JPH08250502A - Formation of high viscosity material - Google Patents

Formation of high viscosity material

Info

Publication number
JPH08250502A
JPH08250502A JP8001984A JP198496A JPH08250502A JP H08250502 A JPH08250502 A JP H08250502A JP 8001984 A JP8001984 A JP 8001984A JP 198496 A JP198496 A JP 198496A JP H08250502 A JPH08250502 A JP H08250502A
Authority
JP
Japan
Prior art keywords
molding
viscosity material
powder
heating
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8001984A
Other languages
Japanese (ja)
Other versions
JP3324376B2 (en
Inventor
Takao Inoue
孝夫 井上
Junji Ikeda
順治 池田
Kazuhiro Mori
和弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP00198496A priority Critical patent/JP3324376B2/en
Publication of JPH08250502A publication Critical patent/JPH08250502A/en
Application granted granted Critical
Publication of JP3324376B2 publication Critical patent/JP3324376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/111Manufacture and pre-treatment of the bump connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: To rapidly carry out heating/cooling cycle by supplying a high viscosity material in unmolten state to a recessed part of a molding die consisting of a material of high orientation property graphite and forming a high viscosity material to a desired configuration by heating, dissolving and cooling it from an outside. CONSTITUTION: A molding die 10 is comprised of a lamination body 12 wherein a number of stripe-shaped orientation graphites 12a are laminated in a thickness direction thereof and a number of molding recessed parts 16 are formed by discharge processing along an outer circumference. A screen print device 40 is put above the molding die 10, a molding recessed part 16 is filled with high viscosity material power 50 and powder is heated and dissolved by bringing a heating body 20 consisting of a metal, etc., of a large heat capacity into contact with a bottom of the molding die 10 or performing laser beam emission. For cooling, a cooling body 30 of material/configuration similar to the heating body 20 is used. Thereby, molding of a desired configuration such a bump electrode can be carried out rapidly and accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高粘度材料の成形
方法に関する。
TECHNICAL FIELD The present invention relates to a method for molding a high-viscosity material.

【0002】[0002]

【従来の技術】高粘度材料を成形して用いる技術の具体
例として、半導体ICにバンプ電極を作製する技術があ
る。バンプ電極となる金属材料をバインダーとともに高
粘度の混合液状態とし、これをノズルから所定量づつ吐
出して基板上に所定の電極形状になるように成形する。
この方法は、従来一般的に行われていた、写真製版技術
やエッチング技術を用いてバンプ電極を作製する技術に
比べて、作業が簡単で工程も削減できるという特徴を有
している。
2. Description of the Related Art As a specific example of the technique of molding and using a high viscosity material, there is a technique of forming bump electrodes on a semiconductor IC. A metal material to be bump electrodes is made into a high-viscosity mixed liquid state together with a binder, and this is discharged from a nozzle by a predetermined amount and molded into a predetermined electrode shape on a substrate.
This method has a feature that the work is simple and the number of steps can be reduced as compared with the technique which is generally used in the related art, in which the bump electrode is formed by using the photoengraving technique or the etching technique.

【0003】一方、ダイボンド等の目的で基板上に高粘
度の接着剤をスポット状に付着させることが行われてい
る。この場合も上記同様のノズルを用いて、高粘度接着
剤を所定のスポット形状に成形している。
On the other hand, a high-viscosity adhesive is attached in spots on a substrate for the purpose of die bonding or the like. Also in this case, the high-viscosity adhesive is molded into a predetermined spot shape using the same nozzle as above.

【0004】[0004]

【発明が解決しようとする課題】上記のようなバンプ電
極などの作業技術では、高粘度材料の成形形状が非常に
重要である。所定の形状および大きさの揃った成形物を
得ることが要求される。しかし、粘度の高い材料液は流
動性が悪く、ノズルからの吐出量を精密に制御するのが
難しい。そのため、成形された高粘度材料の形状や大き
さにバラツキが出やすい。また、上記バンプ電極の場
合、ひとつのIC基板に数十から百個を超えるような多
数のバンプ電極を設けることがあるので、多数のバンプ
電極毎に場所を変えてノズルから高粘度材料液を吐出し
て成形していくのは大変に面倒な作業である。特に、流
動性の悪い高粘度材料液は、ゲートを開いたり圧力をか
けてノズルから吐出させようとしても直ぐには吐出が開
始されず、逆に、ノズルからの吐出を終了させようとし
ても直ぐには吐出が終わらない。そのために、1回毎の
成形時間が長くかかり、上記のような多数の成形を繰り
返す場合には作業性が非常に悪くなる。ノズルの形状や
構造を改良して、上記のような問題点を解消しようとす
る技術も提案されているが、十分な解決は果たされてお
らず、ノズルなどの装置構造が複雑になるという問題が
残る。
In working techniques such as the bump electrode as described above, the molded shape of a high-viscosity material is very important. It is required to obtain a molded product having a predetermined shape and size. However, the material liquid having high viscosity has poor fluidity, and it is difficult to precisely control the discharge amount from the nozzle. Therefore, the shape and size of the molded high-viscosity material are likely to vary. Further, in the case of the above bump electrodes, a large number of tens to more than 100 bump electrodes may be provided on one IC substrate. Therefore, the high-viscosity material liquid may be discharged from the nozzle by changing the position of each bump electrode. Discharging and molding is a very troublesome work. In particular, the high-viscosity material liquid with poor fluidity does not start immediately when the gate is opened or pressure is applied to eject it from the nozzle, and conversely, when the ejection from the nozzle is ended, it does not immediately begin. The discharge does not end. Therefore, the molding time for each time is long, and the workability becomes extremely poor when a large number of moldings as described above are repeated. Techniques for improving the shape and structure of the nozzle to solve the above problems have also been proposed, but they have not been sufficiently solved, and the device structure such as the nozzle becomes complicated. The problem remains.

【0005】本発明の目的は、上記のような高粘度材料
を所定形状に成形する際に、迅速かつ正確に成形用凹部
に供給し、正確な形状および大きさの成形物を正確な位
置に作業性良く形成し得る成形方法を提供することにあ
る。この目的を達成するためには、バンプ成形装置を例
にとると、バンプ材料を高粘性を有しない非溶融状態で
供給する必要があるが、このためには非溶融状態にある
高粘度材料を成形用凹部で加熱溶融し、次いで冷却する
加熱冷却サイクルを迅速に行う必要がある。
An object of the present invention is to rapidly and accurately supply the above-mentioned high-viscosity material into a predetermined shape in a molding recess so that a molded product having an accurate shape and size can be accurately positioned. It is to provide a molding method that can be formed with good workability. In order to achieve this purpose, if the bump forming apparatus is taken as an example, it is necessary to supply the bump material in a non-molten state that does not have high viscosity. It is necessary to quickly perform a heating / cooling cycle of heating and melting in the molding recess and then cooling.

【0006】[0006]

【課題を解決するための手段】そこで、本発明は、成形
型内部で迅速な加熱冷却サイクルを達成するためには成
形型自体が熱伝導性に優れ、型外部から成形用凹部を型
材料を介して加熱および冷却を行えるように構成する必
要があることに着目して完成されたもので、溶融時に高
粘性を示す高粘度材料を成形するにあたり、高配向性グ
ラファイト材料で製造された成形型を用意し、該型内の
成形用凹部に高粘度材料を非溶融状態で供給し、上記型
を介して外部から上記成形用凹部内にある高粘度材料を
加熱溶融し、上記型を介して溶融した高粘度材料を冷却
して所望形状に成形する成形方法にある。
Therefore, according to the present invention, in order to achieve a rapid heating and cooling cycle inside the molding die, the molding die itself has excellent thermal conductivity, and the molding recess is formed from outside the molding die. It was completed by paying attention to the fact that it is necessary to configure so that heating and cooling can be performed via a molding die made of a highly oriented graphite material when molding a highly viscous material that exhibits high viscosity when melted. Is prepared, the high-viscosity material is supplied to the molding recess in the mold in a non-molten state, the high-viscosity material in the molding recess is heated and melted from the outside through the mold, It is a molding method for cooling a molten high-viscosity material and molding it into a desired shape.

【0007】本発明においては、上記成形方法を実施す
るためには、上記成形型がその成形用凹部に対し型外部
より迅速かつ正確に伝熱する必要があり、上記成形型を
構成する高配向性グラファイト材料を高配向性グラファ
イトシートが積層された積層体とし、上記シートの端面
が並列した一方の側面に前記成形用凹部を形成してな
り、反対側面へとグラファイト結晶を配向させるのがよ
い。
In the present invention, in order to carry out the above-mentioned molding method, it is necessary for the molding die to transfer heat to the molding concave portion quickly and accurately from the outside of the mold. It is preferable that the graphite material is a laminated body in which highly oriented graphite sheets are laminated, and the molding recess is formed on one side surface where the end surfaces of the sheets are arranged in parallel, and the graphite crystals are oriented to the opposite side surface. .

