JP2001035874A - Method for formation of low-melting point metal electrode and forming device - Google Patents

Method for formation of low-melting point metal electrode and forming device

Info

Publication number
JP2001035874A
JP2001035874A JP11205876A JP20587699A JP2001035874A JP 2001035874 A JP2001035874 A JP 2001035874A JP 11205876 A JP11205876 A JP 11205876A JP 20587699 A JP20587699 A JP 20587699A JP 2001035874 A JP2001035874 A JP 2001035874A
Authority
JP
Japan
Prior art keywords
molten metal
droplet
hole
forming
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11205876A
Other languages
Japanese (ja)
Inventor
Nobumitsu Hayashi
伸光 林
Junichi Ujita
淳一 氏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Micrometal Corp
Original Assignee
Nippon Micrometal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Micrometal Corp filed Critical Nippon Micrometal Corp
Priority to JP11205876A priority Critical patent/JP2001035874A/en
Publication of JP2001035874A publication Critical patent/JP2001035874A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-melting point metal electrode forming method and device which stably enagles the collective arrangement of low-melting point metal electrodes on an electric element also in a small-diameter solder balls and can form solder bumps with high accuracy, at low cost and at a high working efficiency. SOLUTION: An arrangement board 1 has liquid drop formation holes in its surface, has through holes 3 penetrating the board until the backside of the board 1 in the bottoms of the liquid drop formation holes, has a molten metal feeding means for feeding a molten low-melting point metal on the backside of the board 1 and has small holes 6 in a cover 4 made to closely adhere to the surface of the board 1, then the molten metal 11 is fed from the molten metal feeding means through the holes 3 to form molten metal drops 10 in each liquid drop formation hole. After the drops 10 are formed, the cover 4 is removed from the board 1, and the surface of an electric element is made to approach to the surface of the board 1, whereby the drops 10 are made to adhere to the electrode parts of the element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気素子の多数の
電極部に低融点金属電極を同時に形成する低融点金属電
極の形成方法及び形成装置であって、特に半導体の実装
方法であるBGA(ボールグリッドアレイ)、CSP
(チップサイズパッケージ)などにおいて半導体素子の
電極部に形成する半田バンプの形成方法及び形成装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a low-melting-point metal electrode for simultaneously forming a low-melting-point metal electrode on a large number of electrode portions of an electric element. Ball grid array), CSP
The present invention relates to a method and an apparatus for forming a solder bump formed on an electrode portion of a semiconductor element in (chip size package) or the like.

【0002】[0002]

【従来の技術】半導体素子をはじめとする電気素子は、
該素子上の多数の電極と外部回路との間を電気的に接続
する必要がある。接続方式としてBGAやCSP方式を
用いる場合においては、電気素子上の多数の電極部に半
田を盛り上げて半田バンプを形成する必要がある。
2. Description of the Related Art Electric devices such as semiconductor devices include:
It is necessary to electrically connect a large number of electrodes on the element and an external circuit. When a BGA or CSP method is used as a connection method, it is necessary to form solder bumps by raising solder on a large number of electrode portions on the electric element.

【0003】電気素子上の電極部に半田バンプを形成す
る方法として、従来、半田メッキ法、半田ペースト印刷
法、真空蒸着法、ボールバンプ法等が知られている。
[0003] As a method of forming a solder bump on an electrode portion on an electric element, a solder plating method, a solder paste printing method, a vacuum deposition method, a ball bump method and the like are conventionally known.

【0004】半田メッキ法は、電解メッキ法によって電
気素子上の電極部に半田を析出させることによって半田
バンプを形成する方法である。この方法では、電極部に
形成された半田バンプの高さにばらつきが生じる問題が
あり、また製造設備に環境対策を施す必要があり、設備
費が増大するという課題を有する。
[0004] The solder plating method is a method of forming a solder bump by depositing solder on an electrode portion on an electric element by an electrolytic plating method. In this method, there is a problem that the height of the solder bumps formed on the electrode portions varies, and it is necessary to take environmental measures for the manufacturing equipment, thereby increasing the equipment cost.

【0005】半田ペースト印刷法は、クリーム半田を電
気素子電極部に印刷し、リフローすることによって電極
部に半田バンプを形成する方法である。この方法では、
半田バンプの高さにばらつきが生じるという問題があ
り、半田バンプ形成ピッチが狭くなると対応できないと
いう問題もある。
[0005] The solder paste printing method is a method in which cream solder is printed on an electric element electrode portion, and a solder bump is formed on the electrode portion by reflow. in this way,
There is a problem that the height of the solder bumps varies, and there is also a problem that the solder bumps cannot be coped with when the pitch for forming the solder bumps is narrow.

【0006】真空蒸着法は、真空蒸着手段を用いて電気
素子電極部に半田をコーティングして半田バンプを形成
する方法である。この方法は、大掛かりな真空蒸着装置
を必要とし、製造コストが高くなるという問題を有す
る。
[0006] The vacuum evaporation method is a method of forming solder bumps by coating solder on an electric element electrode portion using vacuum evaporation means. This method requires a large-scale vacuum deposition apparatus, and has a problem that the manufacturing cost is increased.

【0007】ボールバンプ法は、予め小径の半田ボール
を準備し、電気素子の電極部にこの半田ボールを配列
し、加熱して半田ボールを電極部に溶着してリフローす
ることによって電極部に半田バンプを形成する。半田ボ
ールを電気素子の電極部に配列するに際しては、電極部
の位置に対応して半田ボールを吸引する吸引孔を有する
配列装置を準備し、該配列装置の吸引孔に半田ボールを
吸引し、次いで半田ボールを吸引したまま配列装置を電
気素子に密着した後に吸引を解除することにより、多数
の半田ボールを一括して電気素子に搭載することが可能
である。この方法により、数百の半田バンプを有する半
導体素子についても、容易にかつ短時間で半田バンプを
形成することが可能になった。また、直径ばらつきの小
さい半田ボールを製造することが可能であるため、ボー
ルバンプ法によって形成した半田バンプは、バンプの高
さ精度を高精度に保つことができる。更に、上記半田メ
ッキ法や真空蒸着法に比較して設備費を安価に保つこと
ができる。
In the ball bump method, a small-diameter solder ball is prepared in advance, the solder ball is arranged on an electrode portion of an electric element, heated, the solder ball is welded to the electrode portion, and reflowed, thereby soldering the electrode portion. Form bumps. When arranging the solder balls on the electrode portions of the electric element, an arrangement device having suction holes for sucking the solder balls corresponding to the positions of the electrode portions is prepared, and the solder balls are sucked into the suction holes of the arrangement device. Then, by releasing the suction after the arrangement device is brought into close contact with the electric element while sucking the solder balls, it is possible to mount a large number of solder balls at a time on the electric element. According to this method, it has become possible to easily and quickly form a semiconductor bump having several hundreds of solder bumps. Further, since it is possible to manufacture a solder ball having a small diameter variation, the solder bump formed by the ball bump method can keep the height accuracy of the bump high. Further, the equipment cost can be kept low as compared with the above-mentioned solder plating method or vacuum evaporation method.

