is generated when the C / C composite is used, it is preferable that the C / C composite is also present on the ceramic layer. The reason for selecting from the oxides of silicon, boron, aluminum, sodium, lithium and titanium is that they are melted and softened at a temperature of 500 ° C. or higher at which carbon is oxidized,
Preventing defects and not having high vapor pressure at high temperatures. Examples of the method of obtaining glass include a method of directly adhering molten glass and a method of applying (impregnating) a solution which is converted into glass by a reaction. Specific examples of the solution that is vitrified by the reaction include triethyl borate for B 2 O 3, tetraethyl silicate for SiO 2 , and aluminum phosphate for Al 2 O 3 .
【0012】以上の様に耐酸化性皮膜を被覆した本発明
のC/Cコンポジットは、基材C/Cコンポジットとセ
ラミックス被覆層との間に、高融点金属層を配置してい
るため、C/Cコンポジットの断面方向と平面方向の熱
膨張率がほぼ等しくなり、亀裂の発生が低下する。ま
た、基材C/Cコンポジットとセラミックスとの熱膨張
率の違いは高融点金属の延性によって緩和されるため、
同様に亀裂発生は著しく低下する。In the C / C composite of the present invention coated with the oxidation resistant film as described above, since the refractory metal layer is disposed between the base material C / C composite and the ceramic coating layer, C The coefficient of thermal expansion in the cross-sectional direction of the / C composite becomes substantially equal to that in the planar direction, and the occurrence of cracks decreases. Further, since the difference in the coefficient of thermal expansion between the base material C / C composite and the ceramics is mitigated by the ductility of the refractory metal,
Similarly, crack initiation is significantly reduced.
【0013】[0013]
【実施例】以下に本発明を実施例に基づいて具体的に説
明する。 (実施例1)二方向強化C/Cコンポジットに、スパッ
タ法により高融点金属であるZrを10μmの厚さで被
覆した後、シリコンカーバイドを100μm被覆した材
料について、室温から1600℃まで昇温するサイクル
試験を10回行い、酸化重量減少を測定したところ4.
5%であった。EXAMPLES The present invention will be specifically described below based on examples. Example 1 A bidirectionally reinforced C / C composite was coated with a refractory metal Zr to a thickness of 10 μm by a sputtering method, and then a material coated with 100 μm of silicon carbide was heated from room temperature to 1600 ° C. The cycle test was performed 10 times, and the reduction in oxidized weight was measured.
It was 5%.
【0014】(実施例2)二方向強化C/Cコンポジッ
トに鍍金法により、高融点金属であるCrを15μmの
厚さで被覆し、窒化硅素を150μm被覆後、SiO2
−B2 O3 ガラスを被覆した材料について実施例1に示
す条件で熱サイクル試験を行い酸化重量減少率を測定し
たところ3.8%であった。[0014] (Example 2) by two-way reinforced C / C plating method to the composite, the Cr is a high melting point metal is coated with a thickness of 15 [mu] m, after 150μm coated silicon nitride, SiO 2
-B was 3.8% when measured oxidation weight loss by thermal cycle test at 2 O 3 conditions shown glass in Example 1 for the coating material.
【0015】(比較例1)二方向強化C/Cコンポジッ
トにSiCを150mm被覆した材料について実施例1
に示す条件で熱サイクル試験を行ったところ酸化重量減
少率が7%で被覆膜が剥離したため試験を1回で中止し
た。(Comparative Example 1) Regarding a material obtained by coating a bidirectionally reinforced C / C composite with 150 mm of SiC Example 1
When the heat cycle test was performed under the conditions shown in (1), the weight loss rate of oxidization was 7% and the coating film was peeled off, so the test was stopped once.
【0016】(比較例2)二方向強化C/Cコンポジッ
トにSi3 N4 を100mm被覆した後、これにテトラ
エチルオルソシリケートを含浸させた後加熱してシリケ
ートをSiO2 に変えた後、実施例1に示す条件で熱サ
イクル試験を行ったところ3回で酸化重量減少率が10
%を越え、被覆膜が剥離したので実験を中止した。COMPARATIVE EXAMPLE 2 A bidirectionally reinforced C / C composite was coated with 100 mm of Si 3 N 4 , impregnated with tetraethylorthosilicate, and heated to change the silicate to SiO 2 , When the heat cycle test was performed under the conditions shown in 1, the weight loss rate of oxidization was 10 after 3 cycles.
%, And the coating film peeled off, so the experiment was stopped.
【0017】[0017]
【発明の効果】以上のように本発明のC/Cコンポジッ
トは非常に優れた耐酸化性を示し、ジェットエンジン用
部材、宇宙往還機用の耐熱材料などに応用することがで
きる。INDUSTRIAL APPLICABILITY As described above, the C / C composite of the present invention exhibits extremely excellent oxidation resistance and can be applied to jet engine members, heat-resistant materials for space shuttles, and the like.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇留野 智 之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 平 本 治 郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 金 城 庸 夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 朱 建 平 台湾台南市大学路1号 国立成功大学材料 工程内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomoyuki Uruno 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Headquarters (72) Inventor Jiro Hiramoto Kawasaki, Chuo-ku, Chiba-shi, Chiba Town No. 1 Kawasaki Iron & Steel Co., Ltd. Technical Research Headquarters (72) Inventor Yoshio Kaneshiro No. 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Steel Co., Ltd. Technical Research Headquarters (72) Inventor Zhu Jianping Taiwan Tainan City University Road No. 1 National Success University Materials In process
Claims (2)
Cr,Hf,Ir,Mo,Nb,Pt,Ta,Ti,
V,WおよびZrよりなる群から選ばれた少なくとも1
種類の高融点金属の被覆層を有し、さらにその上に炭化
硅素または窒化硅素の被覆層を有する耐酸化性に優れた
炭素繊維強化炭素複合材料。1. A carbon fiber reinforced carbon composite material having B,
Cr, Hf, Ir, Mo, Nb, Pt, Ta, Ti,
At least 1 selected from the group consisting of V, W and Zr
A carbon fiber reinforced carbon composite material having excellent oxidation resistance, which has a coating layer of a kind of refractory metal and further has a coating layer of silicon carbide or silicon nitride thereon.