【0008】更に、上記成形型の成形用凹部を均一に加
熱冷却するためには、上記成形型を形成する高配向性の
第1グラファイトシート積層体の端面が並列してなる一
方の側面とは反対側面に、配向性が直交するように第2
のグラファイトシートが積層された積層体を接合し、該
第2積層体から上記第1積層体を介してその端面に形成
された前記成形用凹部を加熱冷却するのが好ましい。
Further, in order to uniformly heat and cool the molding recess of the molding die, one end surface of the highly oriented first graphite sheet laminate forming the molding die is arranged in parallel with one side surface. On the opposite side, make a second alignment so that the orientation is orthogonal.
It is preferable to bond the laminated body in which the graphite sheets are laminated and to heat and cool the molding recess formed on the end face of the second laminated body through the first laminated body.

【0009】上記シートの積層体は、特開平4−215
08号に記載の方法を利用し、特定の高分子フィルムを
積層して2000℃以上の温度領域での熱処理は不活性
ガス中で行いながら最終的に2400℃以上の温度で熱
処理することにより製造することができるが、耐熱性バ
ンドで結束されて一体的に固定されるのが好ましい。上
記高分子フィルムは、フィラーを含有し、200μm以
下の厚さを有するポリオキサジアゾール、ポリベンゾチ
アゾール、ポリベンゾビスチアゾール、ポリベンゾオキ
サゾール、ポリベンゾビスオキサゾール、ポリ(ピロミ
リットイミド)、ポリ(m−フェニレンイソフタルアミ
ド)、ポリ(フェニレンベンゾビスイミダゾール)、ポ
リチアゾール、ポリパラフェニレンビニレンからなる群
から選ばれるが、特に、ポリピロリミットイミドなどの
芳香族ポリイミドフィルムが好ましい。
A laminate of the above sheets is disclosed in Japanese Patent Laid-Open No. 4-215.
Manufactured by laminating a specific polymer film using the method described in No. 08, and finally performing heat treatment at a temperature of 2400 ° C or higher while performing heat treatment in a temperature range of 2000 ° C or higher in an inert gas. However, it is preferable that they are bound by a heat resistant band and integrally fixed. The polymer film contains a filler and has a thickness of 200 μm or less. m-phenylene isophthalamide), poly (phenylene benzobisimidazole), polythiazole, polyparaphenylene vinylene, and aromatic polyimide films such as polypyrolimitimide are particularly preferable.

【0010】上記成形型内の成形用凹部に高粘度材料を
供給するために、上記成形型には上記成形用凹部に前記
高粘度材料を供給する高粘度材料供給手段を設けるのが
好ましい。また、上記成形型を介して外部から上記成形
用凹部内にある高粘度材料を加熱溶融し、溶融した高粘
度材料を冷却するために、上記成形型には成形用凹部の
型外面に成形用凹部内を選択的に加熱および冷却する加
熱冷却手段を設けるのが好ましい。
In order to supply the high-viscosity material to the molding recess in the molding die, it is preferable that the molding die is provided with high-viscosity material supply means for supplying the high-viscosity material to the molding recess. In order to heat and melt the high-viscosity material in the molding recess from the outside through the molding die and cool the melted high-viscosity material, the molding die has a molding surface on the outer surface of the molding recess. It is preferable to provide heating / cooling means for selectively heating and cooling the inside of the recess.

【0011】上記粉体形態を用いて成形する場合は、印
刷用バインダーと混練してペースト状とした高粘度材料
を調製するのが好ましく、粉体としては、成形用途に応
じて金属粉体、バンプ材料粉体、誘電材料粉体、絶縁材
料粉体、光学部品材料粉体等の種々の粉体が選ばれる。
印刷用バインダーは成形用凹部における加熱時に揮散消
失する。このペースト状高粘度材料の供給手段として
は、上記成形型の前記成形用凹部を有する表面の上方に
配置された前記成形用凹部に対応する位置に粉体通過部
を有するスクリーン印刷版と、上記スクリーン印刷版の
上面に供給された上記粉体を上記スクリーン印刷版に沿
って押し動かすスキージとを有するスクリーン印刷装置
で構成するのが好ましい。
In the case of molding using the above-mentioned powder form, it is preferable to prepare a high-viscosity material in the form of paste by kneading with a printing binder. The powder may be a metal powder, depending on the molding application. Various powders such as bump material powder, dielectric material powder, insulating material powder, and optical component material powder are selected.
The printing binder volatilizes and disappears when heated in the molding recess. As a means for supplying the paste-like high-viscosity material, a screen printing plate having a powder passage portion at a position corresponding to the molding concave portion arranged above the surface of the molding die having the molding concave portion, It is preferable that the screen printing apparatus comprises a screen printing apparatus having a squeegee that pushes the powder supplied onto the upper surface of the screen printing plate along the screen printing plate.

【0012】上記高粘度材料がワイヤーボンディング用
等の線状体である場合は、上記高粘度材料供給手段は、
上記成形型の上記成形用凹部を有する表面の上方に配置
され、上記成形用凹部に上記線状体の先端を送り込む線
状体供給装置として構成される。他方、上記加熱冷却手
段としては、上記成形型の上記反対面に選択的に当接自
在な加熱体および冷却体を備えているのが好ましい。
When the high viscosity material is a linear body for wire bonding or the like, the high viscosity material supply means is
It is arranged above the surface of the molding die having the molding recess, and is configured as a linear body supply device for feeding the tip of the linear body into the molding recess. On the other hand, it is preferable that the heating / cooling means includes a heating body and a cooling body which can selectively come into contact with the opposite surface of the molding die.

【0013】[0013]

【発明の実施の形態】本発明方法は、高粘度材料用成形
型が、高配向性グラファイトからなり、熱伝導性が優れ
ているため、成形用凹部に高粘度材料を供給して加熱溶
融させる際に、成形型を介しての高粘度材料の加熱が迅
速かつ効率的に行われる。加熱溶融されて成形された高
粘度材料の成形物を冷却する際にも、成形型を介して迅
速かつ効率的に冷却することができる。したがって、粉
状体または線状体を成形用凹部に供給し、迅速な加熱冷
却サイクルを利用して所定の成形体が成形できることに
なる。この高配向性グラファイトは耐熱性にも優れてい
るので、高温で溶融させなければならない高粘度材料に
も問題なく適用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the method of the present invention, since the mold for high viscosity material is made of highly oriented graphite and has excellent thermal conductivity, the high viscosity material is supplied to the molding recess and melted by heating. At this time, the heating of the high-viscosity material through the mold is performed quickly and efficiently. Also when cooling the molded product of the high-viscosity material that has been melted by heating and molded, it is possible to cool quickly and efficiently through the molding die. Therefore, it becomes possible to supply a powder or linear body to the molding recess and mold a predetermined molded body by utilizing a rapid heating / cooling cycle. Since this highly oriented graphite is also excellent in heat resistance, it can be applied to a high viscosity material that must be melted at a high temperature without any problem.

【0014】なお、高配向性グラファイトが、成形用凹
部を有する表面から反対面へと配向されていれば、高配
向性グラファイトはその配向に沿う方向における熱伝導
率が特に大きいので、成形型内部の成形用凹部に対向す
る外部反対面から加熱あるいは冷却することで、上記表
面の成形用凹部内の粉体あるいは成形物を迅速かつ効率
的に加熱および冷却することができる。
If the highly-oriented graphite is oriented from the surface having the molding recess to the opposite surface, the highly-oriented graphite has a particularly high thermal conductivity in the direction along the orientation. By heating or cooling from the outer surface opposite to the molding recess, the powder or molded product in the molding recess on the surface can be heated and cooled quickly and efficiently.

【0015】高配向性グラファイトは、薄いシート状態
で製造されるのが一般的である。このような高配向性グ
ラファイトシートを積層して積層体にすれば、厚みのあ
る成形型を容易に構成することができる。面方向に配向
された高配向性グラファイトシートの積層体は、全体と
してもシートの面方向に良好に配向された状態になる。
シートの端面が並んで配置された表面に成形用凹部を有
すれば、成形用凹部を有する表面から反対面へと高配向
性グラファイトの配向が揃ったきわめて配向性の良好な
成形型となり、表面から反対面への熱伝導性が向上す
る。
Highly oriented graphite is generally manufactured in a thin sheet state. By stacking such highly oriented graphite sheets into a laminated body, a thick molding die can be easily constructed. The laminate of highly oriented graphite sheets oriented in the plane direction is in a state of being favorably oriented in the plane direction of the sheet as a whole.
If there is a molding recess on the surface where the end faces of the sheet are arranged side by side, it becomes a mold with a very good orientation in which the highly oriented graphite is aligned from the surface having the molding recess to the opposite surface, The thermal conductivity from the to the opposite side is improved.