【0008】[0008]

【発明が解決しようとする課題】最近は半導体素子の高
密度化及び細密化が更に進展し、1個の半導体素子が必
要とする半田バンプを有する電極部の数は数百から数千
のオーダーに達している。また、該半田バンプをボール
バンプで形成する場合における半田ボールの大きさは、
直径が200μm以下の小径半田ボールが用いられるよ
うになってきている。
Recently, the density and miniaturization of semiconductor devices have been further advanced, and the number of electrode portions having solder bumps required by one semiconductor device is on the order of hundreds to thousands. Has been reached. When the solder bump is formed by a ball bump, the size of the solder ball is as follows:
Small-diameter solder balls having a diameter of 200 μm or less have been used.

【0009】ボールバンプ法によって半田ボールを配列
装置の吸引孔に吸引する方法において、半田ボールの直
径が小さくなれば必然的に吸引孔の直径も小さくなり、
半田ボールを吸引する吸引力も吸引孔直径の2乗に比例
して小さくなる。一方、吸引前にトレーに集められた半
田ボール相互間、あるいは半田ボールと配列装置との間
には微小ながら自己吸引力が働くことがある。この自己
吸引力に起因して、半田ボールを吸引孔に吸引した後の
配列装置に余剰の半田ボールが吸着することとなる。吸
着した余剰の半田ボールはガス流を吹きかけたり配列装
置に振動を与えたりして除去しなければならない。一
方、直径が200μm以下となる小径半田ボールにおい
ては、上記のように吸引孔による半田ボール吸引力が小
さくなっているため、余剰半田ボールを除去する力を大
きくすると正規に吸引された半田ボールまで排除するこ
ととなる。そのため、上記のように半田ボールが小径化
した場合においては、従来のボールバンプ法によっては
半田ボールの配列が困難になってきている。
In the method in which the solder balls are sucked into the suction holes of the arraying device by the ball bump method, the smaller the diameter of the solder balls, the smaller the diameter of the suction holes inevitably.
The suction force for sucking the solder ball also decreases in proportion to the square of the suction hole diameter. On the other hand, a self-sucking force is sometimes applied between the solder balls collected on the tray before the suction or between the solder balls and the arrangement device. Due to the self-sucking force, the surplus solder balls are attracted to the arrangement device after the solder balls are sucked into the suction holes. Excessive solder balls that have been adsorbed must be removed by blowing a gas stream or applying vibration to the arrangement device. On the other hand, in a small-diameter solder ball having a diameter of 200 μm or less, the suction force of the solder ball by the suction hole is small as described above. Will be eliminated. Therefore, when the diameter of the solder ball is reduced as described above, it becomes difficult to arrange the solder ball by the conventional ball bump method.

【0010】本発明は、上記課題を解決し、直径が20
0μm以下の小径半田ボールにおいても安定して電気素
子への一括配列が可能になり、更に半田バンプの高さ精
度を高精度に保ち、設備費及び製造コストが安価であ
り、高稼働率で半田バンプを形成することができる低融
点金属電極の形成方法及び形成装置を提供することを目
的とする。
[0010] The present invention has solved the above-mentioned problems and has a diameter of 20 mm.
Even small-diameter solder balls of 0 μm or less can be stably arranged in batches on electrical elements, and the height accuracy of solder bumps is kept high, equipment costs and manufacturing costs are low, and soldering efficiency is high. An object of the present invention is to provide a method and an apparatus for forming a low-melting-point metal electrode capable of forming a bump.

【0011】[0011]

【課題を解決するための手段】即ち、本発明の要旨とす
るところは、 (1)電気素子12の多数の電極部13に低融点金属電
極15を同時に形成する低融点金属電極の形成方法であ
って、配列板1はその表面に液滴形成孔2を有し、液滴
形成孔2の底部には配列板1の裏面まで貫通する貫通孔
3を有し、液滴形成孔2は電気素子12上に低融点金属
電極15を形成すべき位置に対応して配列板1上に配置
し、配列板1の裏面側には低融点金属を溶融して供給す
る溶融金属供給手段7を有し、まず配列板1の表面に蓋
4を密着させ、蓋4の各液滴形成孔3に対応する位置に
は液滴形成孔内のガスを逃がすための細孔6を有し、次
に溶融金属供給手段7から貫通孔3を通じて溶融金属1
1を供給して各液滴形成孔内に溶融金属滴10を形成
し、溶融金属滴形成後に蓋4を配列板1から外し、次い
で配列板1の表面に電気素子12の表面を接近させるこ
とによって溶融金属滴10を電気素子12の電極部13
に付着させることを特徴とする低融点金属電極の形成方
法。 (2)前記溶融金属供給手段7は、配列板1の裏面側に
配置した溶融金属容器8であり、溶融金属容器8内を加
圧することによって貫通孔3を通じて各液滴形成孔2内
に溶融金属11を供給することを特徴とする上記(1)
に記載の低融点金属電極の形成方法。 (3)前記液滴形成孔2内に溶融金属を供給後に溶融金
属供給手段7内の溶融金属11の加圧を解除し、溶融金
属供給手段内に貯蔵された溶融金属11と溶融金属滴1
0との間を貫通孔3内において分断することを特徴とす
る上記(1)又は(2)に記載の低融点金属電極の形成
方法。である。
That is, the gist of the present invention is as follows. (1) A method of forming a low melting point metal electrode in which a plurality of electrode portions 13 of an electric element 12 are formed at the same time. The array plate 1 has a droplet forming hole 2 on the surface thereof, and a bottom portion of the droplet forming hole 2 has a through hole 3 penetrating to the rear surface of the array plate 1. Molten metal supply means 7 is provided on the arrangement plate 1 corresponding to the position where the low melting point metal electrode 15 is to be formed on the element 12, and the rear surface side of the arrangement plate 1 is adapted to melt and supply the low melting point metal. First, the lid 4 is brought into close contact with the surface of the array plate 1, and the lid 4 has pores 6 at positions corresponding to the respective droplet forming holes 3 for allowing gas in the droplet forming holes to escape. The molten metal 1 is supplied from the molten metal supply means 7 through the through hole 3.
1 to form a molten metal droplet 10 in each droplet forming hole, remove the lid 4 from the arrangement plate 1 after the formation of the molten metal droplet, and then bring the surface of the electric element 12 close to the surface of the arrangement plate 1 The molten metal droplet 10 is moved by the electrode portion 13 of the electric element 12.
A method for forming a low-melting-point metal electrode, comprising: (2) The molten metal supply means 7 is a molten metal container 8 arranged on the back surface side of the array plate 1, and melts into each droplet forming hole 2 through the through hole 3 by pressurizing the molten metal container 8. (1) wherein the metal 11 is supplied.
3. The method for forming a low-melting-point metal electrode according to item 1. (3) After the molten metal is supplied into the droplet forming hole 2, the pressure of the molten metal 11 in the molten metal supply means 7 is released, and the molten metal 11 and the molten metal droplet 1 stored in the molten metal supply means are released.
The method for forming a low-melting-point metal electrode according to the above (1) or (2), characterized in that a gap between 0 and 0 is divided in the through hole 3. It is.