維強化炭素複合材料上に、硅素、硼素、アルミニウム、
ナトリウム、リチウムおよびチタンの酸化物から選ばれ
た少なくとも1種類のガラス状物質の被覆層を有する耐
酸化性に優れた炭素繊維強化炭素複合材料。2. A carbon fiber reinforced carbon composite material having an oxidation resistance according to claim 1, wherein silicon, boron, aluminum,
A carbon fiber-reinforced carbon composite material having excellent oxidation resistance, having a coating layer of at least one glassy substance selected from oxides of sodium, lithium and titanium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4168812A JPH069269A (en) | 1992-06-26 | 1992-06-26 | Carbon fiber-reinforced carbon composite material excellent in oxidation resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4168812A JPH069269A (en) | 1992-06-26 | 1992-06-26 | Carbon fiber-reinforced carbon composite material excellent in oxidation resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH069269A true JPH069269A (en) | 1994-01-18 |
Family
ID=15874955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4168812A Withdrawn JPH069269A (en) | 1992-06-26 | 1992-06-26 | Carbon fiber-reinforced carbon composite material excellent in oxidation resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH069269A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103145445A (en) * | 2013-03-21 | 2013-06-12 | 清华大学 | Preparation method for surface microstructure capable of improving oxidization resistance and ablation resistance of material |
CN107382354A (en) * | 2017-07-24 | 2017-11-24 | 苏州宏久航空防热材料科技有限公司 | A kind of preparation method of new high-temperature oxidation resistant C/C composite coatings |
CN114605173A (en) * | 2022-04-18 | 2022-06-10 | 中南大学 | Ablation-resistant and thermal shock-resistant zirconium silicate-high-alumina glass/HTBS high-entropy ceramic coating and preparation method and application thereof |
-
1992
- 1992-06-26 JP JP4168812A patent/JPH069269A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103145445A (en) * | 2013-03-21 | 2013-06-12 | 清华大学 | Preparation method for surface microstructure capable of improving oxidization resistance and ablation resistance of material |
CN107382354A (en) * | 2017-07-24 | 2017-11-24 | 苏州宏久航空防热材料科技有限公司 | A kind of preparation method of new high-temperature oxidation resistant C/C composite coatings |
CN114605173A (en) * | 2022-04-18 | 2022-06-10 | 中南大学 | Ablation-resistant and thermal shock-resistant zirconium silicate-high-alumina glass/HTBS high-entropy ceramic coating and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4824711A (en) | Ceramic honeycomb structures and method thereof | |
US10889526B2 (en) | Environmental resistant coating member | |
EP3252278B1 (en) | High temperature composites with enhanced matrix | |
US9340460B2 (en) | Ultra-refractory material that is stable in a wet environment, and process for manufacturing same | |
JP2007197307A5 (en) | ||
JP2007535461A (en) | Process for producing carbon fiber reinforced ceramic composites | |
IE913637A1 (en) | Carbon-containing composite material part protected against oxidation and its production process | |
JPH0543364A (en) | Oxidation-resistant corbon fiber-reinforced carbon composite material and its production | |
Park et al. | Carbon/carbon composites | |
JPH0585841A (en) | Process for producing precrack fiber coating for reinforcing ceramic fiber matrix composite material | |
Weiss | Carbon fibre reinforced CMCs: manufacture, properties, oxidation protection | |
JPH069269A (en) | Carbon fiber-reinforced carbon composite material excellent in oxidation resistance | |
US5695830A (en) | Process for improving the oxidative stability of a composite material having a fibrous reinforcement and a glass, glass-ceramic or ceramic matrix | |
JP2867536B2 (en) | Corrosion and oxidation resistant materials | |
JP2976368B2 (en) | Heat and oxidation resistant carbon fiber reinforced carbon composite material | |
Semchenko et al. | Protection of graphite and graphite-containing materials from oxidation. | |
JP4616442B2 (en) | Carbonaceous material having oxidation-resistant protective layer and method for producing the same | |
JPH08253861A (en) | C/c composite material having high oxidation resistance | |
JPH08253874A (en) | High adhesion oxidation resistant coating film for c/c composite material and its formation | |
US4837053A (en) | Diffusion barrier for high temperature composites | |
JP2976369B2 (en) | Oxidation resistant carbon fiber reinforced carbon composite material | |
US7090893B1 (en) | Rhenium composite | |
JPH09278567A (en) | Production of heat-resistant, oxidation-resistant carbon material | |
JP3060589B2 (en) | High temperature heat resistant material | |
JPH05170577A (en) | Method for anti-oxidizing coating of carbon fiber reinforced carbon composite material using coating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990831 |