【0016】高配向性グラファイトシートの積層体が、
耐熱性バンドで結束されて一体的に固定されていれば、
積層体を構成するシートをいちいち接着したりしなくて
も簡単に成形型が作製できる。成形型は高温に加熱され
たり、急激に加熱冷却を繰り返したりするので、接着な
どの手段ではシート同士の一体性が低下してしまうが、
耐熱性バンドで結束しておけば、高温への加熱や急激な
加熱冷却にも十分に耐えることができる。
A laminate of highly oriented graphite sheets is
If it is bundled with a heat resistant band and fixed integrally,
A molding die can be easily manufactured without adhering the sheets constituting the laminated body one by one. Since the molding die is heated to a high temperature or rapidly heated and cooled repeatedly, the integrity of the sheets will be reduced by means such as adhesion,
By bundling with a heat resistant band, it is possible to sufficiently withstand heating to high temperatures and rapid heating and cooling.

【0017】上記成形型に、高粘度材料供給手段と加熱
冷却手段とを設けると、成形用凹部への高粘度材料の供
給、高粘度材料の加熱溶融および成形、さらに冷却まで
の一連の作業工程を迅速に行うことができる。なお、成
形材料が粉体である場合は、粉体と加熱により揮発する
印刷用バインダーを混練して高粘度材料を構成すると、
取り扱いが容易で加熱溶融や成形も行い易い。この場
合、高粘度材料供給手段が、スクリーン印刷版とスキー
ジを有するスクリーン印刷装置を備えていれば、成形型
の成形用凹部に確実かつ能率的に必要量の粉体を供給す
ることができる。成形型に多数の成形用凹部が設けられ
ている場合にも、同時に多数の成形用凹部に対して均等
に粉体を供給することができる。
When the above-mentioned molding die is provided with a high-viscosity material supply means and a heating / cooling means, a series of working steps from supply of the high-viscosity material to the molding recess, heating and melting of the high-viscosity material, and cooling Can be done quickly. When the molding material is a powder, if the powder and a printing binder that volatilizes by heating are kneaded to form a high-viscosity material,
Easy to handle and easy to heat and melt and mold. In this case, if the high-viscosity material supplying means is equipped with a screen printing device having a screen printing plate and a squeegee, it is possible to reliably and efficiently supply the required amount of powder to the molding recess of the molding die. Even when the molding die is provided with a large number of molding recesses, it is possible to supply the powder uniformly to a large number of molding recesses at the same time.

【0018】高粘度材料が加熱溶融可能な線状体であれ
ば、粉体のようには飛散し難く、保管や持ち運びが行い
易い。この場合、高粘度材料供給手段が、成形用凹部に
線状体の先端を送り込めば、必要長さ分の線状体だけを
成形用凹部内で加熱溶融させて成形することができる。
高粘度材料が成形用凹部の外に漏れる心配がない。線状
体を供給する装置の構造が簡単になる。
If the high-viscosity material is a linear body that can be heated and melted, it is unlikely to scatter like powder, and is easy to store and carry. In this case, if the high-viscosity material supply means feeds the tip of the linear body into the molding recess, only the linear body having a required length can be heated and melted in the molding recess to be molded.
There is no concern that the high-viscosity material will leak out of the molding recess. The structure of the device for supplying the linear body is simplified.

【0019】加熱冷却手段が、成形型の反対面に選択的
な当接自在な加熱体および冷却体を備えていれば、高配
向性グラファイトからなる成形型の内部に複雑な加熱機
構や冷却機構を設ける必要がなく、成形型の製造が容易
である。成形型に加熱体を接触させれば迅速に加熱が開
始され、成形型から加熱体を離して冷却体を接触させれ
ば迅速と冷却が開始されるので、加熱と冷却の切り換え
が迅速に行われ、作業の能率化を図ることができる。
If the heating / cooling means is provided with a heating body and a cooling body which can selectively come into contact with the opposite surface of the molding die, a complicated heating mechanism or cooling mechanism is provided inside the molding die made of highly oriented graphite. Therefore, it is easy to manufacture the molding die. If the heating element is brought into contact with the forming die, heating is started quickly, and if the heating element is separated from the forming die and the cooling element is brought into contact with it, rapid cooling is started. Therefore, work efficiency can be improved.

【0020】本発明の高粘度材料の成形方法は、高粘度
材料を、粉体、粉体混練ペーストまたは線状体の非溶融
状態で成形型の成形用凹部に供給するので、高粘度溶融
状態の材料を供給するのに比べて、はるかに簡単に成形
型への材料供給が行える。また、高粘度材料の供給量も
正確に設定することができる。成形型の成形用凹部とは
反対面に加熱体を接触させれば、熱伝導性に優れた高配
向性グラファイトからなる成形型を介して、表面の成形
用凹部に供給された粉体が迅速に加熱溶融され、成形用
凹部の形状にしたがって成形される。加熱体に変わって
冷却体を成形型に接触させれば、成形用凹部内の成形物
は迅速に冷却されて所定の成形形状を維持できる状態に
なる。冷却された成形物は、成形型から取り出して自由
に利用することができる。
In the method of molding a high-viscosity material of the present invention, the high-viscosity material is supplied to the molding recess of the molding die in a non-melted state of the powder, the powder kneading paste or the linear body. It is much easier to supply the material to the forming die than supplying the material. Further, the supply amount of the high-viscosity material can be set accurately. If the heating element is brought into contact with the surface of the forming die opposite to the forming recess, the powder supplied to the forming recess on the surface can be quickly transferred through the forming die made of highly oriented graphite with excellent thermal conductivity. It is heated and melted to be molded according to the shape of the molding recess. When the cooling body instead of the heating body is brought into contact with the molding die, the molded product in the molding recess is cooled quickly and can maintain a predetermined molding shape. The cooled molded product can be taken out of the mold and used freely.

【0021】なお、高粘度材料が、金属とバインダーと
の混合粉体であれば、金属焼結品を作るための成形物や
バンプ電極となる成形物などを簡単かつ効率的に製造す
ることができる。高粘度材料がバンプ材料であれば、バ
ンプ電極の作製を簡単かつ効率的に行うことができる。
高粘度材料が誘電材料または絶縁材料であれば、各種の
電子装置などに利用される誘電部材や絶縁部材の作製を
簡単かつ効率的に行える。高粘度材料が光学部品材料で
あれば、各種の光学装置などに利用される光学部品の作
製を簡単かつ効率的に行える。高粘度材料がワイヤーボ
ンディング用線状体であれば、各種の電子装置などに利
用されるワイヤーボンディング構造の作製を簡単かつ効
率的に行える。
If the high-viscosity material is a mixed powder of a metal and a binder, it is possible to easily and efficiently manufacture a molded product for making a metal sintered product or a molded product for a bump electrode. it can. If the high-viscosity material is a bump material, the bump electrode can be easily and efficiently manufactured.
If the high-viscosity material is a dielectric material or an insulating material, the dielectric member and the insulating member used in various electronic devices can be easily and efficiently manufactured. If the high-viscosity material is an optical component material, optical components used in various optical devices can be easily and efficiently manufactured. If the high-viscosity material is a wire-bonding linear body, the wire-bonding structure used in various electronic devices can be easily and efficiently manufactured.

【0022】図1に示す成形装置は、IC基板にバンプ
電極を作製するのに利用する成形装置である。成形型1
0と加熱体21と冷却体30とを備えている。成形型1
0は、短冊状をなす高配向性グラファイトシート12a
がその厚み方向に多数積層された直方体状の積層体12
と、シート12aの積層方向に沿って積層体12の外周
に配置された耐熱性バンド14とからなる。
The molding apparatus shown in FIG. 1 is a molding apparatus used for forming bump electrodes on an IC substrate. Mold 1
0, heating body 21, and cooling body 30 are provided. Mold 1
0 is a strip-shaped highly oriented graphite sheet 12a
A rectangular parallelepiped laminated body 12 in which a large number of are laminated in the thickness direction
And a heat resistant band 14 arranged on the outer periphery of the laminated body 12 along the laminating direction of the sheets 12a.

【0023】グラファイトとは炭素の結晶体であり、結
晶が層状構造をなしている。この炭素の結晶体が一定の
配向を持って配置されている材料が高配向性グラファイ
トである。高配向性グラファイトを製造するには、例え
ば、上述したように特定の高分子フィルムを以下の条件
で焼き固めることによって得られる。高分子フィルムを
複数枚重ねた状態で焼き固めれば、シート状あるいはブ
ロック状の高配向性グラファイトも得られる。高配向性
グラファイトシート12aは、上記のような高分子フィ
ルムからなる高配向性グラファイトフィルムそのものを
用いてもよいし、薄い高配向性グラファイトフィルムを
複数枚積層した状態で焼き固めて所定厚みのシートにし
たものでもよい。シート12aの厚みは、5〜200μ
m程度のものが用いられる。
Graphite is a crystal of carbon, and the crystal has a layered structure. The material in which the carbon crystal is arranged with a certain orientation is highly oriented graphite. The highly oriented graphite can be produced, for example, by baking the specific polymer film as described above under the following conditions. If a plurality of polymer films are stacked and baked, a sheet-shaped or block-shaped highly oriented graphite can be obtained. The highly-oriented graphite sheet 12a may be a highly-oriented graphite film itself made of a polymer film as described above, or may be a sheet having a predetermined thickness obtained by baking and hardening a plurality of thin highly-oriented graphite films. You can use the one The thickness of the sheet 12a is 5 to 200 μ
The thing of about m is used.