【0012】また、 (4)電気素子12の多数の電極部13に低融点金属電
極15を同時に形成する低融点金属電極の形成装置であ
って、該形成装置は配列板1と蓋4と低融点金属を溶融
して供給する溶融金属供給手段7とを有し、配列板1は
その表面に液滴形成孔2を有し、液滴形成孔2の底部に
は配列板1の裏面まで貫通する貫通孔3を有し、液滴形
成孔2は電気素子12上に低融点金属電極15を形成す
べき位置に対応して配列板1上に配置し、蓋4の各液滴
形成孔3に対応する位置には液滴形成孔内のガスを逃が
すための細孔6を有し、溶融金属供給手段7は配列板1
の裏面側に配置し、配列板1に蓋4を密着させて溶融金
属供給手段7から貫通孔3を通じて溶融金属11を供給
して各液滴形成孔2内に溶融金属滴10を形成し、次い
で蓋4を取り外して配列板1の表面に電気素子12の表
面を接近させることによって溶融金属滴10を電気素子
12の電極部13に付着させることを特徴とする低融点
金属電極の形成装置。 (5)前記溶融金属供給手段7は、配列板1の裏面側に
配置した溶融金属容器8及び加圧手段9を有し、加圧手
段9によって溶融金属容器8内を加圧することによって
貫通孔3を通じて溶融金属11を各液滴形成孔2内に供
給することを特徴とする上記(4)に記載の低融点金属
電極の形成装置。 (6)前記貫通孔3は細径であり、液滴形成孔2内に溶
融金属11を供給後に前記溶融金属供給手段7内の溶融
金属の加圧を解除することにより、溶融金属供給手段7
内に貯蔵された溶融金属11と溶融金属滴10との間が
貫通孔3内において分断されることを特徴とする上記
(4)又は(5)に記載の低融点金属電極の形成装置。
である。
(4) A low melting point metal electrode forming apparatus for simultaneously forming the low melting point metal electrodes 15 on a large number of electrode portions 13 of the electric element 12, wherein the forming apparatus includes an arrangement plate 1, a lid 4 and a low melting point metal electrode. The arrangement plate 1 has droplet forming holes 2 on its surface, and penetrates through the bottom of the droplet forming holes 2 to the back surface of the arrangement plate 1. The drop forming holes 2 are arranged on the array plate 1 corresponding to the positions where the low melting point metal electrodes 15 are to be formed on the electric element 12. Are provided at the positions corresponding to the holes 6 for allowing the gas in the droplet forming holes to escape.
The molten metal 11 is supplied from the molten metal supply means 7 through the through hole 3 to form the molten metal droplet 10 in each droplet forming hole 2. Next, the lid 4 is removed and the surface of the electric element 12 is brought close to the surface of the arrangement plate 1 so that the molten metal droplet 10 is attached to the electrode portion 13 of the electric element 12. (5) The molten metal supply means 7 has a molten metal container 8 and a pressurizing means 9 arranged on the back surface side of the array plate 1, and the pressurizing means 9 pressurizes the inside of the molten metal container 8 to form a through-hole. 3. The apparatus for forming a low-melting-point metal electrode according to the above (4), wherein the molten metal 11 is supplied into each droplet forming hole 2 through 3. (6) The through-hole 3 has a small diameter, and after the molten metal 11 is supplied into the droplet forming hole 2, the pressure of the molten metal in the molten metal supply means 7 is released, whereby the molten metal supply means 7 is released.
The apparatus for forming a low-melting-point metal electrode according to the above (4) or (5), wherein a space between the molten metal 11 and the molten metal droplet 10 stored in the inside is divided in the through hole 3.
It is.

【0013】本発明は、予め製造した固体状の低融点金
属ボールを配列装置で吸引して電気素子に配列するので
はなく、配列板1上に液滴形成孔2を配置し、該液滴形
成孔2は電気素子12上のバンプを形成すべき電極部1
3の位置に対応して配置され、該液滴形成孔2内に溶融
状態で低融点金属の液滴10を形成し、該形成した液滴
を直接電気素子表面の電極部13に付着させて低融点金
属電極15を形成する点を最大の特徴とする。
According to the present invention, instead of arranging solid low melting point metal balls produced in advance by an arrangement device and arranging them on electric elements, droplet forming holes 2 are arranged on an arrangement plate 1 and the droplets are formed. The formation hole 2 is an electrode portion 1 on which a bump on the electric element 12 is to be formed.
3 is formed in a molten state in the droplet forming hole 2 to form a low-melting-point metal droplet 10, and the formed droplet is directly attached to the electrode portion 13 on the surface of the electric element. The biggest feature is that the low melting point metal electrode 15 is formed.

【0014】図1〜3に基づいて本発明の要旨を説明す
る。配列板1は、その裏面側に溶融金属容器8等の溶融
金属供給手段7を有し、対象とする低融点金属が溶融す
るに十分な温度に熱せられている。液滴形成孔2の底部
に設けられた微小径の貫通孔3を通じて液滴10を形成
する所定量の溶融金属が溶融金属供給手段7から液滴形
成孔2内に供給される。供給された溶融金属は、それ自
身の表面張力によって液滴形成孔内で液滴10となる。
The gist of the present invention will be described with reference to FIGS. The array plate 1 has a molten metal supply means 7 such as a molten metal container 8 on the back side thereof, and is heated to a temperature sufficient to melt the target low melting point metal. A predetermined amount of molten metal for forming a droplet 10 is supplied from the molten metal supply means 7 into the droplet forming hole 2 through a small diameter through hole 3 provided at the bottom of the droplet forming hole 2. The supplied molten metal becomes a droplet 10 in the droplet forming hole due to its own surface tension.

【0015】貫通孔3を十分に細径とすることによっ
て、溶融金属供給手段7内の溶融金属の加圧を解除ある
いは減圧したときに、液滴形成孔2内に形成した液滴1
0と溶融金属供給手段7内の溶融金属11との間を貫通
孔3内において分断することができる。液滴10が有す
る表面張力により、溶融金属供給手段内の溶融金属を減
圧しても液滴10は貫通孔3内に戻ることはなく、液滴
10は液滴形成孔2内において独立し、溶融金属供給手
段内の溶融金属と分断されるのである。
When the pressure of the molten metal in the molten metal supply means 7 is released or reduced by making the diameter of the through hole 3 sufficiently small, the droplet 1 formed in the droplet forming hole 2 is released.
0 and the molten metal 11 in the molten metal supply means 7 can be separated in the through hole 3. Due to the surface tension of the droplet 10, even if the molten metal in the molten metal supply means is decompressed, the droplet 10 does not return to the through hole 3, and the droplet 10 becomes independent in the droplet forming hole 2, It is separated from the molten metal in the molten metal supply means.