【0024】製造例1 厚さ25μmのポリピロメリットイミド(デユポン社
製、カプトンHフィルム)を200枚重ね、グラファイ
ト製治具にセットし、アルゴンガス中で10℃/minの速
度で1400℃まで昇温した。この間試料には100g
/cm2の治具重量の圧力が加わるようにした。次に、1
400℃に達した後、同様の昇温速度を保ちながら30
kg/cm2の圧力を加えながら1600℃まで加熱し
た。その後圧力を減少させ、治具の圧力のみが加わるよ
うにし、2700℃まで加熱した。その後圧力を300
kg/cm2とし、3000℃まで昇温し、熱処理を完了
し、グラファイトブロックを得た。
Production Example 1 200 sheets of 25 μm-thick polypyromellitimide (Kapton H film, manufactured by Dyupon Co., Ltd.) were stacked, set on a graphite jig, and heated to 1400 ° C. at a rate of 10 ° C./min in argon gas. The temperature was raised. During this period, 100g for the sample
The pressure of the jig weight of / cm 2 was applied. Then 1
After reaching 400 ℃, 30 while maintaining the same rate of temperature rise
It was heated to 1600 ° C. while applying a pressure of kg / cm 2 . After that, the pressure was reduced so that only the pressure of the jig was applied, and heating was performed up to 2700 ° C. Then increase the pressure to 300
The temperature was adjusted to kg / cm 2 and the temperature was raised to 3000 ° C., and the heat treatment was completed to obtain a graphite block.

【0025】製造例2 5重量%のリン酸水素カルシウムを含む厚さ25μmの
ポリピロメリットイミド(デユポン社製、カプトンHフ
ィルム)を、産協電炉(株)製LTF−S型電気炉を用
いて窒素ガス中で3℃/minの速度で1000℃まで昇温
し、1000℃で1時間保ち予備熱処理した。次に、得
られた炭素化シートを自由に伸縮できるようにグラファ
イト製の円筒の内部にセットし、進成電炉(株)製超高
温炉46−5型を用いてグラファイト筒とともに5℃/m
inの速度で2800℃まで加熱した。加熱はアルゴン雰
囲気中常圧で行った。得られたシートをステンレス製の
2本のローラ(熊谷理機工業(株)製)の間を通して圧
延処理を施した。引っ張り強度630Kgf/cm2の熱伝導
度860kcal/m・h・℃のシートが得られた。
Production Example 2 A 25 μm thick polypyromellitimide (Kapton H film manufactured by Dyupon Co.) containing 5% by weight of calcium hydrogen phosphate was used in an LTF-S type electric furnace manufactured by Sankyo Denki Kogyo Co., Ltd. Then, the temperature was raised to 1000 ° C. in nitrogen gas at a rate of 3 ° C./min, and the temperature was kept at 1000 ° C. for 1 hour for preheat treatment. Next, the obtained carbonized sheet was set inside a graphite cylinder so that it could be freely expanded and contracted, and an ultrahigh temperature furnace type 46-5 manufactured by Shinsei Denki Co., Ltd. was used together with the graphite cylinder at 5 ° C / m.
Heated to 2800 ° C. at a rate of in. The heating was carried out at normal pressure in an argon atmosphere. The obtained sheet was passed through two rollers made of stainless steel (manufactured by Kumagai Riki Kogyo Co., Ltd.) for rolling treatment. A sheet having a tensile strength of 630 Kgf / cm 2 and a thermal conductivity of 860 kcal / m · h · ° C was obtained.

【0026】耐熱性バンド14は、積層体12と同じ高
配向性グラファイトシートで作製されており、積層体1
2の外周に巻回されて積層体12を構成するシート12
a同士を強く結束し一体化させて固定している。耐熱性
バンド14の端部は重ねて接着したり機械的に接合した
りしている。シート12aの端面が並ぶ成形型10の上
面には、外周に沿って多数の成形用凹部16が設けられ
ている。高配向性グラファイトシート12aからなる成
形型10の表面に成形用凹部16を加工するには、放電
加工が適用される。
The heat resistant band 14 is made of the same highly oriented graphite sheet as the laminated body 12, and the laminated body 1
The sheet 12 that is wound around the outer periphery of the sheet 2 to form the laminated body 12
The a's are tightly bound, integrated and fixed. The end portions of the heat resistant band 14 are overlapped and bonded or mechanically joined. A large number of molding recesses 16 are provided along the outer periphery of the upper surface of the molding die 10 on which the end faces of the sheet 12a are lined up. Electric discharge machining is applied to form the forming recess 16 on the surface of the forming die 10 made of the highly oriented graphite sheet 12a.

【0027】成形用凹部16は、平面円形の柱状であり
底部が球面になっている。成形用凹部16の形状と配置
は、作製するバンプ電極の形状と配置に合わせて設定さ
れている。加熱体20は、熱容量が大きな金属などから
なり、成形型10の底面に当接する上面形状を備え、全
体が直方体状をなしている。冷却体30も加熱体20と
同様の材料からなり同様の形状を備えている。
The molding recess 16 has a circular columnar shape in a plan view and has a spherical bottom surface. The shape and arrangement of the molding recess 16 are set in accordance with the shape and arrangement of the bump electrode to be manufactured. The heating body 20 is made of metal or the like having a large heat capacity, has a top surface shape that abuts the bottom surface of the molding die 10, and has a rectangular parallelepiped shape as a whole. The cooling body 30 is also made of the same material as the heating body 20 and has the same shape.

【0028】加熱体20は、成形型10の底面に当接す
る位置と、成形型10から離れた位置で加熱体20を加
熱する加熱炉や加熱ヒータなどの加熱装置(図示省略)と
の間を移動自在に設けられている。冷却体30は、成形
型10の底面に当接する位置と、成形型10から離れた
位置との間を移動自在に設けられている。冷却体30に
は特別な冷却装置を設けなくても、室温で放冷させるこ
とで加熱体20に対して低温に維持しておけばよい。
The heating body 20 is provided between a position in contact with the bottom surface of the molding die 10 and a heating device (not shown) such as a heating furnace or a heater for heating the heating body 20 at a position distant from the molding die 10. It is movably installed. The cooling body 30 is movably provided between a position in contact with the bottom surface of the molding die 10 and a position separated from the molding die 10. Even if the cooling body 30 is not provided with a special cooling device, it may be maintained at a low temperature with respect to the heating body 20 by allowing it to cool at room temperature.

【0029】上記加熱体20および冷却体30から均一
に加熱または冷却を容易にするために上記成形型10の
加熱および冷却側に図8または図9に示す面方向に高配
向性を有する加熱体200または加熱冷却体300を使
用することができる。図8の場合、上記成形用凹部16
を形成する高配向性の第1グラファイトシート積層体で
ある成形型100の端面が並列してなる一方の側面とは
反対側面に配向性が直交してなる第2のグラファイトシ
ートが積層された積層体200を柔軟性を有する接合グ
ラファイトシート201(特開平2−103478号に
示す方法で製造することができる)を介して接合してな
り、水平方向に往復動するYAGまたはCO2レーザビ
ーム装置202からレーザビームを該第2積層体200
に照射し、該第2積層体200の面方向に広がる熱を上
記第1積層体100を介して受け、その端面に形成され
た前記成形用凹部16を加熱することができるようにな
っている。上記第2積層体200は面方向に高配向性を
有するので、レーザビームが中央を照射しても1mm以上
の厚みがあると第2積層体200は均熱加熱源として機
能する性質を有している。
In order to facilitate uniform heating or cooling from the heating body 20 and the cooling body 30, the heating body having a high orientation in the plane direction shown in FIG. 8 or 9 on the heating and cooling side of the molding die 10. 200 or heating / cooling body 300 can be used. In the case of FIG. 8, the molding recess 16 is formed.
Which is a highly oriented first graphite sheet laminated body forming a sheet, and a second graphite sheet in which the orientation is orthogonal to the side surface opposite to the one side surface formed by arranging the end surfaces of the mold 100 in parallel. A YAG or CO 2 laser beam device 202 which is formed by joining the body 200 through a joined graphite sheet 201 having flexibility (it can be manufactured by the method disclosed in Japanese Patent Laid-Open No. 2-103478) and reciprocates in the horizontal direction. A laser beam from the second laminated body 200
And heat received by the second laminated body 200 that spreads in the surface direction of the second laminated body 200 can be received through the first laminated body 100 to heat the molding recess 16 formed on the end face thereof. . Since the second laminated body 200 has a high orientation in the plane direction, the second laminated body 200 has a property of functioning as a soaking and heating source when the laser beam irradiates the center and has a thickness of 1 mm or more. ing.