【0016】本発明においては、溶融金属供給手段7か
ら液滴形成孔2内に溶融金属を供給するに際し、配列板
1に接するように配列板1に蓋4を密着する。蓋4には
各液滴形成孔2に対応する位置に細孔6を有する。蓋4
を配列板1に密着すると、各液滴形成孔2内には一定の
内容積を有する密閉した空間が形成される。溶融金属供
給手段7から溶融金属11を液滴形成孔2内に供給する
と、該密閉した空間内のガスは細孔6を通じて排除さ
れ、空間内に溶融金属が充填される。液滴10を形成す
るために必要な所定量の溶融金属が液滴形成孔内に充填
されると、溶融金属が蓋4の細孔6入口まで到達し、空
間内への溶融金属の供給がストップする。このため、配
列板1上の各液滴形成孔2にはばらつきの少ない均一な
大きさの液滴10を形成することができる。
In the present invention, when the molten metal is supplied from the molten metal supply means 7 into the droplet forming holes 2, the lid 4 is adhered to the arrangement plate 1 so as to be in contact with the arrangement plate 1. The lid 4 has pores 6 at positions corresponding to the respective droplet forming holes 2. Lid 4
When is closely attached to the array plate 1, a closed space having a constant internal volume is formed in each droplet forming hole 2. When the molten metal 11 is supplied from the molten metal supply means 7 into the droplet forming hole 2, the gas in the closed space is eliminated through the fine holes 6, and the space is filled with the molten metal. When a predetermined amount of molten metal necessary for forming the droplet 10 is filled in the droplet forming hole, the molten metal reaches the entrance of the pore 6 of the lid 4 and the supply of the molten metal into the space is started. Stop. For this reason, a uniform size droplet 10 with little variation can be formed in each droplet forming hole 2 on the array plate 1.

【0017】各液滴形成孔2内に液滴10が形成された
後、蓋4を取り外し、電気素子12に該液滴10を付着
させることによって電気素子12に低融点合金電極15
を形成する。電気素子12の電極部13には予めフラッ
クス14を塗布しておき、該電極部13を配列板1の各
液滴形成孔2の位置に対応させて電気素子12の表面を
配列板1に接近させる。フラックス14を塗布した電極
部13は溶融金属との濡れ性が良好であるため、液滴1
0が電極部13に接触すると液滴は電極部に付着し、リ
フローして低融点金属電極(バンプ)15が該電極部に
形成される。
After the droplets 10 are formed in the respective droplet forming holes 2, the lid 4 is removed, and the droplets 10 are attached to the electric element 12, whereby the low melting point alloy electrode 15 is applied to the electric element 12.
To form A flux 14 is applied in advance to the electrode portion 13 of the electric element 12, and the surface of the electric element 12 approaches the arrangement plate 1 so that the electrode portion 13 corresponds to the position of each droplet forming hole 2 of the arrangement plate 1. Let it. Since the electrode portion 13 coated with the flux 14 has good wettability with the molten metal, the droplet 1
When 0 comes into contact with the electrode portion 13, the droplet adheres to the electrode portion, and reflows to form a low melting point metal electrode (bump) 15 on the electrode portion.

【0018】[0018]

【発明の実施の形態】本発明で電極形成に用いられる低
融点金属としては、半田が最も一般的に用いられる。半
田のほかに、銀合金を使用することもできる。
BEST MODE FOR CARRYING OUT THE INVENTION Solder is most commonly used as a low melting point metal used for forming an electrode in the present invention. In addition to solder, a silver alloy can also be used.

【0019】配列板1上の液滴形成孔2の形状、及び蓋
4の形状について図1〜3にもとづいて説明する。液滴
形成孔内に形成される液滴10の大きさは、配列板1に
蓋4を密着させたときの液滴形成孔2内の空間容積によ
って定まる。一方、液滴形成後に該液滴を電気素子12
に付着させるためには、形成された液滴10の頂点が配
列板1の表面から突き出ていることが必要である。その
ため、蓋4にも凹部5を設け、蓋4の凹部5と液滴形成
孔2の凹部とを合計した空間内に液滴10を形成させる
ことが有効である。これにより、液滴形成後に蓋4を除
去すると、形成された液滴10の頂部は液滴形成孔2か
ら配列板表面に突き出た形となる。
The shape of the droplet forming holes 2 on the array plate 1 and the shape of the lid 4 will be described with reference to FIGS. The size of the droplet 10 formed in the droplet forming hole is determined by the space volume in the droplet forming hole 2 when the lid 4 is brought into close contact with the array plate 1. On the other hand, after the droplet is formed, the droplet is
It is necessary that the apex of the formed droplet 10 protrudes from the surface of the array plate 1 in order to adhere to the surface of the array plate 1. Therefore, it is effective to provide the concave portion 5 in the lid 4 and form the droplet 10 in a space in which the concave portion 5 of the lid 4 and the concave portion of the droplet forming hole 2 are combined. Thus, when the lid 4 is removed after the droplet is formed, the top of the formed droplet 10 projects from the droplet forming hole 2 to the surface of the array plate.

【0020】供給された溶融金属が液滴形成孔内で液滴
10となるためには、配列板1及び蓋4の材質は該溶融
金属と濡れない材質であることが必要である。溶融金属
として半田を用いる場合、配列板1及び蓋4の形状とし
てステンレス鋼、チタン、セラミックスを用いれば、こ
れら材質は溶融半田との間で濡れ性を有しないので、液
滴10を形成することができる。
In order for the supplied molten metal to become droplets 10 in the droplet forming holes, the materials of the arrangement plate 1 and the lid 4 must be materials that do not wet the molten metal. When solder is used as the molten metal, if stainless steel, titanium, or ceramics is used as the shape of the arrangement plate 1 and the lid 4, these materials do not have wettability with the molten solder. Can be.

【0021】配列板1の裏面側(液滴形成孔開口側の反
対側)を容器状とし、溶融した低融点金属を容器8内に
充填することによって溶融金属供給手段7とすることが
できる。容器8にはピストン等の手段を用いる加圧手段
9を付加する。溶融金属供給手段7は、配列板1の多数
の液滴形成孔2をいくつかのブロックに分け、各ブロッ
ク毎に低融点金属を独立に供給する方法としてもよい。
The rear surface side of the array plate 1 (the side opposite to the opening side of the droplet forming holes) is formed in a container shape, and the molten metal having a low melting point is filled in the container 8 to form the molten metal supply means 7. A pressurizing means 9 using means such as a piston is added to the container 8. The molten metal supply means 7 may divide the large number of droplet forming holes 2 of the array plate 1 into several blocks and independently supply the low melting point metal for each block.

【0022】液滴形成孔2の底部には配列板1の裏面ま
で貫通する貫通孔3が設けられ、該貫通孔3によって溶
融金属供給手段7である容器8内の溶融金属11と液滴
形成孔2とが連通している。容器8の加圧手段9として
のピストンを圧縮することにより、図3(c)に示すよ
うに、容器内の溶融金属が加圧されて該貫通孔3を通し
て溶融金属が液滴形成孔2内に供給される。供給された
溶融金属は、それ自身の表面張力によって液滴形成孔内
で液滴10を形成する。
At the bottom of the droplet forming hole 2, there is provided a through hole 3 penetrating to the rear surface of the array plate 1, and the through hole 3 forms a droplet with the molten metal 11 in the container 8 which is the molten metal supply means 7. The hole 2 is in communication. By compressing a piston as a pressurizing means 9 of the container 8, the molten metal in the container is pressurized as shown in FIG. Supplied to The supplied molten metal forms a droplet 10 in the droplet forming hole due to its own surface tension.

【0023】液滴形成孔2への溶融金属供給終了後、容
器8内の溶融金属の加圧を解除すると、液滴形成孔2及
び貫通孔3の内壁は溶融金属との濡れ性を有しないた
め、貫通孔内の溶融金属と液滴形成孔内の液滴とは溶融
金属の表面張力によってお互いに分断される。加圧解除
とともに確実に溶融金属の分断を行なうためには、貫通
孔3の直径は小さいほど良い。溶融金属が半田である場
合、貫通孔3の直径を液滴形成孔3直径の1/3以下、
例えば液滴形成孔直径が100μmの場合は貫通孔3直
径を32μm以下とすることにより、確実に溶融金属を
分断することができる。液滴形成後に容器8内の溶融金
属11を積極的に減圧すれば、該溶融金属の分断をより
確実に行なうことができる。
After the supply of the molten metal to the droplet forming hole 2 is completed, when the pressurization of the molten metal in the container 8 is released, the inner walls of the droplet forming hole 2 and the through hole 3 do not have wettability with the molten metal. Therefore, the molten metal in the through hole and the droplet in the droplet forming hole are separated from each other by the surface tension of the molten metal. In order to surely separate the molten metal together with the release of the pressure, the smaller the diameter of the through hole 3 is, the better. When the molten metal is solder, the diameter of the through hole 3 is set to 1/3 or less of the diameter of the droplet forming hole 3,
For example, when the diameter of the droplet forming hole is 100 μm, by setting the diameter of the through hole 3 to 32 μm or less, the molten metal can be reliably separated. If the pressure of the molten metal 11 in the container 8 is positively reduced after the formation of the droplets, the molten metal can be more reliably divided.

【0024】図3(b)のように溶融金属供給時に液滴
形成孔2を蓋4で密閉し、溶融金属の供給とともに密閉
した空間内のガスを排除する必要があるため、蓋4には
細孔6を設ける。蓋4を貫通するように細孔6を設けれ
ば、空間内のガスは細孔6を通して外気に放出される。
As shown in FIG. 3 (b), when the molten metal is supplied, the droplet forming hole 2 must be closed with a lid 4 and the gas in the closed space must be removed together with the supply of the molten metal. The pores 6 are provided. If the pores 6 are provided so as to penetrate the lid 4, the gas in the space is released to the outside air through the pores 6.

【0025】溶融金属が空間内に充填された時点で、形
成された液滴10の頂部が図3(d)のように蓋4の細
孔6に到達する。細孔6の直径は、加圧された溶融金属
が該細孔を通して外部に漏れ出さないように設定する必
要がある。溶融金属が半田の場合、細孔6の直径を凹部
5直径の1/3以下、例えば凹部5直径が100μmの
場合は細孔6の直径を32μm以下とすれば、細孔の抵
抗効果により全空間に溶融半田が充填されるまで細孔内
への半田侵入が起こらない。
When the space is filled with the molten metal, the top of the formed droplet 10 reaches the pore 6 of the lid 4 as shown in FIG. The diameter of the pores 6 must be set so that the pressurized molten metal does not leak out through the pores. When the molten metal is solder, the diameter of the pore 6 is set to 1/3 or less of the diameter of the recess 5, for example, when the diameter of the recess 5 is 100 μm, the diameter of the pore 6 is set to 32 μm or less. Until the space is filled with the molten solder, the solder does not enter the pores.

【0026】溶融半田の供給は、全空間の体積に相当す
るピストンストローク量を予め設定しておくことで停止
時期を制御することができる。
When the supply of the molten solder is stopped, the stop timing can be controlled by presetting the piston stroke amount corresponding to the volume of the entire space.

【0027】蓋4には、細孔6を設けるとともに望まし
くは凹部5を設けることが良い。液滴形成後に配列板1
から蓋4を切り離す際に、半田がそれ自身の表面張力の
効果のため球状化することで、配列板1表面の液滴形成
孔2から半田液滴が盛り上がった状態となる。液滴の配
列板1表面からの盛り上がり量(高さ)は、蓋4の凹部
5の体積を調整することによって制御することができ
る。
It is preferable that the lid 4 is provided with the pores 6 and desirably the recess 5. Arrangement plate 1 after droplet formation
When the lid 4 is detached from the solder, the solder is spheroidized due to the effect of its own surface tension, so that the solder droplets rise from the droplet forming holes 2 on the surface of the array plate 1. The amount (height) of the liquid droplets rising from the surface of the array plate 1 can be controlled by adjusting the volume of the concave portion 5 of the lid 4.

【0028】このように配列板1表面の液滴形成孔2か
ら半田液滴が盛り上がった状態とすることにより、半田
バンプ等の低融点金属電極15を形成すべき電気素子1
2を配列板1に接近させるときに、溶融金属滴10を確
実に電極部13に接触させることができる。
By making the solder droplets rise from the droplet forming holes 2 on the surface of the arrangement plate 1 in this manner, the electric element 1 on which the low melting point metal electrode 15 such as a solder bump is to be formed is formed.
When approaching the arrangement plate to the arrangement plate, the molten metal droplet can be brought into contact with the electrode portion without fail.

【0029】溶融金属供給手段内の溶融金属、及び液滴
形成孔内に形成された溶融金属滴の溶融状態を保持する
ため、配列板1、蓋4、溶融金属供給手段7はいずれも
溶融金属の融点以上の温度に保持する必要がある。
In order to maintain the molten state of the molten metal in the molten metal supply means and the molten metal droplets formed in the droplet forming holes, the arrangement plate 1, the lid 4, and the molten metal supply means 7 are all provided with the molten metal. Must be maintained at a temperature equal to or higher than the melting point.

【0030】半田バンプ等の低融点金属電極15を形成
すべき電気素子12においては、予め該バンプを形成す
べき位置に銅等の導電性材料を用いた電極部13の描画
を完了しておく。低融点金属電極15形成に先立ち、電
気素子12の電極部13にフラックス14を塗布する。
フラックスは電気素子12の全面に塗布する。望ましく
は、電極部13にマスクを用いてスクリーン印刷等によ
ってフラックス塗布を行なう。
In the electric element 12 where the low melting point metal electrode 15 such as a solder bump is to be formed, the drawing of the electrode portion 13 using a conductive material such as copper is completed in advance at the position where the bump is to be formed. . Prior to the formation of the low-melting metal electrode 15, a flux 14 is applied to the electrode portion 13 of the electric element 12.
The flux is applied to the entire surface of the electric element 12. Desirably, flux coating is performed on the electrode portion 13 by screen printing or the like using a mask.