【0030】他方、図9では図8で使用するレーザビー
ム装置の代わりにペルチェ素子300を加熱冷却体とし
て使用するもので、第2積層体200の両端の1部にペ
ルチェ素子300を設けることにより第2積層体200
の面方向での高配向性を利用して第1積層体100への
均一加熱冷却源として利用するようにしてもよい。上記
構造の成形装置を用いる成形方法を説明する。
On the other hand, in FIG. 9, the Peltier element 300 is used as a heating / cooling body instead of the laser beam device used in FIG. 8, and by providing the Peltier element 300 at a part of both ends of the second laminated body 200. Second stacked body 200
It may be used as a uniform heating and cooling source for the first stacked body 100 by utilizing the high orientation in the plane direction. A molding method using the molding apparatus having the above structure will be described.

【0031】図2に示すように、成形型10の上方にス
クリーン印刷装置40を配置する。スクリーン印刷装置
40は、いわゆるシルクスクリーン印刷に用いられる装
置である。スクリーン印刷装置40には、周囲を枠で支
持されたスクリーン印刷版42を有する。スクリーン印
刷版42は、金属や合成樹脂の板あるいはメッシュから
なり、印刷を施す個所のみに印刷材料が通過する孔があ
いている。この実施の形態では、成形型10の成形用凹
部16の上方になる個所で成形用凹部16の平面形状と
ほぼ同じ円形の粉体通過孔46がスクリーン印刷版42
に設けられている。
As shown in FIG. 2, a screen printing device 40 is arranged above the molding die 10. The screen printing device 40 is a device used for so-called silk screen printing. The screen printing device 40 has a screen printing plate 42 whose periphery is supported by a frame. The screen printing plate 42 is made of a metal or synthetic resin plate or mesh, and has holes through which the printing material passes only at the printing points. In this embodiment, at a position above the molding recess 16 of the molding die 10, a circular powder passage hole 46 having substantially the same shape as the plan shape of the molding recess 16 is formed in the screen printing plate 42.
It is provided in.

【0032】スクリーン印刷版42の上面には高粘度材
料の粉体ペースト50が供給され、下端が尖ったナイフ
状のスキージ44が、スクリーン印刷版42の上面に沿
って移動する。粉体ペースト50は、バンプ電極となる
金属粉と、成形時に金属粉同士をまとめる作用などを発
揮する合成樹脂からなるバインダーとが混合された粉体
である。
A powder paste 50 of a high-viscosity material is supplied to the upper surface of the screen printing plate 42, and a knife-shaped squeegee 44 having a sharp lower end moves along the upper surface of the screen printing plate 42. The powder paste 50 is a powder in which a metal powder to be a bump electrode is mixed with a binder made of a synthetic resin that exerts an action of bringing the metal powders together during molding.

【0033】スキージ44の移動に伴って粉体通過孔4
6から落下した粉体ペースト50は、各成形用凹部16
の内部に溜まる。粉体ペースト50は、成形用凹部16
の上端近くあるいは上端を少し超えるぐらいの量まで供
給することができる。成形用凹部16に粉体ペースト5
0が供給された後、図1に示すように、成形型10の底
面に、約300℃程度の高温に加熱された加熱体20を
当接させる。そうすると、加熱体20から成形型10を
介して成形用凹部16内の粉体ペースト50に熱が伝わ
る。加熱された粉体ペースト50は溶融し、成形用凹部
16の形状にしたがって成形される。上記バインダーと
して印刷用バインダーを使用すると加熱時に揮発消失さ
せることができる。
With the movement of the squeegee 44, the powder passage hole 4
The powder paste 50 dropped from 6 is filled with the molding recesses 16
Accumulates inside. The powder paste 50 is formed in the molding recess 16
Can be supplied near or slightly beyond the top of the. Powder paste 5 in the molding recess 16
After 0 is supplied, as shown in FIG. 1, the heating body 20 heated to a high temperature of about 300 ° C. is brought into contact with the bottom surface of the molding die 10. Then, heat is transferred from the heating body 20 to the powder paste 50 in the molding recess 16 through the molding die 10. The heated powder paste 50 is melted and molded according to the shape of the molding recess 16. When a printing binder is used as the above-mentioned binder, it can be volatilized and eliminated during heating.

【0034】図3(a)に示すように、加熱溶融した粉体
50は自らの表面張力などの作用で成形用凹部16の底
部形状に沿った球状に成形されて成形物52が形成され
る。粉体50が加熱溶融して成形物52になれば、成形
型10の底面から加熱体20を取り去り、約20℃程度
の温度に維持された冷却体30を成形型10の底面に当
接させる。成形型10を介して成形物52は冷却され
る。成形物52の取り扱いが可能な程度に冷却すれば、
冷却体30を成形型10から離して、冷却を終了すれば
よい。成形物52は、成形用凹部16から取り出すこと
ができる。
As shown in FIG. 3A, the heat-melted powder 50 is formed into a spherical shape along the shape of the bottom of the forming concave portion 16 by the action of its own surface tension or the like to form a formed product 52. . When the powder 50 is heated and melted to form the molded product 52, the heating body 20 is removed from the bottom surface of the molding die 10, and the cooling body 30 maintained at a temperature of about 20 ° C. is brought into contact with the bottom surface of the molding die 10. . The molded product 52 is cooled via the molding die 10. If the molded product 52 is cooled to such an extent that it can be handled,
Cooling may be completed by separating the cooling body 30 from the mold 10. The molded product 52 can be taken out from the molding recess 16.

【0035】この実施の形態では、図3(b)に示すよう
に、成形型10から、バンプ電極を作製する基板60に
直接に成形物52を移行させる。すなわち、基板60の
下面には電極支持用の突起62が設けられている。この
突起62は、IC基板の端子や配線部材の一部であって
もよい。基板60の成形型10に近づけて、突起62を
成形物52に突き刺す。このとき、成形物52は完全に
冷却して固化する前の変形容易な状態にある。成形物5
2に突き刺さった突起62を基板60とともに持ち上げ
れば、突起62の先端に成形物52が突き刺さった状態
で、成形用凹部16から成形物52が取り上げられて基
板60に移行する。基板60に移行した成形物52がさ
らに冷却して固化してしまえば、成形物52は突起62
に突き刺さった状態で固定される。
In this embodiment, as shown in FIG. 3 (b), the molding 52 is transferred directly from the molding die 10 to the substrate 60 on which bump electrodes are to be manufactured. That is, the projections 62 for supporting electrodes are provided on the lower surface of the substrate 60. The protrusion 62 may be a terminal of the IC substrate or a part of the wiring member. The projection 62 is pierced into the molded product 52 by bringing the substrate 60 close to the mold 10. At this time, the molded product 52 is in a state of being easily deformed before being completely cooled and solidified. Molded product 5
When the projection 62 stuck in 2 is lifted together with the substrate 60, the molded product 52 is picked up from the molding recess 16 and transferred to the substrate 60 in a state where the molded product 52 is stuck at the tip of the projection 62. When the molded product 52 transferred to the substrate 60 is further cooled and solidified, the molded product 52 becomes a protrusion 62.
It is fixed in the state of being stuck in.

【0036】このようにして、成形物52を成形型10
から基板60に直接に移行させれば、成形型10から成
形物52を取り出す作業、取り出した成形物52を基板
60の所定位置毎に取り付ける作業などを別々に行う必
要がなく、バンプ電極の作製作業が非常に能率的に行え
る。しかも、成形物52に他の器具や部材が接触するこ
とがないので、作製されるバンプ電極の形状は成形時の
成形物52と同じ正確な形状になる。成形物52に異物
が侵入することも防げる。
In this way, the molding 52 is molded into the molding die 10.
By directly transferring the molded product 52 from the substrate 60 to the substrate 60, it is not necessary to separately perform the work of taking out the molded product 52 from the molding die 10 and the work of mounting the taken-out molded product 52 at each predetermined position of the substrate 60, and the production of bump electrodes. Work can be done very efficiently. In addition, since the molded article 52 does not come into contact with other instruments or members, the shape of the bump electrode to be manufactured is the same as that of the molded article 52 at the time of molding. It is also possible to prevent foreign matter from entering the molded product 52.

【0037】成形型10に設ける成形用凹部16の形状
は、上記した円柱状のもののほか、図4(a)に示すよう
な半球状であってもよい。半球状の成形用凹部16の場
合、図4(b)に示すように、成形用凹部16の上端を超
えて成形型10の表面に盛り上がるように粉体50を供
給する。粉体50が成形用凹部16の周囲の成形型10
表面にはみ出していても構わない。
The shape of the molding recess 16 provided in the molding die 10 may be a hemispherical shape as shown in FIG. In the case of the hemispherical molding recess 16, as shown in FIG. 4B, the powder 50 is supplied so as to rise above the upper end of the molding recess 16 and rise to the surface of the molding die 10. The powder 50 has the molding die 10 around the molding recess 16
It may be protruding on the surface.

【0038】図4(c)に示すように、粉体50を加熱溶
融させると、上記実施の形態と同様に球状の成形物52
が形成される。粉体50が加熱溶融するのに伴って表面
張力の作用などで球状にまとまるので、成形用凹部16
の外にはみ出して粉体50も成形物52に一体化され
る。この実施の形態では、成形物52が成形用凹部16
の上部に突き出しているので、上記した基板60への移
行作業が行い易い。基板60に突起62が無くても、基
板60の平坦な表面を、成形型10の表面から突出した
球状の成形物52の上端に当接させて基板60に成形物
52を付着させて、成形物52を基板60に移行させる
ことができるのである。
As shown in FIG. 4 (c), when the powder 50 is heated and melted, a spherical molded article 52 is obtained as in the above embodiment.
Is formed. As the powder 50 is heated and melted, it is gathered into a spherical shape due to the action of surface tension and the like.
And the powder 50 is also integrated with the molded product 52. In this embodiment, the molded product 52 is the molding recess 16
Since it protrudes to the upper part of the above, the above-mentioned transfer operation to the substrate 60 is easy to perform. Even if the substrate 60 does not have the protrusion 62, the flat surface of the substrate 60 is brought into contact with the upper end of the spherical molded article 52 protruding from the surface of the molding die 10 to attach the molded article 52 to the substrate 60 to perform molding. The object 52 can be transferred to the substrate 60.

【0039】次に、図5(a)〜(c)に示すように、円錐状
の成形用凹部16を用いることもできる。この場合も、
成形用凹部16の外にはみ出すぐらいに供給された粉体
50が加熱溶融する際に表面張力などで球状にまとま
り、円錐状の成形用凹部16に内接する球状の成形物5
2が得られる。この実施の形態では、成形用凹部16に
供給された粉体50の量によって、形成される成形物5
2の球径が変わる。1種類の円錐状の成形用凹部16で
様々な球形の成形物52を容易に成形することができ
る。
Next, as shown in FIGS. 5A to 5C, a conical recess 16 for molding can be used. Also in this case,
The spherical molded article 5 that is inscribed in the conical molding recess 16 is formed into a spherical shape by the surface tension when the powder 50 that is supplied to the outside of the molding recess 16 is melted by heating.
2 is obtained. In this embodiment, the molded product 5 formed by the amount of the powder 50 supplied to the molding recess 16 is formed.
The ball diameter of 2 changes. It is possible to easily mold various spherical molded products 52 with one type of conical recess 16 for molding.

【0040】図6に示すように、高粘度材料であるワイ
ヤーボンディング用材料を細いワイヤ状に成形してなる
線状体54を用いることができる。図6(a)に示すよう
に、線状体54を成形型10の成形用凹部16の上方に
配置する。線状体54の取り扱いは、通常のワイヤーボ
ンディング装置などと同様の線状物の取り扱い装置を用
いて行われる。
As shown in FIG. 6, a linear body 54 formed by molding a wire bonding material, which is a high-viscosity material, into a thin wire can be used. As shown in FIG. 6A, the linear body 54 is disposed above the molding recess 16 of the molding die 10. The linear body 54 is handled using a linear object handling device similar to a normal wire bonding device or the like.

【0041】図6(b)に示すように、加熱された成形型
10の成形用凹部16に線状体54の先端を押し付け
る。線状体54は先端から徐々に加熱溶融する。線状体
54を続けて成形用凹部16に押し付ければ、線状体5
4は次々に加熱溶融して成形用凹部16内に加熱溶融状
態に高粘度材料が溜まる。図6(c)に示すように、成形
用凹部16内に必要量の線状体16の高粘度材料が供給
されれば、線状体54を成形用凹部16から遠ざける。
成形用凹部16内に溜まった加熱溶融状態の高粘度材料
は、上記実施の形態と同様に自然に球状に成形されて球
状の成形物56が得られる。その後の冷却工程は上記実
施の形態と同様に行われる。
As shown in FIG. 6 (b), the tip of the linear body 54 is pressed into the molding recess 16 of the heated mold 10. The linear body 54 gradually heats and melts from the tip. If the linear body 54 is continuously pressed against the molding concave portion 16, the linear body 5
4 is heated and melted one after another, and the high-viscosity material is accumulated in the molding concave portion 16 in a heated and melted state. As shown in FIG. 6C, when the required amount of the high-viscosity material for the linear body 16 is supplied into the molding recess 16, the linear body 54 is moved away from the molding recess 16.
The high-viscosity material in the heat-melted state accumulated in the molding recess 16 is naturally molded into a spherical shape in the same manner as in the above-mentioned embodiment to obtain a spherical molded product 56. The subsequent cooling process is performed in the same manner as in the above embodiment.

【0042】[真空吸引を行う実施の形態]図7に示す
ように、基本的な工程は上記図4に示した実施の形態と
同様であるが、この実施の形態では、図7(a)に示すよ
うに、高粘度材料の粉体50を成形型10の成形用凹部
16に供給した後、図7(b)に示すように、成形型10
を真空吸引装置80に送り込む。真空吸引装置80内
で、成形型10を加熱して粉体50に含まれるバインダ
ー分などの揮発成分を放出させるとともに、真空吸引装
置80内の気体を真空吸引して粉体50から放出された
揮発成分を外部に除去する。
[Embodiment for Vacuum Suction] As shown in FIG. 7, the basic steps are the same as those of the embodiment shown in FIG. 4, but in this embodiment, FIG. As shown in FIG. 7, after the powder 50 of the high-viscosity material is supplied to the molding recess 16 of the molding die 10, as shown in FIG.
Is sent to the vacuum suction device 80. In the vacuum suction device 80, the mold 10 is heated to release the volatile components such as the binder component contained in the powder 50, and the gas in the vacuum suction device 80 is vacuum sucked and released from the powder 50. Volatile components are removed to the outside.

【0043】図7(c)に示すように、揮発成分が除去さ
れた粉体50は加熱溶融し成形用凹部16の形状にした
がって成形され、概略レンズ形状の成形物52が得られ
る。この実施の形態では、高粘度材料に含まれる揮発成
分を真空吸引によって迅速かつ効率的に除去することが
でき、成形工程の作業性を向上させることができるとと
もに得られた成形物52は揮発成分の残留が少なく高品
質となる。
As shown in FIG. 7 (c), the powder 50 from which the volatile components have been removed is melted by heating and molded according to the shape of the molding recess 16 to obtain a molded product 52 having a substantially lens shape. In this embodiment, the volatile components contained in the high-viscosity material can be quickly and efficiently removed by vacuum suction, the workability of the molding process can be improved, and the obtained molded product 52 has volatile components. High quality with less residue.

【0044】[その他の実施の形態] (1)成形型10は、上記した高配向性グラファイトシー
ト12aを積層した積層体12で構成してもよいし、ブ
ロック状の高配向性グラファイトを用いて構成すること
もできる。 (2)成形用凹部16の加工は、上記した放電加工のほ
か、エッチングやレーザ加工などの加工技術も適用でき
る。
[Other Embodiments] (1) The molding die 10 may be composed of a laminated body 12 in which the above-mentioned highly oriented graphite sheets 12a are laminated, or a block-shaped highly oriented graphite is used. It can also be configured. (2) In addition to the above-described electric discharge machining, machining techniques such as etching and laser machining can be applied to the machining of the molding recess 16.

【0045】(3)耐熱性バンド14は、成形過程での加
熱に耐える程度の耐熱性と、高配向性グラファイトシー
ト12aを結束できる機械的強度を有していれば、高配
向性グラファイト以外の材料を用いることもできる。成
形時の加熱温度が1200℃を超えるような場合には、
セラミック断熱布または高配向性グラファイトシートが
好ましい。成形時の加熱温度が低い場合には、金属製の
バンドを用いることもできる。
(3) The heat resistant band 14 is made of materials other than highly oriented graphite as long as it has heat resistance to withstand heating in the molding process and mechanical strength capable of binding the highly oriented graphite sheet 12a. Materials can also be used. If the heating temperature during molding exceeds 1200 ° C,
Ceramic insulation cloth or highly oriented graphite sheet is preferred. When the heating temperature at the time of molding is low, a metal band can be used.

【0046】(4)高粘度材料は、上記したバンプ電極用
の材料など、各種の金属、合成樹脂、セラミックスその
他の有機物、無機物を含む材料であれば、任意の材料が
利用できる。従来、高粘度の液状態にして成形していた
材料に適用するのが好ましい。具体的には、各種の電子
部品に用いられる電極材料、誘電材料、絶縁材料、接着
剤などが用いられる。また、各種の機構部品の焼結製造
するための焼結材料も用いることができる。ガラスなど
の光学部品材料も用いられる。高粘度材料を粉体または
線状体で用いるには、それぞれの形態に加工できる材料
を用いればよい。
(4) As the high-viscosity material, any material can be used as long as it is a material containing various metals, synthetic resins, ceramics and other organic substances and inorganic substances such as the above-mentioned materials for bump electrodes. It is preferably applied to a material that has been conventionally formed into a liquid state having a high viscosity. Specifically, electrode materials, dielectric materials, insulating materials, adhesives and the like used in various electronic parts are used. Further, a sintered material for sintering and manufacturing various mechanical parts can also be used. Optical component materials such as glass are also used. In order to use the high-viscosity material in the form of powder or linear material, materials that can be processed into respective forms may be used.