【0031】配列板1の液滴形成孔開口側を上にした状
態で図3(e)のように蓋4を取り外すと、各液滴形成
孔内に溶融金属滴10が保持される。次いで図2、図3
(f)のように上記フラックス14を塗布した電気素子
12の電極部13を有する面を下にして、各電極部を対
応する液滴形成孔に対向させて配列板1に接近させる。
フラックス14を塗布した電極部13は溶融金属滴10
との濡れ性が優れているので、図3(g)のように、溶
融金属滴10は電極部13に接触するとともに電極部1
3にリフローしてバンプが形成される。次いで電気素子
12を上昇して配列板1から離すことにより、図3
(h)のように、電気素子上のバンプが冷却され凝固し
て低融点金属電極(バンプ)15が完成する。
When the lid 4 is removed as shown in FIG. 3E with the liquid drop forming hole opening side of the array plate 1 facing upward, the molten metal droplet 10 is held in each liquid drop forming hole. Next, FIGS. 2 and 3
As shown in (f), with the surface having the electrode portion 13 of the electric element 12 coated with the flux 14 facing downward, each electrode portion is made to approach the array plate 1 so as to face the corresponding droplet forming hole.
The electrode portion 13 coated with the flux 14 is
As shown in FIG. 3 (g), the molten metal droplet 10 comes into contact with the electrode 13 and the electrode 1
3 and a bump is formed. Next, the electric element 12 is lifted and separated from the array plate 1 to
As shown in (h), the bumps on the electric element are cooled and solidified to complete the low melting point metal electrode (bump) 15.

【0032】なお、溶融金属滴形成から電気素子上での
低融点金属電極(バンプ)形成までの過程において、溶
融金属が接触する雰囲気は非酸化性雰囲気とすることが
好ましい。そのためには、配列板1、蓋4、電気素子1
2を密閉した非酸化性雰囲気内に配置して処理を行なう
ことが好ましい。
In the process from the formation of the molten metal droplet to the formation of the low melting point metal electrode (bump) on the electric element, it is preferable that the atmosphere in which the molten metal comes into contact is a non-oxidizing atmosphere. For that purpose, the arrangement plate 1, the lid 4, the electric element 1
It is preferable to carry out the treatment by arranging 2 in a closed non-oxidizing atmosphere.

【0033】本発明において、液滴形成孔2の凹部と蓋
4の凹部5とで形成される空間の容積を小さくすること
により、形成する液滴の直径を小さくすることができ
る。従来のボールバンプ法では困難であった直径200
μm以下の液滴についても、各液滴形成孔内で個別に液
滴を形成する本発明においては、問題なく液滴を形成す
ることが可能である。
In the present invention, the diameter of the droplet formed can be reduced by reducing the volume of the space formed by the concave portion of the droplet forming hole 2 and the concave portion 5 of the lid 4. Diameter 200 which was difficult with the conventional ball bump method
In the present invention in which droplets having a size of μm or less are individually formed in each droplet forming hole, the droplets can be formed without any problem.

【0034】[0034]

【実施例】半導体基板上の電極部13に直径120μm
の半田ボール(溶融半田液滴)を合計3万個一括搭載し
て半田バンプを形成する場合において本発明を適用し
た。この場合、半導体基板は8インチ直径のシリコンウ
ェーハそのものである。図1〜3に基づいて詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The electrode portion 13 on a semiconductor substrate has a diameter of 120 μm.
The present invention is applied to a case where a total of 30,000 solder balls (molten solder droplets) are collectively mounted to form a solder bump. In this case, the semiconductor substrate is an 8-inch diameter silicon wafer itself. This will be described in detail with reference to FIGS.

【0035】ステンレス鋼製の配列板1には、半導体基
板上の電極部13の位置に対応する位置に合計3万個の
液滴形成孔2が設けられる。液滴形成孔2は直径100
μm、深さが60μmであり、液滴形成孔2の底部から
は直径32μmの貫通孔3が設けられる。配列板1の裏
面側は溶融半田容器8となっており、容器容量は157
0cm3である。容器内の溶融半田は、ピストン16で
加圧することによって貫通孔3から液滴形成孔2内に供
給される。
The array plate 1 made of stainless steel is provided with a total of 30,000 droplet forming holes 2 at positions corresponding to the positions of the electrode portions 13 on the semiconductor substrate. The droplet forming hole 2 has a diameter of 100
A through hole 3 having a diameter of 32 μm is provided from the bottom of the droplet forming hole 2. The rear surface side of the array plate 1 is a molten solder container 8, and the container capacity is 157.
0 cm 3 . The molten solder in the container is supplied from the through hole 3 into the droplet forming hole 2 by pressing with the piston 16.

【0036】ステンレス鋼製の蓋4には、液滴形成孔2
に対応する位置に凹部5が設けられる。凹部5は直径1
00μm、深さが60μmであり、蓋4の反対側の面ま
で貫通する直径32μmの細孔6が設けられている。
The lid 4 made of stainless steel has a droplet forming hole 2
Is provided at a position corresponding to. The recess 5 has a diameter of 1
A pore 6 having a diameter of 32 μm, which is 00 μm, has a depth of 60 μm, and penetrates to the surface on the opposite side of the lid 4.

【0037】配列板1、溶融半田容器8、蓋4は電気加
熱機構を有しており、220℃に加熱されており、半田
の溶融状態を保持することができる。
The arrangement plate 1, the molten solder container 8, and the lid 4 have an electric heating mechanism and are heated to 220 ° C., so that the molten state of the solder can be maintained.

【0038】最初に配列板1に蓋4を密着させ、次いで
ピストン16を作動して溶融半田容器8を加圧し、溶融
半田容器8中の溶融半田を各液滴形成孔3に注入する。
各液滴形成孔3内に一定量の溶融半田が充填される。蓋
4を配列板1から引き離すと、各液滴形成孔3内に直径
120μmの液滴10が形成される。
First, the lid 4 is brought into close contact with the arrangement plate 1, then the piston 16 is operated to press the molten solder container 8, and the molten solder in the molten solder container 8 is injected into each droplet forming hole 3.
Each droplet forming hole 3 is filled with a fixed amount of molten solder. When the lid 4 is separated from the array plate 1, a droplet 10 having a diameter of 120 μm is formed in each droplet forming hole 3.

【0039】低融点金属電極(半田バンプ)15を形成
すべき半導体基板には、予め電極部13を含む回路を形
成し、半導体基板の表面全体にフラックスを塗布してお
く。次いで上記液滴が形成された配列板1に半導体基板
を接近させ、半導体基板上の各電極部13に液滴10を
接触させる。液滴10は電極部13に付着して低融点金
属電極15となる。
On the semiconductor substrate on which the low melting point metal electrode (solder bump) 15 is to be formed, a circuit including the electrode portion 13 is formed in advance, and a flux is applied to the entire surface of the semiconductor substrate. Next, the semiconductor substrate is caused to approach the array plate 1 on which the droplets are formed, and the droplets 10 are brought into contact with the respective electrode portions 13 on the semiconductor substrate. The droplet 10 adheres to the electrode portion 13 to form the low-melting metal electrode 15.

【0040】合計200枚の半導体基板について上記低
融点金属電極15の形成を行なった。低融点金属電極1
5が形成されない異常、半導体基板上の予定外の位置に
半田が付着する異常のいずれも、一切発生することがな
かった。
The low-melting metal electrodes 15 were formed on a total of 200 semiconductor substrates. Low melting point metal electrode 1
Abnormality in which No. 5 was not formed, and abnormality in which solder adhered to an unexpected position on the semiconductor substrate did not occur at all.

【0041】[0041]

【発明の効果】本発明により、直径200μm以下の微
細半田ボールを半導体素子の電極部に搭載する場合であ
っても、液滴化することによって、搭載トラブルの発生
のない信頼性の高い一括搭載が可能になった。溶融金属
から液滴として定量切り出しする方式による搭載が可能
になったことにより、微小な半田バンプを必要とする電
気素子においても、半田ボールの大きさを均一に保つこ
とができるので、半田バンプの高さばらつきの少ない精
度の高い半田バンプを形成することが可能になった。ま
た、ボール方式であるため、設備費・製造費用を安価に
抑えることができ、一括搭載が可能であるために短時間
に大量の製品を製造することが可能になった。
According to the present invention, even when a fine solder ball having a diameter of 200 μm or less is mounted on an electrode portion of a semiconductor element, it is formed into droplets, thereby achieving a highly reliable package without mounting trouble. Is now possible. Since it is possible to mount by the method of quantitatively cutting out from the molten metal as droplets, it is possible to keep the size of the solder ball uniform even in electric elements that require minute solder bumps, It has become possible to form a solder bump with high accuracy and little variation in height. In addition, since the ball system is used, equipment costs and manufacturing costs can be reduced, and a large number of products can be manufactured in a short time because batch mounting is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の配列板と蓋を含む低融点金属電極の形
成装置を示す断面図である。
FIG. 1 is a sectional view showing an apparatus for forming a low-melting-point metal electrode including an arrangement plate and a lid according to the present invention.

【図2】本発明の低融点金属の形成装置と電気素子を示
す断面図である。
FIG. 2 is a cross-sectional view showing an apparatus for forming a low melting point metal and an electric element according to the present invention.

【図3】本発明の低融点金属電極の形成方法を示す部分
断面図であり、(a)は液滴形成前の配列板、(b)は
配列板に蓋を密着させた状態、(c)は液滴形成孔と蓋
の凹部との空間に溶融金属を充填している状況、(d)
は溶融金属の充填が完了した状況、(e)は液滴形成後
に蓋を取り外した状況、(f)は液滴を形成した配列板
に電気素子を接近させている状況、(g)は液滴形成孔
内の液滴が電気素子の電極部に付着した状況、(h)は
電気素子の電極部に低融点金属電極の形成が完了した状
況を示す図である。
3A and 3B are partial cross-sectional views illustrating a method for forming a low-melting-point metal electrode according to the present invention, wherein FIG. 3A shows an arrangement plate before droplet formation, FIG. ) Shows the state where the space between the droplet forming hole and the concave portion of the lid is filled with molten metal, and (d)
Shows the situation where the filling of the molten metal is completed, (e) shows the situation where the lid is removed after the formation of the droplet, (f) shows the situation where the electric element is approaching the array plate on which the droplet has been formed, and (g) shows the situation where the liquid is formed. It is a figure which shows the state in which the droplet in the droplet formation hole adhered to the electrode part of the electric element, and (h) shows the state in which the formation of the low melting point metal electrode in the electrode part of the electric element was completed.

【符号の説明】[Explanation of symbols]

1 配列板 2 液滴形成孔 3 貫通孔 4 蓋 5 凹部 6 細孔 7 溶融金属供給手段 8 溶融金属容器 9 加圧手段 10 溶融金属滴(液滴) 11 溶融金属 12 電気素子 13 電極部 14 フラックス 15 低融点金属電極 16 ピストン REFERENCE SIGNS LIST 1 arrangement plate 2 droplet forming hole 3 through hole 4 lid 5 concave portion 6 pore 7 molten metal supply means 8 molten metal container 9 pressurizing means 10 molten metal droplet (droplet) 11 molten metal 12 electric element 13 electrode section 14 flux 15 Low melting point metal electrode 16 Piston

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電気素子の多数の電極部に低融点金属電
極を同時に形成する低融点金属電極の形成方法であっ
て、配列板はその表面に液滴形成孔を有し、該液滴形成
孔の底部には前記配列板の裏面まで貫通する貫通孔を有
し、前記液滴形成孔は電気素子上に低融点金属電極を形
成すべき位置に対応して前記配列板上に配置し、前記配
列板の裏面側には低融点金属を溶融して供給する溶融金
属供給手段を有し、まず前記配列板の表面に蓋を密着さ
せ、該蓋の前記各液滴形成孔に対応する位置には該液滴
形成孔内のガスを逃がすための細孔を有し、次に該溶融
金属供給手段から前記貫通孔を通じて溶融金属を供給し
て各液滴形成孔内に溶融金属滴を形成し、該溶融金属滴
形成後に前記蓋を前記配列板から外し、次いで前記配列
板の表面に電気素子の表面を接近させることによって前
記溶融金属滴を電気素子の電極部に付着させることを特
徴とする低融点金属電極の形成方法。
1. A method for forming a low-melting-point metal electrode on a large number of electrode portions of an electric element at the same time, wherein the array plate has droplet-forming holes on its surface, At the bottom of the hole has a through hole penetrating to the back surface of the array plate, the droplet forming holes are arranged on the array plate corresponding to the position where a low melting point metal electrode is to be formed on an electric element, On the back side of the arrangement plate, there is provided a molten metal supply means for melting and supplying a low melting point metal, and firstly, a lid is brought into close contact with the surface of the arrangement plate, and a position of the lid corresponding to each of the droplet forming holes. Has holes for allowing gas in the droplet forming holes to escape, and then supplies molten metal from the molten metal supply means through the through holes to form molten metal droplets in each droplet forming hole. After the molten metal droplets are formed, the lid is removed from the arrangement plate, and then the electric element is placed on the surface of the arrangement plate. A method for forming a low-melting-point metal electrode, comprising: adhering the molten metal droplet to an electrode portion of an electric element by approaching a surface.
【請求項2】 前記溶融金属供給手段は、前記配列板の
裏面側に配置した溶融金属容器であり、該溶融金属容器
内を加圧することによって前記貫通孔を通じて各液滴形
成孔内に溶融金属を供給することを特徴とする請求項1
に記載の低融点金属電極の形成方法。
2. The molten metal supply means is a molten metal container disposed on the back side of the array plate, and pressurizes the molten metal container to cause molten metal to enter each droplet forming hole through the through hole. 2. The method according to claim 1, wherein
3. The method for forming a low-melting-point metal electrode according to item 1.
【請求項3】 前記液滴形成孔内に溶融金属を供給後に
前記溶融金属供給手段内の溶融金属の加圧を解除し、溶
融金属供給手段内に貯蔵された溶融金属と溶融金属滴と
の間を前記貫通孔内において分断することを特徴とする
請求項1又は2に記載の低融点金属電極の形成方法。
3. After the molten metal is supplied into the droplet forming hole, the pressure of the molten metal in the molten metal supply is released, and the molten metal stored in the molten metal supply is mixed with the molten metal droplet. The method for forming a low-melting-point metal electrode according to claim 1, wherein the space is divided in the through hole.
【請求項4】 電気素子の多数の電極部に低融点金属電
極を同時に形成する低融点金属電極の形成装置であっ
て、該形成装置は配列板と蓋と低融点金属を溶融して供
給する溶融金属供給手段とを有し、該配列板はその表面
に液滴形成孔を有し、該液滴形成孔の底部には前記配列
板の裏面まで貫通する貫通孔を有し、前記液滴形成孔は
電気素子上に低融点金属電極を形成すべき位置に対応し
て配列板上に配置し、前記蓋の前記各液滴形成孔に対応
する位置には該液滴形成孔内のガスを逃がすための細孔
を有し、前記溶融金属供給手段は前記配列板の裏面側に
配置し、前記配列板に前記蓋を密着させて前記溶融金属
供給手段から前記貫通孔を通じて溶融金属を供給して各
液滴形成孔内に溶融金属滴を形成し、次いで前記蓋を取
り外して前記配列板の表面に電気素子の表面を接近させ
ることによって前記溶融金属滴を電気素子の電極部に付
着させることを特徴とする低融点金属電極の形成装置。
4. A low melting point metal electrode forming apparatus for simultaneously forming low melting point metal electrodes on a large number of electrode portions of an electric element, said forming apparatus melting and supplying an arrangement plate, a lid and a low melting point metal. The arrangement plate has a droplet forming hole on its surface, and a bottom portion of the droplet formation hole has a through hole penetrating to the back surface of the arrangement plate, The formation holes are arranged on the arrangement plate corresponding to the positions where the low melting point metal electrodes are to be formed on the electric element, and the gas in the droplet formation holes is provided at the position of the lid corresponding to each of the droplet formation holes. The molten metal supply means is disposed on the back side of the arrangement plate, and the lid is brought into close contact with the arrangement plate to supply molten metal from the molten metal supply means through the through hole. To form a molten metal droplet in each droplet forming hole, and then remove the lid and remove the array plate. An apparatus for forming a low melting point metal electrode, wherein the molten metal droplet is attached to an electrode portion of the electric element by bringing the surface of the electric element close to the surface.
【請求項5】 前記溶融金属供給手段は、前記配列板の
裏面側に配置した溶融金属容器及び加圧手段を有し、該
加圧手段によって該溶融金属容器内を加圧することによ
って前記貫通孔を通じて溶融金属を各液滴形成孔内に溶
融金属を供給することを特徴とする請求項4に記載の低
融点金属電極の形成装置。
5. The molten metal supply means has a molten metal container and a pressurizing means arranged on the back side of the arrangement plate, and pressurizes the molten metal container by the pressurizing means to form the through-hole. The apparatus for forming a low-melting-point metal electrode according to claim 4, wherein the molten metal is supplied into each of the droplet forming holes through the molten metal.
【請求項6】 前記貫通孔は細径であり、前記液滴形成
孔内に溶融金属を供給後に前記溶融金属供給手段内の溶
融金属の加圧を解除することにより、溶融金属供給手段
内に貯蔵された溶融金属と溶融金属滴との間が前記貫通
孔内において分断されることを特徴とする請求項4又は
5に記載の低融点金属電極の形成装置。
6. The molten metal supply means according to claim 6, wherein said through hole has a small diameter, and after the molten metal is supplied into said droplet forming hole, the pressure of said molten metal in said molten metal supply means is released. The apparatus for forming a low-melting-point metal electrode according to claim 4 or 5, wherein a gap between the stored molten metal and the molten metal droplet is divided in the through hole.
JP11205876A 1999-07-21 1999-07-21 Method for formation of low-melting point metal electrode and forming device Withdrawn JP2001035874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11205876A JP2001035874A (en) 1999-07-21 1999-07-21 Method for formation of low-melting point metal electrode and forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11205876A JP2001035874A (en) 1999-07-21 1999-07-21 Method for formation of low-melting point metal electrode and forming device

Publications (1)

Publication Number Publication Date
JP2001035874A true JP2001035874A (en) 2001-02-09

Family

ID=16514203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11205876A Withdrawn JP2001035874A (en) 1999-07-21 1999-07-21 Method for formation of low-melting point metal electrode and forming device

Country Status (1)

Country Link
JP (1) JP2001035874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047928A (en) * 2007-09-06 2008-02-28 Seiko Epson Corp Method of manufacturing semiconductor device and method of processing electric connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047928A (en) * 2007-09-06 2008-02-28 Seiko Epson Corp Method of manufacturing semiconductor device and method of processing electric connection

Similar Documents

Publication Publication Date Title
US6541364B2 (en) Bump forming method and bump forming apparatus
KR100983253B1 (en) Method and device for mounting conductive ball
US6253992B1 (en) Solder ball placement fixtures and methods
US4462534A (en) Method of bonding connecting pins to the eyelets of conductors formed on a ceramic substrate
KR100257420B1 (en) Systems interconnected by bumps of joining material
US7637412B2 (en) Apparatus and method for depositing and reflowing solder paste on a microelectronic workpiece
JP5424632B2 (en) Manufacturing method of substrate for ink jet recording head
US5788143A (en) Solder particle deposition
JPH0878833A (en) Formation of printed circuit board and solder-coated body
US5238176A (en) Method and apparatus for forming bump
EP1996002B1 (en) Bump forming method and bump forming apparatus
US20080241991A1 (en) Gang flipping for flip-chip packaging
US10790250B2 (en) Method for manufacturing semiconductor device
JP2017157626A (en) Method of forming solder bump
JP2001035874A (en) Method for formation of low-melting point metal electrode and forming device
JP2011054907A (en) Method of manufacturing substrate with through electrode, and substrate with through electrode
CN105655260A (en) Micro interconnected protruding point preparing method and device
JP4457354B2 (en) Conductive ball mounting device and alignment member incorporated in conductive ball mounting device
JP2000349416A (en) Machining method for board
KR20090112506A (en) Method for forming thin film bump electrode pad of board by ink jet process
JP2002507845A (en) Method and apparatus for forming solder balls on a substrate
JP4618549B2 (en) Bump formation method
JPH09116257A (en) Formation of solder bump
JPH11126954A (en) Intermediate substrate and its manufacture
KR101332369B1 (en) Method for applying soldering material on conductive pillar of wafer and apparatus thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003