【0047】(5)高粘度材料を加熱溶融して成形するに
は、それぞれの高粘度材料に応じた加熱温度に加熱す
る。加熱温度が比較的低い場合には大気中でも成形でき
るが、加熱温度が800℃以上の高温になるような場合
には、不活性ガス中で成形を行うのが好ましい。 (6)高粘度材料の粉体50または線状体54から成形物
52を成形するには、成形型10を加熱する手段は必須
であるが、放冷のみで冷却させる場合には特別な冷却手
段は必要のない場合もある。但し、迅速に冷却して作業
性を高めるには上記した冷却体30などの冷却手段が有
効である。
(5) In order to heat and melt the high-viscosity material, the material is heated to a heating temperature corresponding to the high-viscosity material. When the heating temperature is relatively low, the molding can be performed in the atmosphere, but when the heating temperature is as high as 800 ° C. or higher, the molding is preferably performed in an inert gas. (6) In order to mold the molded product 52 from the powder 50 of the high-viscosity material or the linear body 54, a means for heating the molding die 10 is indispensable, but in the case of cooling only by cooling, special cooling is required. Means may not be necessary. However, the cooling means such as the above-described cooling body 30 is effective for quick cooling to improve workability.

【0048】(7)この発明は、上記したバンプ電極やス
ポット状接着剤の形成に適用するほか、各種の機構部品
を焼結製造するための焼結材料の成形に適用することも
できる。ガラス等の光学部品の溶融成形にも適用でき
る。回路実装において、従来方法と本発明方法を適用し
た場合とを比較すると図10に示すようになる。すなわ
ち、従来は搬送されるICに対し接合部品をボンディン
グワイヤおよび金ボールにより形成し接合する。接合箇
所がN箇所であると、N回接合を繰り返す。次いで半田
/銀ペーストを印刷し、該IC部品を別途搬送される回
路基板に表面実装する。次いで、IC部品を実装した回
路基板にリフロー/レーザリフローを施した後、回路実
装の最終検査を行っている。
(7) The present invention can be applied not only to the formation of the bump electrodes and the spot-shaped adhesive described above, but also to the molding of a sintered material for sintering and manufacturing various mechanical parts. It can also be applied to melt molding of optical parts such as glass. FIG. 10 shows a comparison between the conventional method and the method of the present invention in circuit mounting. That is, conventionally, a bonding component is formed and bonded to a conveyed IC by a bonding wire and a gold ball. If the number of joining points is N, the joining is repeated N times. Next, solder / silver paste is printed, and the IC component is surface-mounted on a circuit board that is separately transported. Next, after performing reflow / laser reflow on the circuit board on which the IC components are mounted, a final inspection of circuit mounting is performed.

【0049】本発明によれば、接合部品用高粘度材料の
粉体と印刷用バインダーを混練して形成された印刷用ペ
ーストを、スクリーン印刷により本発明の成形型の凹部
に供給し、加熱溶融後冷却して成形する。1回の成形に
より立体形状の接合部品が成形型内に整列して製造され
る。したがって、この整列した接合部品を備える成形型
に所定のICを搬送して接合部品を一括転写し、接合す
ることができる。回路基板に対する表面実装は従来と同
じである。
According to the present invention, the printing paste formed by kneading the powder of the high-viscosity material for the joined parts and the printing binder is supplied to the concave portion of the molding die of the present invention by screen printing, and heated and melted. After cooling, it is molded. A three-dimensional joined part is aligned and manufactured in a forming die by one molding. Therefore, it is possible to transfer a predetermined IC to the molding die provided with the aligned joint parts, to collectively transfer the joint parts, and to join them. The surface mounting on the circuit board is the same as the conventional one.

【0050】光学部品の成形において、従来方法と本発
明方法と適用した成形方法を比較すると図11に示すよ
うになる。すなわち、従来はレンズ素材としてレンズロ
ッドからボールレンズを切断して切り出し、これを所定
の形状に研磨して加熱加圧プレスにより所定の形状とな
し、これを研磨して最終検査に回している。これに対
し、本発明を適用すると、レンズ素材のガラスフリット
を粉砕して超微粉化し、印刷用バインダーであるアクリ
ル系低分子組成物(例えば、セラミック用グリーンシー
ト用バインダー)と混練してペーストとなす。このペー
ストは本発明の印刷方法により成形型の成形用凹部に注
入する。そこで、レーザビームにより熱サイクルを精密
制御しながら1600℃程度の高温に加熱して熔融する
とともにバインダー成分を揮発させ、プレス成形を施
す。本発明方法によれば、レンズボールの切断、研磨の
工程を必要とせず、成形工程が極めて容易になる。
FIG. 11 shows a comparison between the conventional method and the method of the present invention applied to the molding of optical parts. That is, conventionally, a ball lens is cut out from a lens rod as a lens material, cut out, ground into a predetermined shape and formed into a predetermined shape by a heating and pressing press, and this is ground and sent to a final inspection. On the other hand, when the present invention is applied, the glass frit of the lens material is crushed into an ultrafine powder, which is kneaded with an acrylic low-molecular composition (for example, a binder for a ceramic green sheet) which is a binder for printing to form a paste. Eggplant This paste is poured into the molding recess of the mold by the printing method of the present invention. Therefore, press molding is performed by heating to a high temperature of about 1600 ° C. to melt and volatilize the binder component while precisely controlling the heat cycle with a laser beam. According to the method of the present invention, the steps of cutting and polishing the lens balls are not required, and the molding process becomes extremely easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を表す成形装置の斜視図FIG. 1 is a perspective view of a molding apparatus showing an embodiment of the present invention.

【図2】高粘度材料の供給工程を表す断面図FIG. 2 is a cross-sectional view showing a high-viscosity material supply process.

【図3】成形された高粘度材料の移行工程を段階的に表
す断面図
FIG. 3 is a cross-sectional view showing a step of transferring a molded high-viscosity material in stages.

【図4】成形用凹部の別の実施の形態を用いた成形工程
を段階的に表す断面図
4A to 4C are cross-sectional views showing stepwise a molding process using another embodiment of a molding recess.

【図5】成形用凹部の別の実施の形態を用いた成形工程
を段階的に表す断面図
FIG. 5 is a cross-sectional view showing a molding process stepwise using another embodiment of a molding recess.

【図6】線状体を用いた本発明の実施の形態の成形工程
を段階的に表す断面図
FIG. 6 is a cross-sectional view showing stepwise a molding process of an embodiment of the present invention using a linear body.

【図7】真空吸引装置を用いた本発明の実施の形態の成
形工程を段階的に表す断面図
FIG. 7 is a cross-sectional view showing stepwise a molding process of an embodiment of the present invention using a vacuum suction device.

【図8】レーザビームを加熱源として用いる場合成形型
の概要を示す側面図
FIG. 8 is a side view showing an outline of a molding die when a laser beam is used as a heating source.

【図9】ペルチェ素子を加熱冷却源として用いる場合の
成形型の概要を示す側面図
FIG. 9 is a side view showing an outline of a molding die when a Peltier element is used as a heating / cooling source.

【図10】従来の回路実装の工程と本発明方法を適用し
た場合の回路実装の工程を比較する工程図
FIG. 10 is a process diagram comparing a conventional circuit mounting process and a circuit mounting process when the method of the present invention is applied.

【図11】従来の光学部品の成形工程と本発明方法を適
用した場合の成形方法を比較する工程図
FIG. 11 is a process diagram comparing a conventional optical component molding process with a molding method when the method of the present invention is applied.

【符号の説明】[Explanation of symbols]

10 成形型 12 積層体 12a 高配向性グラファイトシート 14 耐熱性バンド 16 成形用凹部 20 加熱体 30 冷却体 40 スクリーン印刷装置 42 スクリーン印刷版 50 高粘度材料の粉体 52 高粘度材料の成形物 54 高粘度材料の線状体 10 Mold 12 Laminated body 12a Highly oriented graphite sheet 14 Heat resistant band 16 Molding recess 20 Heated body 30 Cooled body 40 Screen printing device 42 Screen printing plate 50 High viscosity material powder 52 High viscosity material molding 54 High Linear body of viscous material

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 溶融時に高粘性を示す高粘度材料を成形
するにあたり、 高配向性グラファイト材料で製造された成形型を用意
し、 該型内の成形用凹部に高粘度材料を非溶融状態で供給
し、 上記型を介して外部から上記成形用凹部内にある高粘度
材料を加熱溶融し、 上記型を介して溶融した高粘度材料を冷却して所望形状
に成形する高粘度材料の成形方法。
1. When molding a high-viscosity material exhibiting high viscosity when melted, a molding die made of a highly oriented graphite material is prepared, and the high-viscosity material in a non-melted state is formed in a molding recess in the die. A method for molding a high-viscosity material in which the high-viscosity material in the molding recess is supplied from the outside by heating and melting, and the high-viscosity material melted through the mold is cooled and molded into a desired shape. .
【請求項2】 上記成形型がその成形用凹部に対し外部
より伝熱するために、上記成形型を構成する高配向性グ
ラファイト材料が高配向性グラファイトシートが積層さ
れた積層体であり、上記シートの端面が並列した一方の
側面に上記成形用凹部を形成してなり、反対側面へとグ
ラファイト結晶を配向させる請求項1記載の高粘度材料
の成形方法。
2. A highly oriented graphite material constituting the shaping die is a laminate in which highly oriented graphite sheets are laminated so that the shaping die transfers heat to the shaping recess from the outside. 2. The method for molding a high-viscosity material according to claim 1, wherein the molding recess is formed on one side surface where the end surfaces of the sheet are arranged in parallel, and the graphite crystals are oriented to the opposite side surface.
【請求項3】 上記成形用凹部を形成する高配向性の第
1グラファイトシート積層体の端面が並列してなる一方
の側面とは反対側面に、配向性が直交するようにしてな
る第2のグラファイトシートが積層された積層体を接合
してなり、該第2積層体から上記第1積層体を介してそ
の端面に形成された前記成形用凹部を加熱冷却してなる
請求項2記載の高粘度材料の成形方法。
3. A second orientation in which the orientation is orthogonal to the side surface opposite to the one side surface where the end surfaces of the highly oriented first graphite sheet laminate forming the molding recess are juxtaposed. 3. A high-strength structure according to claim 2, wherein a stack of graphite sheets is joined together, and the molding recess formed on the end face of the second stack through the first stack is heated and cooled. Method of molding viscous material.
【請求項4】 上記シートの積層体が、耐熱性バンドで
結束されて一体的に固定されている請求項3記載の高粘
度材料の成形方法。
4. The method for molding a high-viscosity material according to claim 3, wherein the laminated body of the sheets is bound by a heat resistant band and integrally fixed.
【請求項5】 上記成形型内の成形用凹部に高粘度材料
を供給するため、上記成形型が上記成形用凹部に前記高
粘度材料を供給する高粘度材料供給手段を備え、上記成
形型を介して外部から上記成形用凹部内にある高粘度材
料を加熱溶融し、溶融した高粘度材料を冷却するため、
上記成形型の成形用凹部の型外面に成形用凹部内を選択
的に加熱および冷却する加熱冷却手段とを備える請求項
1記載の高粘度材料の成形方法。
5. The mold has a high-viscosity material supply means for supplying the high-viscosity material to the molding recess for supplying the high-viscosity material to the molding recess in the molding die. In order to heat and melt the high-viscosity material in the molding recess from the outside through and to cool the molten high-viscosity material,
The method for molding a high-viscosity material according to claim 1, further comprising heating and cooling means for selectively heating and cooling the inside of the molding recess on the outer surface of the molding recess of the molding die.
【請求項6】 上記高粘度材料が粉体である場合は、そ
のまま、あるいは印刷用バインダーと混練してペースト
となし、上記高粘度材料供給手段が、上記成形型の前記
成形用凹部を有する表面の上方に配置された前記成形用
凹部に対応する位置に粉体通過部を有するスクリーン印
刷版と、上記スクリーン印刷版の上面に供給された上記
粉体を上記スクリーン印刷版に沿って押し動かすスキー
ジとを有するスクリーン印刷装置を備える請求項5記載
の高粘度材料の成形方法。
6. When the high-viscosity material is a powder, the high-viscosity material supply means forms a paste as it is or by kneading with a printing binder, and the high-viscosity material supply means has a surface having the molding recess of the molding die. A screen printing plate having a powder passage portion at a position corresponding to the molding recess disposed above, and a squeegee that pushes the powder supplied on the upper surface of the screen printing plate along the screen printing plate. The method for molding a high-viscosity material according to claim 5, further comprising a screen printing device having:
【請求項7】 上記高粘度材料が、金属粉体、バンプ材
料粉体、誘電材料粉体、絶縁材料粉体および光学部品材
料粉体からなる群より選ばれる1種の粉体である請求項
6記載の高粘度材料の成形方法。
7. The high-viscosity material is one powder selected from the group consisting of metal powder, bump material powder, dielectric material powder, insulating material powder, and optical component material powder. 7. The method for molding a high-viscosity material according to item 6.
【請求項8】 上記高粘度材料が線状体である場合は、
上記高粘度材料供給手段が、上記成形型の上記成形用凹
部を有する表面の上方に配置され、上記成形用凹部に上
記線状体の先端を送り込む線状体供給装置を備える請求
項5記載の高粘度材料の成形方法。
8. When the high-viscosity material is a linear body,
The high-viscosity material supplying means is arranged above the surface of the mold having the molding recess, and the linear material supply device is provided for feeding the tip of the linear body into the molding recess. Molding method for high viscosity materials.
【請求項9】 上記高粘度材料が、ワイヤーボンディン
グ用線状体である請求項8記載の高粘度材料の成形方
法。
9. The method for molding a high-viscosity material according to claim 8, wherein the high-viscosity material is a wire-bonding linear body.
【請求項10】 上記加熱冷却手段が、上記成形型の上
記反対面に選択的に当接自在な加熱体および冷却体を備
えている請求項5記載の高粘度材料の成形方法。
10. The method for molding a high-viscosity material according to claim 5, wherein the heating / cooling means includes a heating body and a cooling body which can selectively come into contact with the opposite surface of the molding die.
JP00198496A 1995-01-10 1996-01-10 High viscosity material molding method Expired - Fee Related JP3324376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00198496A JP3324376B2 (en) 1995-01-10 1996-01-10 High viscosity material molding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP170295 1995-01-10
JP7-1702 1995-01-10
JP00198496A JP3324376B2 (en) 1995-01-10 1996-01-10 High viscosity material molding method

Publications (2)

Publication Number Publication Date
JPH08250502A true JPH08250502A (en) 1996-09-27
JP3324376B2 JP3324376B2 (en) 2002-09-17

Family

ID=26334975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00198496A Expired - Fee Related JP3324376B2 (en) 1995-01-10 1996-01-10 High viscosity material molding method

Country Status (1)

Country Link
JP (1) JP3324376B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128272A (en) * 2004-10-27 2006-05-18 Seiko Epson Corp Semiconductor device and manufacturing method thereof, and electronic equipment
JP2010042959A (en) * 2008-08-12 2010-02-25 Kaneka Corp Graphite film and method for manufacturing graphite film
JP2013155113A (en) * 2013-05-20 2013-08-15 Kaneka Corp Graphite film and method for manufacturing graphite film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128272A (en) * 2004-10-27 2006-05-18 Seiko Epson Corp Semiconductor device and manufacturing method thereof, and electronic equipment
JP4501632B2 (en) * 2004-10-27 2010-07-14 セイコーエプソン株式会社 Manufacturing method of semiconductor device
JP2010042959A (en) * 2008-08-12 2010-02-25 Kaneka Corp Graphite film and method for manufacturing graphite film
JP2013155113A (en) * 2013-05-20 2013-08-15 Kaneka Corp Graphite film and method for manufacturing graphite film

Also Published As

Publication number Publication date
JP3324376B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US7743964B2 (en) Bonding apparatus and bonding method
US7637412B2 (en) Apparatus and method for depositing and reflowing solder paste on a microelectronic workpiece
US9527150B2 (en) Method for manufacturing terminal-strip-equipped electronic component and terminal-strip-equipped electronic component
KR20200142123A (en) Sintering materials and attachment methods using same
TWI608577B (en) Manufacturing apparatus and manufacturing method of metal-ceramic plate laminate, manufacturing apparatus and manufacturing method of power module substrate
CN110678288B (en) Method for producing a welded connection
JP3324376B2 (en) High viscosity material molding method
JPH06349892A (en) Manufacture of semiconductor device
JP2022111734A (en) Wafer placement table and method of manufacturing the same
US5785903A (en) Method of molding high-viscosity materials
JP2013236090A (en) Connection sheet
JP4369528B2 (en) Bonding apparatus and method
TW200942352A (en) Solder bonding structure and solder bonding method thereof
KR100517476B1 (en) a quartz vibrator
US20230245829A1 (en) Ceramic electronic component with carrier substrate, mounting structure of ceramic electronic component, and electronic component array
WO2023138902A2 (en) Method of joining electrical and mechanical components using laminated modular preforms
KR100486758B1 (en) a quartz vibrator
JP3554851B2 (en) Method of wire soldering to composite board surface and jig used therefor
CN115565892A (en) Packaging connection method and packaging equipment
KR20030085149A (en) a quartz vibrator
JP2000100839A (en) Method of sealing semiconductor element
JP2001035874A (en) Method for formation of low-melting point metal electrode and forming device
JPH09120980A (en) Formation of solder ball electrode
JPH1015691A (en) Joining material of electronic parts, its production and supplying method therefor as well as method for packaging electronic parts
KR20030041405A (en) a quartz vibrator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees