JPH08247953A - Inspecting instrument for surface of spherical body - Google Patents

Inspecting instrument for surface of spherical body

Info

Publication number
JPH08247953A
JPH08247953A JP7814595A JP7814595A JPH08247953A JP H08247953 A JPH08247953 A JP H08247953A JP 7814595 A JP7814595 A JP 7814595A JP 7814595 A JP7814595 A JP 7814595A JP H08247953 A JPH08247953 A JP H08247953A
Authority
JP
Japan
Prior art keywords
inspected
sphere
light
mirror
spherical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7814595A
Other languages
Japanese (ja)
Inventor
Katsutoshi Matsuoka
勝年 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP7814595A priority Critical patent/JPH08247953A/en
Publication of JPH08247953A publication Critical patent/JPH08247953A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enable inspecting of the character of the overall surface of a spherical body to be inspected handily without altering an optical system according the size of a steel ball. CONSTITUTION: This apparatus has an elliptic mirror 13 which has as a mirror surface a specified area 12 of the internal surface of a curved surface obtained by turning a long axis 11 of an ellipse 10 having a first focus A and a second focus B and a rotary mirror 18 allowed to turn or oscillate as arranged at a specified position on the long axis 11 while a flat mirror 16 is provided on one end face 15 of the axis 18 of rotation. Light from a laser diode 1 is admitted into a spherical body 6 to be inspected via the flat mirror 16 and the elliptic mirror 13. The center of the spherical body 6 to be inspected is set to coincide with the second focus B so that light enters the spherical body 6 to be inspected from the vertical direction. Therefore, the light incident into the spherical body 6 to be inspected reverses and the quantity of the light passing through a slit 5 by way of a beam splitter 21 is converted to electricity by a photodetector 3 to inspect the properties of the surface of the spherical body 6 to be inspected by a spherical body property judging means 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は球体表面検査装置に関
し、より詳しくは、鋼球等の球体の表面性状を光学的に
検査する球体表面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sphere surface inspection device, and more particularly to a sphere surface inspection device for optically inspecting the surface properties of a sphere such as a steel ball.

【0002】[0002]

【従来の技術】従来より、この種の球体表面検査装置と
しては、図13に示すように、1組の投光素子51と受
光素子52とを等角度毎に半円周状に複数個配設してな
る半円周アレイ53を被検査球体である鋼球54の周方
向に設けると共に、支軸55を中心にして前記鋼球54
を矢印Y方向に回転させ、受光素子52から出力される
電気信号レベルに基づいて鋼球54の表面性状を判定す
るようにしたものが知られている(以下「第1の従来
例」という)。
2. Description of the Related Art Conventionally, as shown in FIG. 13, a spherical surface inspecting apparatus of this type has a set of a plurality of light emitting elements 51 and light receiving elements 52 arranged at equal angles in a semicircular shape. The provided semicircular array 53 is provided in the circumferential direction of a steel ball 54, which is a sphere to be inspected, and the steel ball 54 is centered around the support shaft 55.
It is known that the surface texture of the steel ball 54 is determined based on the electric signal level output from the light receiving element 52 by rotating the arrow mark in the direction of the arrow Y (hereinafter referred to as "first conventional example"). .

【0003】上記第1の従来例においては、図14に示
すように、投光素子51から出射された光が鋼球54の
表面で反射され、次いで該反射された光は前記投光素子
51に対して一定角度αを有して配設されている受光素
子52に受光される。そして、該受光素子52を通った
光は、図示しないフォトダイオード等の光電変換素子に
より電気信号に変換され、図示しない増幅器及びゲイン
調整回路等を経て出力され、その出力信号レベルに基づ
いて鋼球54の表面性状が判断され、鋼球54に傷等の
欠陥が無いか否かを検査している。
In the first conventional example, as shown in FIG. 14, the light emitted from the light projecting element 51 is reflected on the surface of the steel ball 54, and the reflected light is then the light projecting element 51. The light is received by the light receiving element 52 arranged at a constant angle α. Then, the light passing through the light receiving element 52 is converted into an electric signal by a photoelectric conversion element such as a photodiode (not shown) and output through an amplifier and a gain adjusting circuit (not shown), and the steel ball is output based on the output signal level. The surface properties of 54 are judged, and it is inspected whether or not the steel ball 54 is free from defects such as scratches.

【0004】また、球面表面検査装置の他の従来例とし
ては、図15に示すように、矢印Z方向に回転している
鋼球54の表面に照明光56(照明器等から射出され
る)を入射させると共に、該鋼球54の表面から反射し
た反射光を凸レンズ57を使用して集光させ、その像を
CCD(電荷結合素子)等の光電変換素子58に結像さ
せたものが知られている(例えば、特開昭56−586
43号公報、特開昭56−58644号公報;以下「第
2の従来例」という)。
Further, as another conventional example of the spherical surface inspection apparatus, as shown in FIG. 15, illumination light 56 (emitted from an illuminator or the like) is applied to the surface of a steel ball 54 rotating in the arrow Z direction. It is known that a light is reflected by the surface of the steel ball 54 and is condensed by using a convex lens 57 and the image is formed on a photoelectric conversion element 58 such as a CCD (charge coupled device). (For example, JP-A-56-586)
43, JP-A-56-58644; hereinafter referred to as "second conventional example").

【0005】上記第2の従来例においては、光電変換素
子58により光量が電気信号に変換され、該電気信号の
出力信号レベルに基づいて球面の表面性状が判断され、
鋼球54の欠陥の有無を検査している。また、上記第2
の従来例は、前記鋼球54を所定角度のスキュー回転を
行うことにより、受光領域の小さな光電変換素子58で
も鋼球54の全表面積について表面性状を検査すること
ができる。
In the second conventional example, the photoelectric conversion element 58 converts the amount of light into an electric signal, and the surface quality of the spherical surface is judged based on the output signal level of the electric signal.
The steel balls 54 are inspected for defects. In addition, the second
In the conventional example, by performing skew rotation of the steel ball 54 at a predetermined angle, the surface texture of the entire surface area of the steel ball 54 can be inspected even with the photoelectric conversion element 58 having a small light receiving area.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記第
1の従来例においては、鋼球54の直径寸法(以下、
「鋼球サイズ」という)に対して相対的に略同一感度で
もって鋼球54の表面性状を検査する必要があるため、
鋼球サイズが変わる毎に鋼球54の欠陥検出に対する感
度調整を行わなければならないという問題点があった。
すなわち、鋼球の欠陥に対して許容できる大きさは鋼球
サイズに応じて異なり、鋼球サイズの小さな鋼球54に
対しては傷等の許容欠陥サイズを小さく設定する必要が
ある一方、鋼球サイズの大きな鋼球54に対してはその
許容欠陥サイズは鋼球サイズに応じて大きく設定しても
良い。そこで、従来においては歩留りの低下等を防止す
るため、鋼球サイズに応じた許容欠陥サイズを設定すべ
く鋼球サイズに応じた感度調整を行っていた。したがっ
て、上記第1の従来例においては、光電変換素子の受光
量を電気信号に変換する感度のバラツキの平衡化調整や
その点検を鋼球サイズ毎に行う必要があり、装置のセッ
ティングに非常に手間がかかるという問題点があった。
However, in the first conventional example, the diameter dimension of the steel ball 54 (hereinafter,
Since it is necessary to inspect the surface texture of the steel balls 54 with relatively the same sensitivity relative to the "steel ball size"),
There has been a problem that the sensitivity for detecting defects of the steel balls 54 has to be adjusted every time the size of the steel balls changes.
That is, the allowable size of a steel ball defect varies depending on the steel ball size, and for the steel ball 54 having a small steel ball size, the allowable defect size such as a scratch needs to be set small, while For the steel ball 54 having a large ball size, the allowable defect size may be set to be large according to the steel ball size. Therefore, conventionally, in order to prevent a decrease in yield and the like, sensitivity adjustment according to the steel ball size has been performed in order to set an allowable defect size according to the steel ball size. Therefore, in the above-mentioned first conventional example, it is necessary to perform balancing adjustment and inspection of variations in sensitivity for converting the amount of light received by the photoelectric conversion element into an electric signal for each steel ball size. There was a problem that it took time.

【0007】また、表面性状における欠陥の検出分解能
を高めるためには、個々の受光素子52の視野が狭くな
るように該受光素子52をできるだけ鋼球54の表面に
近付ける必要があるため、上記第1の従来例において鋼
球サイズに適合した複数の円周アレイ53を予め用意し
ておく必要があるという問題点があった。すなわち、円
周アレイ53を鋼球54の表面にできるだけ近付けて該
鋼球54の表面性状を高精度に検査するためには、鋼球
サイズに応じてピッチ円直径の異なる複数種の円周アレ
イ53を製作し、該鋼球サイズに応じた所望の円周アレ
イ53を選択して装置のセッティング等を行わなければ
ならず、測定準備に手間と時間がかかるという問題点が
あった。
Further, in order to improve the detection resolution of defects in the surface texture, it is necessary to bring the light receiving elements 52 as close as possible to the surface of the steel ball 54 so that the field of view of each light receiving element 52 becomes narrow. In the first conventional example, there is a problem that it is necessary to prepare in advance a plurality of circumferential arrays 53 adapted to the steel ball size. That is, in order to bring the circumferential array 53 as close as possible to the surface of the steel ball 54 and inspect the surface texture of the steel ball 54 with high accuracy, a plurality of types of circumferential arrays having different pitch circle diameters according to the steel ball size are used. Since it is necessary to manufacture 53 and select a desired circumferential array 53 according to the size of the steel ball to set the apparatus, there is a problem that preparation for measurement takes time and effort.

【0008】一方、第2の従来例においては、撮像光学
系によって検査すべき鋼球の面間距離(鋼球54とレン
ズ57との第1の面間距離a及び凸レンズ57と光電変
換素子58との第2の面間距離b)及び像の倍率(b/
a)が決定されるので、鋼球サイズの異なる鋼球54に
対し第1の面間距離a及び第2の面間距離bとの相対距
離が常に同一となるように調整することは比較的容易で
はあるが、鋼球54の表面を一様に照明して均一な明る
さの像を得ることは困難である。すなわち、鋼球54の
表面に照明光が照射されても照明光の中心部とその周縁
部とでは鋼球54の表面に入射した後に該表面から反射
する角度が大きく異なるため、周縁部の反射光がレンズ
57に入光し難くなり均一な明るさの像を得ることはで
きない。このため、図15の二点鎖線に示すように、照
明光の光路上に拡散ガラス59を設けて多方向から鋼球
54の表面を照射し、その反射光をあらゆる方向に散乱
させて光電変換素子58に結像させることが考えられ
る。しかしながら、上記拡散ガラス59を設けた場合は
照明光が鋼球表面の広い範囲に亙って拡散されるため、
凸レンズ57の集光性が悪く、実質上広い範囲での鋼球
表面を検査するのは困難であるという問題点があった。
On the other hand, in the second conventional example, the face-to-face distance of the steel ball to be inspected by the imaging optical system (the first face-to-face distance a between the steel ball 54 and the lens 57 and the convex lens 57 and the photoelectric conversion element 58). And the second surface distance b) and the image magnification (b /
Since a) is determined, it is relatively easy to adjust the relative distances between the first face-to-face distance a and the second face-to-face distance b for the steel balls 54 having different steel ball sizes. Although easy, it is difficult to uniformly illuminate the surface of the steel ball 54 to obtain an image of uniform brightness. That is, even if the surface of the steel ball 54 is irradiated with the illumination light, the angle of reflection from the surface of the steel ball 54 after being incident on the surface of the steel ball 54 is largely different between the central portion and the peripheral portion of the illumination light. It becomes difficult for light to enter the lens 57, and an image of uniform brightness cannot be obtained. Therefore, as shown by the chain double-dashed line in FIG. 15, a diffusion glass 59 is provided on the optical path of the illumination light to irradiate the surface of the steel ball 54 from multiple directions, and the reflected light is scattered in all directions to perform photoelectric conversion. It is conceivable to form an image on the element 58. However, when the diffusion glass 59 is provided, the illumination light is diffused over a wide range on the surface of the steel ball.
The convex lens 57 has a poor light-collecting property, and it is difficult to inspect a steel ball surface in a substantially wide range.

【0009】また、表面性状における欠陥の検出分解能
を鋼球サイズに対応して変えるためには鋼球サイズに応
じた凸レンズ57を使用して光学系の倍率を変えること
により行うことができるが、鋼球をスキュー回転させる
ためには、例えば、特公昭42−17608号公報に開
示されているように、鋼球サイズやスキューの大きさに
応じて製造された制御ローラを使用するか、或いは上記
特開昭56−58643号公報に開示されているような
スキュー機構を設けなければならず、したがって鋼球サ
イズの変更に応じて一々部品の交換をしなければなら
ず、上記第1の従来例と同様、装置のセッティング等に
時間と手間がかかるという問題点があった。更に、これ
ら部品と鋼球54との接触により部品の磨耗や破損が生
じてスキュー回転の不整を招来する虞があるため、鋼球
54の全表面積の検査結果に対して充分な保証をするた
めには人為的な注意深い管理が必要となる。さらに、例
えば、直径1mm程度の小径の鋼球54をスキュー回転
させることができる制御ローラやスキュー機構は、実際
的には生産技術上製造することが極めて困難である。す
なわち、上記第2の従来例においては、回転制御機構の
交換や保守、更には製造面の点で上述のような様々な問
題点があった。
Further, in order to change the detection resolution of defects in the surface texture according to the size of the steel ball, it is possible to use a convex lens 57 corresponding to the size of the steel ball and change the magnification of the optical system. To rotate the steel balls in a skewed manner, for example, as disclosed in Japanese Patent Publication No. 42-17608, a control roller manufactured according to the size of the steel balls or the skew is used, or The skew mechanism as disclosed in Japanese Patent Laid-Open No. 56-58643 must be provided. Therefore, the parts must be replaced one by one according to the change of the steel ball size. Similar to the above, there is a problem that it takes time and effort to set the device. Further, contact between these parts and the steel balls 54 may cause wear or damage of the parts, which may cause skew rotation irregularity. Therefore, in order to sufficiently guarantee the inspection result of the total surface area of the steel balls 54. Requires careful and artificial management. Furthermore, for example, a control roller and a skew mechanism capable of skew-rotating a steel ball 54 having a small diameter of about 1 mm are practically extremely difficult to manufacture in terms of production technology. That is, in the second conventional example, there are various problems as described above in terms of replacement and maintenance of the rotation control mechanism and manufacturing.

【0010】本発明はこのような問題点に鑑みなされた
ものであって、被検査球体である鋼球の鋼球サイズに応
じて光学系を変更することなく、被検査球体における全
表面の性状を簡易且つ高精度に検査することができる球
体表面検査装置を提供することを目的とする。
The present invention has been made in view of these problems, and the properties of the entire surface of the inspected sphere can be obtained without changing the optical system according to the steel ball size of the inspected sphere. It is an object of the present invention to provide a sphere surface inspection device capable of inspecting a sphere easily and with high accuracy.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は、被検査球体の表面を照射する光源と、前記
被検査球体の表面から反射した反射光の光量を検出する
光量検出手段と、前記光源と前記光量検出手段との間に
形成される光路上に配された偏光手段と、前記光量検出
手段により検出された検出値に基づいて前記被検査球体
の表面性状を判定する表面性状判定手段とを備えた球体
表面検査装置において、前記偏光手段が、第1の焦点と
第2の焦点とを有する楕円の長軸を回転して得られる曲
面の少なくとも一部の内面が鏡面とされた楕円鏡と、回
転軸の少なくとも一端面が傾斜状に形成されて該一端面
に平面鏡が設けられると共に前記回転軸の軸芯が前記長
軸上の所定位置に配設された回転又は揺動可能な回転鏡
と、前記光源からの射出光を前記平面鏡に集光させ且つ
該平面鏡からの反射光を前記光量検出手段に導く集光手
段とを備え、前記被検査球体の中心を前記第2の焦点上
に配して前記被検査球体を自転させる球体駆動手段を有
し、前記被検査球体の全表面積が前記光源からの射出光
により前記偏光手段を介して走査されることを特徴とし
ている。
In order to achieve the above object, the present invention provides a light source for illuminating the surface of a sphere to be inspected and a light amount detecting means for detecting the amount of light reflected from the surface of the sphere to be inspected. A polarizing means disposed on the optical path formed between the light source and the light quantity detecting means, and a surface for determining the surface texture of the inspected sphere based on the detection value detected by the light quantity detecting means. In a spherical surface inspection apparatus including a property determining means, at least a part of an inner surface of a curved surface obtained by the polarizing means rotating a major axis of an ellipse having a first focus and a second focus is a mirror surface. And an elliptic mirror, and at least one end face of the rotating shaft is formed in a slanted form, a flat mirror is provided on the one end face, and the axis of the rotating shaft is disposed at a predetermined position on the major axis. Movable rotating mirror and from the light source A light collecting means for collecting the emitted light on the plane mirror and guiding the reflected light from the plane mirror to the light quantity detecting means, and disposing the center of the inspected sphere on the second focus. It has a sphere driving means for rotating the sphere, and the entire surface area of the sphere to be inspected is scanned by the light emitted from the light source through the polarizing means.

【0012】[0012]

【作用】上記構成によれば、光源からの射出光は回転又
は揺動している回転鏡の平面鏡に集光されて反射され、
楕円鏡を経て第2の焦点上の被検査球体に入射する。そ
して、被検査球体に入射した光は逆進し、反射光として
光量検出手段に検出されるので、被検査球体が第2の焦
点上で1回転する間に前記回転鏡が複数回転又は複数回
揺動することにより、或いは前記回転鏡が所定回転角度
回転する間に被検査球体が複数回転することにより、被
検査球体の全表面の性状を検査することができる。
According to the above construction, the light emitted from the light source is condensed and reflected by the plane mirror of the rotating or swinging rotating mirror,
The light enters the sphere to be inspected on the second focal point through the elliptical mirror. Then, the light incident on the inspected sphere travels backward and is detected by the light amount detecting means as reflected light, so that the rotating mirror rotates a plurality of times or a plurality of times while the inspected sphere makes one rotation on the second focus. The property of the entire surface of the sphere to be inspected can be inspected by oscillating or by rotating the sphere to be inspected a plurality of times while the rotary mirror rotates by a predetermined rotation angle.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて詳説
する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0014】図1は本発明に係る球体表面検査装置の一
実施例(第1の実施例)を模式的に示した全体構成図で
あって、該球体表面検査装置は、例えば780nmの単
波長を有するレーザ光を発するレーザダイオード(光
源)1と、該レーザダイオード1に駆動信号を発する光
源駆動手段2と、後述する所定光路を経て得られる光量
を検出するフォトダイオード等の光検出素子3(光量検
出手段)と、該光検出素子3の後方に配設された所定の
窓部4を有するスリット5と、前記レーザダイオード1
から射出された出射光束を所定位置に配設された被検査
球体6上に導くと共に該被検査球体6からの反射光束を
スリット5を介して光検出素子3に導く偏光手段7と、
光検出素子3により検出された検出値に基づき鋼球であ
る被検査球体6の表面性状を判定する表面性状判定手段
8と、被検査球体6の球心が第2の焦点B上となるよう
に被検査球体6を所定位置に供給して該被検査球体6を
回転させると共に該被検査球体6の表面性状に応じて該
被検査球体6を選別処理する球体検査部9とから構成さ
れている。
FIG. 1 is an overall configuration diagram schematically showing an embodiment (first embodiment) of a sphere surface inspection apparatus according to the present invention. The sphere surface inspection apparatus is, for example, a single wavelength of 780 nm. A laser diode (light source) 1 that emits a laser beam, a light source driving unit 2 that emits a drive signal to the laser diode 1, and a photodetector 3 such as a photodiode that detects the amount of light obtained through a predetermined optical path described later. (A light quantity detecting means), a slit 5 having a predetermined window portion 4 arranged behind the light detecting element 3, and the laser diode 1
Polarizing means 7 that guides the outgoing light flux emitted from the above to the inspected sphere 6 arranged at a predetermined position and guides the reflected light from the inspected sphere 6 to the photodetection element 3 through the slit 5.
The surface texture determining means 8 for determining the surface texture of the inspected sphere 6 which is a steel ball based on the detection value detected by the light detecting element 3 and the spherical center of the inspected sphere 6 are on the second focus B. A sphere inspection section 9 for supplying the sphere 6 to be inspected to a predetermined position to rotate the sphere 6 to be inspected and for selecting the sphere 6 to be inspected according to the surface texture of the sphere 6. There is.

【0015】前記偏光手段7は、具体的には、第1の焦
点Aと第2の焦点Bとを有する楕円10の長軸11を回
転して得られる曲面の一部、すなわち内面所定領域12
が鏡面とされた楕円鏡13と、回転軸14の一端面15
が傾斜状に形成されて該一端面15に平面鏡16が固着
(蒸着等の表面処理を含む)されると共に平面鏡16と
軸芯17との交点が長軸11上の所定位置、すなわち第
1の焦点Aの位置となるように配設され不図示の駆動モ
ータを介して矢印C方向に回転又は揺動可能とされた回
転鏡18と、レーザダイオード1からの出射光束を平面
鏡16に集光させると共に該平面鏡16からの反射光束
を光検出素子3に導く集光手段と19とを備え、さら
に、該集光手段19は、レーザダイオード1からの出射
光束を平行光束に変える第1のレンズ20と、第1のレ
ンズ20を透過した平行光束が透過すると共に平面鏡1
6からの放射光束を反射させスリット5を介して光検出
素子3に供給するハーフミラーからなるビームスプリッ
タ21と、該ビームスプリッタ21を透過した放射光束
を平面鏡16上の第1の焦点Aに集光すると共に平面鏡
16から逆進する反射光束をビームスプリッタ21に供
給する第2のレンズ22とを備えている。尚、前記第1
及び第2のレンズ20、22は、理論的には安価な凸レ
ンズを使用しても良いが、種々の収差を補正することが
できる複合レンズを使用するのが好ましい。
The polarization means 7 is, specifically, a part of a curved surface obtained by rotating the major axis 11 of an ellipse 10 having a first focal point A and a second focal point B, that is, a predetermined inner surface area 12.
Ellipsoidal mirror 13 having a mirror surface and one end surface 15 of the rotating shaft 14.
Is formed in an inclined shape and the flat mirror 16 is fixed to the one end surface 15 (including surface treatment such as vapor deposition), and the intersection of the flat mirror 16 and the axis 17 is at a predetermined position on the long axis 11, that is, the first A rotary mirror 18 which is arranged so as to be at the position of the focal point A and is rotatable or swingable in the direction of arrow C via a drive motor (not shown), and a light beam emitted from the laser diode 1 is condensed on the plane mirror 16. Further, it is provided with a condensing means 19 for guiding the reflected luminous flux from the plane mirror 16 to the photodetecting element 3, and the condensing means 19 further transforms the luminous flux emitted from the laser diode 1 into a parallel luminous flux. Then, the parallel light flux transmitted through the first lens 20 is transmitted and the plane mirror 1
The beam splitter 21 that is a half mirror that reflects the radiant flux from 6 and supplies it to the photodetecting element 3 through the slit 5, and the radiant flux that has passed through the beam splitter 21 is collected at the first focal point A on the plane mirror 16. A second lens 22 is provided which supplies a reflected light flux which is emitted from the plane mirror 16 and travels backward from the plane mirror 16 to the beam splitter 21. In addition, the first
As the second lenses 20 and 22, theoretically inexpensive convex lenses may be used, but it is preferable to use compound lenses capable of correcting various aberrations.

【0016】前記楕円鏡13の鏡面が形成された内面所
定領域12は、具体的には図2に示すように、平面鏡1
6から反射された放射光束が入射し得る幅領域l より大
きな幅領域Lを有してなる。すなわち、前記内面所定領
域12は、楕円鏡13から反射した放射光束が被検査球
体6の上面側全表面積を走査するように図中の角度θが
少なくとも180°、好ましくは200°を有する領域
で鏡面が形成されている。
The inner surface predetermined area 12 in which the mirror surface of the elliptic mirror 13 is formed is specifically shown in FIG.
The width region L is larger than the width region 1 into which the radiation beam reflected from 6 can enter. That is, the predetermined area 12 of the inner surface is an area having an angle θ of at least 180 °, preferably 200 ° so that the radiant flux reflected from the elliptical mirror 13 scans the entire surface area of the upper surface of the inspected sphere 6. A mirror surface is formed.

【0017】さらに、前記球体検査部9は、具体的には
図3に示すように、矢印D方向に可動して被検査球体6
を適宜衝止するストッパ23と、被検査球体6を駆動ロ
ーラ24(矢印F方向に回転する)に案内するガイド部
材25と、被検査球体6を駆動ローラ24に保持して該
被検査球体6を自転させる球体駆動手段26と、表面形
状判定手段8の判定結果に基づきヒンジ27を矢印E方
向に回動させて良品と不良品とを選別する選別手段28
とを備えている。すなわち、該球体検査部9において
は、ストッパ23の上方への可動により被検査球体6は
ガイド部材25を経て駆動ローラ24上に搬送され、球
体駆動手段26により被検査球体6が自転してその全表
面の表面形状が表面形状判定手段8により判定される。
そして、表面形状判定手段8の判定結果に基づきヒンジ
27は矢印E方向に適宜可動し、検査が終了した球体は
良品収納部29或いは不良品収納部30のいずれか一方
に収納される。
Further, the sphere inspection section 9 is movable in the direction of arrow D, specifically as shown in FIG. 3, and the sphere 6 to be inspected.
A stopper 23 for appropriately stopping the sphere 6, a guide member 25 for guiding the sphere 6 to be inspected to the drive roller 24 (rotating in the direction of arrow F), and a sphere 6 to be inspected by holding the sphere 6 to be inspected on the drive roller 24. Sphere driving means 26 for rotating the rotating body, and sorting means 28 for sorting the good product and the defective product by rotating the hinge 27 in the arrow E direction based on the determination result of the surface shape determining means 8.
It has and. That is, in the sphere inspection unit 9, the sphere 6 to be inspected is conveyed to the drive roller 24 through the guide member 25 by the upward movement of the stopper 23, and the sphere 6 is rotated by the sphere drive means 26. The surface shape determination means 8 determines the surface shape of the entire surface.
Then, based on the determination result of the surface shape determination means 8, the hinge 27 is appropriately moved in the direction of arrow E, and the sphere whose inspection has been completed is stored in either the good product storage unit 29 or the defective product storage unit 30.

【0018】しかして、球体駆動手段26は、具体的に
は図4及び図5に示すように、被検査球体6を遊嵌保持
するV溝31が形成され且つ不図示の駆動モータを介し
て矢印F方向に回転する上述の駆動ローラ24と、両端
が左右一対の軸受部32a、32bにより回転可能に軸
支された丸棒形状の支持ローラ33と、該軸受部32
a、32bを収納するアーム部34と、該アーム部34
の基端側に設けられたピボット35とを有している。
As shown in FIGS. 4 and 5, the sphere driving means 26 is provided with a V-shaped groove 31 for loosely fitting and holding the sphere 6 to be inspected and via a drive motor (not shown). The drive roller 24 rotating in the direction of arrow F, a round bar-shaped support roller 33 whose both ends are rotatably supported by a pair of left and right bearing portions 32a and 32b, and the bearing portion 32.
arm part 34 for accommodating a and 32b, and the arm part 34
And a pivot 35 provided on the base end side of the.

【0019】上記球体駆動手段26においては、被検査
球体6の検査時は、図6に示すように、駆動ローラ24
が矢印F方向に回転すると被検査球体6が駆動ローラ2
4との摩擦力により矢印G方向に回転し、支持ローラ3
3は矢印H方向に回転しながら被検査球体6を支持す
る。これにより、被検査球体6は、その球心を第2の焦
点B上に配しながら自転することができ、したがって楕
円鏡13からの全ての光が検査球体6に対して垂直に入
射して被検査球体6の全表面積を走査し、該被検査球体
6の表面性状が検査される。そして、被検査球体6にお
ける表面性状の検査が終了するとピボット35は矢印K
方向に揺動し、被検査球体6は駆動ローラ24から離脱
して選択手段28に送られる。尚、前記駆動ローラ24
は、被検査球体6の球心が保持されるべき位置(第1の
焦点A)と駆動ローラ24の回転中心を結ぶ直線上(矢
印L方向)を移動可能とされ、鋼球サイズの異なる種々
の被検査球体6に対して表面性状の検査が可能とされて
いる。また、該球体駆動手段26においては、ピボット
35により被検査球体6の駆動ローラ24への保持・離
脱をサポートしているが、前記ピボット35に代えて、
移動ステージやその他の手法により被検査球体6の駆動
ローラ24への保持・離脱をサポートしてもよいのはい
うまでもない。
In the sphere driving means 26, when the sphere 6 to be inspected is inspected, as shown in FIG.
Is rotated in the direction of the arrow F, the inspected sphere 6 is driven by the drive roller 2
The support roller 3 rotates in the direction of arrow G due to the frictional force with the support roller 3.
Reference numeral 3 supports the inspected sphere 6 while rotating in the direction of arrow H. This allows the inspected sphere 6 to rotate while disposing its spherical center on the second focal point B, so that all the light from the elliptical mirror 13 is incident perpendicularly on the inspecting sphere 6. The surface area of the inspected sphere 6 is inspected by scanning the entire surface area of the inspected sphere 6. Then, when the inspection of the surface texture of the inspected sphere 6 is completed, the pivot 35 moves to the arrow K.
The spherical body 6 to be inspected is separated from the driving roller 24 and sent to the selecting means 28. The drive roller 24
Is movable on a straight line (direction of arrow L) connecting the position (first focus A) where the ball center of the inspected sphere 6 should be held and the rotation center of the drive roller 24, and various steel ball sizes are different. It is possible to inspect the surface texture of the inspected sphere 6. Further, in the sphere driving means 26, the pivot 35 supports the holding and separation of the sphere 6 to be inspected from the driving roller 24. Instead of the pivot 35,
It goes without saying that the movement of the spherical body 6 to be inspected and the detachment from the driving roller 24 may be supported by a moving stage or another method.

【0020】このように構成された球体表面装置におい
ては、図1に示すように、光源駆動手段2により発光量
が制御されたレーザダイオード1から射出された出射光
束は、第1のレンズ20で平行光束に変換され、ビーム
スプリッタ21を透過し、第2のレンズ22によって楕
円10の第1の焦点Aに集光される。そして、第1の焦
点Aと平面鏡16上の軸芯17とが一致するように回転
鏡16が配設されているので、レーザダイオード1から
の放射光束は平面鏡16の軸芯17上に集光されると共
に該平面鏡16に入射された放射光束は反射されて楕円
鏡13に向かい、さらに該楕円鏡13で反射されて第2
の焦点B上に配設された被検査球体6に対し、あらゆる
方向から垂直に入射する。
In the spherical surface device thus constructed, as shown in FIG. 1, the emitted light flux emitted from the laser diode 1 whose light emission amount is controlled by the light source driving means 2 is emitted by the first lens 20. It is converted into a parallel light flux, passes through the beam splitter 21, and is focused on the first focus A of the ellipse 10 by the second lens 22. Since the rotary mirror 16 is arranged so that the first focus A and the axis 17 of the plane mirror 16 coincide with each other, the light flux emitted from the laser diode 1 is condensed on the axis 17 of the plane mirror 16. The radiated light flux that is incident on the plane mirror 16 is reflected and travels toward the elliptic mirror 13, and is further reflected by the elliptic mirror 13 to form a second beam.
The light enters the sphere 6 to be inspected, which is disposed on the focal point B, in a perpendicular direction from all directions.

【0021】このようにして被検査球体6に垂直に入射
した光束は、該被検査球体6で反射され、表面にキズや
汚れ等がない部分については入光経路を逆進し、再び楕
円鏡13及び平面鏡16を経て第2のレンズ22に戻っ
てくる。そして、第2のレンズ22に戻ってきた反射光
束はビームスプリッタ21により直角方向に曲げられて
スリット5の窓部4を通過した光のみが光検出素子3に
入光し、該光検出素子3で光電変換され、表面形状判定
手段8により、その欠陥の有無が判定され、球体検査部
9の選別手段28により被検査球体6の良品・不良品の
選別が行われる。すなわち、図7に示すように、ビーム
スプリッタ21からの反射光束の内、スリット5の窓部
4を通過した光(図中、斜線部で示す)のみが光検出素
子3に入光して該光検出素子3で光電変換される。そし
て、被検査球体6の表面にキズや汚れ等の欠陥が存在す
る場合は、それらの部分からの反射光は散乱されてしま
い、窓部4の面上にはこれら欠陥に対応する明暗パター
ンが形成されるため、該スリット5を通過する光量の変
化を伴う。そして、これらの光量が光検出素子3によっ
て光電変換され、表面形状判定手段8により被検査球体
6の表面性状の異常が判定される。
The light beam thus vertically incident on the sphere 6 to be inspected is reflected by the sphere 6 to be inspected, and the portion having no scratches or stains on the surface goes backward in the light incident path and again the elliptical mirror. It returns to the second lens 22 via 13 and the plane mirror 16. Then, the reflected light flux returning to the second lens 22 is bent at a right angle by the beam splitter 21, and only the light that has passed through the window portion 4 of the slit 5 enters the photodetection element 3 and the photodetection element 3 Photoelectric conversion is performed, and the presence or absence of the defect is determined by the surface shape determination unit 8, and the non-defective or defective product of the inspected sphere 6 is selected by the selection unit 28 of the sphere inspection unit 9. That is, as shown in FIG. 7, of the reflected light flux from the beam splitter 21, only the light that has passed through the window portion 4 of the slit 5 (indicated by the hatched portion in the figure) enters the photodetection element 3 and Photoelectric conversion is performed by the photodetector 3. When defects such as scratches and stains are present on the surface of the inspected sphere 6, the reflected light from those parts is scattered, and a bright-dark pattern corresponding to these defects is formed on the surface of the window 4. Since it is formed, the amount of light passing through the slit 5 changes. Then, these light amounts are photoelectrically converted by the photodetector 3, and the surface shape determination means 8 determines that the surface property of the inspected sphere 6 is abnormal.

【0022】しかして、本第1の実施例では、楕円鏡1
3の内面所定領域12に平面鏡16からの光が入光する
ように、回転鏡18が図1に示す位置を基準に正負45
°の範囲で回動している区間で被検査球体6の表面性状
が検査される。
In the first embodiment, however, the elliptic mirror 1
In order that the light from the plane mirror 16 may enter the predetermined area 12 on the inner surface of the rotary mirror 3, the rotary mirror 18 has a positive / negative 45 with reference to the position shown in FIG.
The surface texture of the sphere 6 to be inspected is inspected in the section which is rotating in the range of °.

【0023】図8は回転鏡18の回転角度によって入射
光束及び反射光束が変化する様子を示した図である。
FIG. 8 is a diagram showing how the incident light flux and the reflected light flux change depending on the rotation angle of the rotary mirror 18.

【0024】回転鏡18の回転角度が0°、すなわち図
1の位置で光が入射している場合は、図8(a)に示す
ように、光束が楕円鏡13の図中略中央部に相当する位
置に入射すると共に該光束は被検査球体6に対して上方
から入射し、さらに該入射した光束は入射光路を逆進す
る。また、図8(b)に示すように、回転鏡18が矢印
I方向に45°回転している場合、すなわち回転鏡18
の回転角度が45°の場合は、光束が楕円鏡13の図中
上方部に相当する位置に入射すると共に該光束は被検査
球体6に対して水平方向から入射し、さらに該入射した
光束は入射光路を逆進する。また、図8(c)に示すよ
うに、回転鏡18が矢印J方向に45°回転している場
合、すなわち回転鏡18の回転角度が−45°の場合
は、光束が楕円鏡13の図中下方部に相当する位置に入
射すると共に該光束は被検査球体6に対して水平方向か
ら入射し、さらに該入射した光束は入射光路を逆進す
る。すなわち、被検査球体6の球心が第2の焦点Bと一
致するように該被検査球体6が配設されているので、被
検査球体6の表面には、常に垂直方向から光束が入射す
る。また、回転鏡18が図1の垂直位置を基準に正負4
5°回転するとき、すなわち回転鏡18が−45°から
+45°の間を揺動している間、或いは回転鏡18が回
転するときは回転角度が−45°から+45°の区間で
回転している間、被検査球体6の上面側に露出した半周
部分、即ち180°分がスリット3を介して検査され
る。さらに、被検査球体6は支持ローラ33に支持され
て駆動ローラ24との摩擦力により回転するので、被検
査球体6が1回転する間に回転鏡18を複数回揺動又は
回転させることにより、或いは回転鏡18が所定角度、
すなわち−45°から+45°までの区間を回転する間
に被検査球体6を複数回回転させることにより、被検査
球体6の全表面がレーザダイオード1からの光束により
走査されることとなり、したがって被検査球体6の全表
面に亙ってその表面性状を検査することができる。
When the rotation angle of the rotary mirror 18 is 0 °, that is, when light is incident at the position shown in FIG. 1, the light flux corresponds to the substantially central portion of the elliptical mirror 13 as shown in FIG. 8A. At the same time, the light flux is incident on the spherical body 6 to be inspected from above, and the incident light flux travels backward in the incident optical path. Further, as shown in FIG. 8B, when the rotating mirror 18 is rotated by 45 ° in the direction of arrow I, that is, the rotating mirror 18
When the rotation angle is 45 °, the light beam is incident on the position corresponding to the upper part of the elliptic mirror 13 in the figure, the light beam is incident on the inspected sphere 6 from the horizontal direction, and the incident light beam is Reverse the incident light path. Further, as shown in FIG. 8C, when the rotating mirror 18 is rotated by 45 ° in the direction of the arrow J, that is, when the rotating angle of the rotating mirror 18 is −45 °, the luminous flux is a diagram of the elliptical mirror 13. The light beam is incident on the position corresponding to the middle and lower parts and is incident on the inspected sphere 6 from the horizontal direction, and the incident light beam travels backward in the incident optical path. That is, since the inspected sphere 6 is arranged so that the center of the inspected sphere 6 coincides with the second focal point B, the light beam is always incident on the surface of the inspected sphere 6 from the vertical direction. . In addition, the rotary mirror 18 has a positive / negative 4 with reference to the vertical position in FIG.
When rotating by 5 °, that is, while the rotating mirror 18 swings between −45 ° and + 45 °, or when the rotating mirror 18 rotates, the rotating angle rotates in the range of −45 ° to + 45 °. During this period, the semicircular portion exposed on the upper surface side of the inspected sphere 6, that is, 180 °, is inspected through the slit 3. Further, since the inspected sphere 6 is supported by the support roller 33 and is rotated by the frictional force between the inspected sphere 6 and the drive roller 24, the rotating mirror 18 is swung or rotated a plurality of times while the inspected sphere 6 makes one revolution. Alternatively, the rotary mirror 18 has a predetermined angle,
That is, by rotating the inspected sphere 6 a plurality of times while rotating the section from −45 ° to + 45 °, the entire surface of the inspected sphere 6 is scanned by the light flux from the laser diode 1, and therefore the inspected sphere 6 is scanned. The surface texture can be inspected over the entire surface of the inspection sphere 6.

【0025】尚、本第1の実施例で回転鏡18を回転さ
せて検査する場合は、上述の如く回転鏡18の回転位置
により検査をすることができない区間が生じるため、回
転に同期し且つ被検査球体6からの反射光束が光検出素
子3に入射する区間のみを判定するような判定手段(例
えば、回転鏡18の回転角度を検出するエンコーダ等の
センサ類及びこれらセンサ類の出力に基づいて所定回転
角度の区間のみ信号を出力するゲート回路等の出力手
段)が必要となるが、安定した回転を容易に得ることが
でき、検査速度の高速化が容易になる。一方、回転鏡1
8を揺動させて検査する場合は、被検査球体6からの反
射光束が入射するような揺動範囲を選択することができ
るので、回転鏡18を回転させるときのような回転区間
の無駄がなくなり、また上述した判定手段を設ける必要
がなくなるが、回転鏡18を回転させた時に比べ安定し
た高速回転を得ることが困難となる。したがって、揺動
又は回転のいずれか一方を用途に応じて適宜選択するの
が好ましい。
When the rotating mirror 18 is rotated and inspected in the first embodiment, there is a section in which the inspection cannot be performed depending on the rotational position of the rotating mirror 18, as described above. Judgment means for judging only the section in which the light flux reflected from the inspected sphere 6 is incident on the photodetecting element 3 (for example, sensors such as an encoder for detecting the rotation angle of the rotating mirror 18 and outputs based on these sensors). Output means such as a gate circuit for outputting a signal only in a section of a predetermined rotation angle), stable rotation can be easily obtained, and the inspection speed can be increased easily. On the other hand, the rotating mirror 1
When the inspection is performed by swinging 8, the swing range in which the reflected light flux from the inspected sphere 6 is incident can be selected, so that the rotation section is wasted when rotating the rotary mirror 18. Although there is no need to provide the determining means described above, it becomes difficult to obtain stable high-speed rotation as compared with the case where the rotary mirror 18 is rotated. Therefore, it is preferable to appropriately select either the swing or the rotation according to the application.

【0026】また、被検査球体6の鋼球サイズが変わる
場合は、該鋼球サイズの大きさに応じて検出すべき欠陥
の大きさの下限も比例して変更するのが望ましいが、上
記第1の実施例によれば、被検査球体6の球心が楕円1
0の第2の焦点Bに一致するように該被検査球体6が配
設されているので、入射光束が被検査球体6の球心に集
光し、したがって被検査球体6の鋼球サイズに依らず常
に立体角が一定となり、種々の鋼球サイズを有する被検
査球体6に対して部品交換等の煩わしさを極力回避する
ことができる。
When the steel ball size of the inspected sphere 6 changes, it is desirable to proportionally change the lower limit of the size of the defect to be detected according to the size of the steel ball. According to the first embodiment, the spherical center of the inspected sphere 6 is an ellipse 1
Since the sphere 6 to be inspected is arranged so as to coincide with the second focal point B of 0, the incident light flux is focused on the spherical center of the sphere 6 to be inspected, and therefore the size of the steel ball of the sphere 6 to be inspected. Regardless of this, the solid angle is always constant, and it is possible to avoid troublesome parts replacement and the like for the inspected spheres 6 having various steel ball sizes.

【0027】図9は球体表面検査装置の第2の実施例で
あって、該第2の実施例は、レーザーダイオード1から
の光束が進む光路上であって楕円10の長軸11上に該
長軸11に対して所定角度を有して配設された固定平面
鏡36を備えている。すなわち、本第2の実施例におい
ては、集光手段37が、上述した第1及び第2のレンズ
20、22及びビームスプリッタ21に加えて、固定平
面鏡36が設けられている。また、回転鏡38は、固定
平面鏡36から反射した光束が入射した後に当該反射光
束が楕円鏡13に入射可能となるように、傾斜状の一端
面39に平面鏡16が固着されている。
FIG. 9 shows a second embodiment of the spherical surface inspection apparatus, which is on the optical path through which the light beam from the laser diode 1 travels and on the major axis 11 of the ellipse 10. The fixed plane mirror 36 is provided at a predetermined angle with respect to the major axis 11. That is, in the second embodiment, the condensing means 37 is provided with the fixed plane mirror 36 in addition to the above-mentioned first and second lenses 20, 22 and the beam splitter 21. Further, in the rotating mirror 38, the plane mirror 16 is fixed to the inclined one end face 39 so that the reflected light flux can enter the elliptic mirror 13 after the light flux reflected from the fixed plane mirror 36 enters.

【0028】このように構成された球体表面検査装置に
おいては、レーザーダイオード1から発する出射光束
は、第1のレンズ20、ビームスプリッタ21及び第2
のレンズ22を経て固定平面鏡36に入射され、次いで
入射光束は固定平面鏡36により回転鏡38側に曲げら
れて平面鏡16上の第1の焦点Aに集光し、その後第1
の実施例と同様、球心が第2の焦点B上に配設された被
検査球体6に対し垂直方向から入射する。そして、該被
検査球体6からの反射光束は入射光路を逆進して該反射
光束が光検出素子3に入力し、第1の実施例と同様、被
検査球体6の表面形状が検査される。
In the spherical surface inspecting device thus constructed, the emitted light flux emitted from the laser diode 1 is divided into the first lens 20, the beam splitter 21 and the second lens 20.
Is incident on the fixed plane mirror 36 through the lens 22 of No. 1, and the incident light beam is then bent by the fixed plane mirror 36 toward the rotating mirror 38 and condensed at the first focal point A on the plane mirror 16, and then the first focus A.
Similar to the embodiment described above, the spherical center is incident on the inspected spherical body 6 arranged on the second focal point B from the vertical direction. Then, the reflected light flux from the inspected sphere 6 travels backward in the incident optical path and the reflected light flux is input to the photodetecting element 3, and the surface shape of the inspected sphere 6 is inspected as in the first embodiment. .

【0029】上記第2の実施例では、図9に示す位置を
基準に正負90°の範囲で被検査球体6の表面性状が検
査される。すなわち、図9に示す位置を基準に−90°
から+90°までの回転区間でもって被検査球体6の表
面性状が検査される。つまり、第1の実施例では回転鏡
18の回転のうちの−45°から+45°までの90
°、すなわち回転鏡18の回転の1/4の時間が検査に
使用されるのに対し、本第2の実施例では回転鏡38の
回転のうちの−90°から+90°までの180°、す
なわち回転鏡38の回転の1/2の時間が検査に使用さ
れので、検査時間の短縮化・効率化を図ることができ
る。
In the second embodiment, the surface texture of the sphere 6 to be inspected is inspected within a range of positive and negative 90 ° with reference to the position shown in FIG. That is, -90 ° with reference to the position shown in FIG.
The surface texture of the inspected sphere 6 is inspected in the rotation section from + 90 ° to + 90 °. That is, in the first embodiment, 90 degrees of the rotation of the rotary mirror 18 from −45 ° to + 45 °.
°, that is, 1/4 of the rotation of the rotating mirror 18 is used for the inspection, whereas in the second embodiment, 180 ° of -90 ° to + 90 ° of the rotating of the rotating mirror 38, That is, since half of the rotation of the rotary mirror 38 is used for the inspection, the inspection time can be shortened and the efficiency can be improved.

【0030】図10は球体表面検査装置の第3の実施例
であって、該第3の実施例は、第1の実施例及び第2の
実施例における第1のレンズ20を省略したものであ
る。このように第1のレンズ20を省略することによ
り、装置の簡略化を図るのも好ましい。
FIG. 10 shows a third embodiment of the spherical surface inspection apparatus, which is obtained by omitting the first lens 20 in the first and second embodiments. is there. By omitting the first lens 20 in this way, it is also preferable to simplify the device.

【0031】図11は球体表面検査装置の第4の実施例
であって、第1の実施例等で使用したビームスプリッタ
21に代えて偏光ビームスプリッタ40を使用し、さら
に偏光ビームスプリッタ40と第2のレンズ22との間
に1/4波長板41を介在させている。すなわち、1/
4波長板41を往復通過させて位相を1/2波長(位相
換算で180°)だけ変位させることにより、レーザダ
イオード1から射出される所定単波長(780nm)の
直線偏光の方向に交叉する直線偏光となって偏光ビーム
スプリッタ40でフォトダイオード3の方向に反射され
るので、レーザ光のパワーを有効に利用でき、したがっ
て信号対雑音比(S/N比)が改善される。
FIG. 11 shows a fourth embodiment of the spherical surface inspection apparatus, in which a polarization beam splitter 40 is used in place of the beam splitter 21 used in the first embodiment and the like, and a polarization beam splitter 40 and A quarter wave plate 41 is interposed between the second lens 22 and the second lens 22. That is, 1 /
A straight line that crosses the direction of linearly polarized light of a predetermined single wavelength (780 nm) emitted from the laser diode 1 by passing through the four-wave plate 41 back and forth and displacing the phase by ½ wavelength (180 ° in terms of phase). Since it becomes polarized light and is reflected by the polarization beam splitter 40 in the direction of the photodiode 3, the power of the laser light can be effectively utilized, and therefore the signal-to-noise ratio (S / N ratio) is improved.

【0032】また、本発明は更なる変形例として図12
に示す第4の実施例のように、レーザダイオード1及び
第1のレンズ20の配設位置とスリット5及び光検出素
子3の配設位置とを入れ換えて構成してもよいことはい
うまでもない。
Further, as a further modification of the present invention, FIG.
It goes without saying that the arrangement positions of the laser diode 1 and the first lens 20 and the arrangement positions of the slit 5 and the photodetecting element 3 may be interchanged as in the fourth embodiment shown in FIG. Absent.

【0033】さらに、上記各実施例で平面鏡16を設け
る代わりに回転軸14,38の一端面15,39を研磨
等により鏡面仕上げしてもよいこともいうまでもない。
Further, it goes without saying that instead of providing the plane mirror 16 in each of the above-mentioned embodiments, the one end surfaces 15, 39 of the rotary shafts 14, 38 may be mirror-finished by polishing or the like.

【0034】[0034]

【発明の効果】以上詳述したように本発明に係る球体表
面検査装置によれば、光源からの射出光は回転鏡の平面
鏡に集光されて反射され、楕円鏡を経て第2の焦点上の
被検査球体に入射し、さらに、被検査球体に入射した光
は逆進し、反射光として光量検出手段に検出されるの
で、被検査球体への入射光の立体角は一定となり、被検
査球体の鋼球サイズが変わっても部品交換等により光学
系を変更して調整する必要がなくなり、測定準備に手間
がかかることもなくなる。
As described above in detail, according to the spherical surface inspection apparatus of the present invention, the light emitted from the light source is condensed and reflected by the plane mirror of the rotating mirror, passes through the elliptical mirror, and is focused on the second focus. The light incident on the sphere to be inspected, and further, the light incident on the sphere to be inspected travels backward and is detected by the light amount detecting means as reflected light, so that the solid angle of the incident light on the sphere to be inspected becomes constant, and Even if the steel ball size of the sphere changes, there is no need to change and adjust the optical system by replacing parts, etc., and the preparation for measurement does not take time.

【0035】また、回転鏡を回転又は揺動して被検査球
体の全表面を光が走査するので、被検査球体をスキュー
回転させる必要がなくなり、したがって従来のような制
御ローラを使用する必要もなく、また回転数の不整が生
じる虞のあるスキュー機構を使用する必要もなくなり、
小径の球体の検査を精度良く行うことができ、運転、保
守共容易で安価な球体表面検査装置を得ることができ
る。
Further, since the light scans the entire surface of the sphere to be inspected by rotating or oscillating the rotating mirror, it is not necessary to rotate the sphere to be inspected in a skewed manner, and therefore it is also necessary to use a control roller as in the prior art. Also, there is no need to use a skew mechanism that may cause irregular rotation speed,
It is possible to accurately inspect a sphere having a small diameter, and to obtain an inexpensive sphere surface inspection device that is easy to operate and maintain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る球体表面検査装置の一実施例を模
式的に示した概念図である。
FIG. 1 is a conceptual diagram schematically showing an embodiment of a spherical surface inspection device according to the present invention.

【図2】楕円鏡を形成する内面所定領域を説明するため
の斜視図である。
FIG. 2 is a perspective view for explaining a predetermined area on the inner surface forming an elliptical mirror.

【図3】球体検査部の詳細構成図である。FIG. 3 is a detailed configuration diagram of a sphere inspection unit.

【図4】球体駆動手段の詳細を示す正面図である。FIG. 4 is a front view showing details of a spherical body driving means.

【図5】球体駆動手段の詳細を示す平面図である。FIG. 5 is a plan view showing details of a spherical body driving means.

【図6】球体駆動手段の斜視図である。FIG. 6 is a perspective view of a spherical body driving means.

【図7】スリットと光検出素子の関係を示した図であ
る。
FIG. 7 is a diagram showing a relationship between a slit and a light detection element.

【図8】回転鏡の回転によって入射光束及び反射光束が
変化する様子を示した図である。
FIG. 8 is a diagram showing how incident light flux and reflected light flux are changed by rotation of a rotating mirror.

【図9】本発明に係る球体表面検査装置の第2の実施例
を模式的に示した概念図である。
FIG. 9 is a conceptual diagram schematically showing a second embodiment of the spherical surface inspection device according to the present invention.

【図10】本発明に係る球体表面検査装置の第3の実施
例を模式的に示した要部概念図である。
FIG. 10 is a schematic diagram of a main part schematically showing a third embodiment of the spherical surface inspection apparatus according to the present invention.

【図11】本発明に係る球体表面検査装置の第4の実施
例を模式的に示した要部概念図である。
FIG. 11 is a schematic diagram of a main part schematically showing a fourth embodiment of the spherical surface inspection apparatus according to the present invention.

【図12】本発明に係る球体表面検査装置の第5の実施
例を模式的に示した要部概念図である。
FIG. 12 is a schematic diagram of a main part schematically showing a fifth embodiment of the spherical surface inspection apparatus according to the present invention.

【図13】球体表面検査装置の第1の従来例を模式的に
示す要部概念図である。
FIG. 13 is a conceptual diagram of a main part schematically showing a first conventional example of a spherical surface inspection device.

【図14】図13のX矢視図である。14 is a view on arrow X in FIG. 13. FIG.

【図15】球体表面検査装置の第2の従来例を模式的に
示す要部概念図である。
FIG. 15 is a schematic diagram of a main part schematically showing a second conventional example of the spherical surface inspection device.

【符号の説明】[Explanation of symbols]

1 レーザダイオード(光源) 3 光検出素子(光量検出手段) 6 被検査球体 7 偏光手段 8 表面性状判定手段 12 内面所定領域 13 楕円鏡 14 回転軸 15 一端面 16 平面鏡 17 軸芯 18 回転鏡 19 集光手段 26 球体駆動手段 DESCRIPTION OF SYMBOLS 1 laser diode (light source) 3 light detecting element (light amount detecting means) 6 inspected sphere 7 polarizing means 8 surface texture determining means 12 inner surface predetermined area 13 elliptical mirror 14 rotation axis 15 one end surface 16 plane mirror 17 axis core 18 rotating mirror 19 assembly Optical means 26 Sphere driving means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検査球体の表面を照射する光源と、前
記被検査球体の表面から反射した反射光の光量を検出す
る光量検出手段と、前記光源と前記光量検出手段との間
に形成される光路上に配された偏光手段と、前記光量検
出手段により検出された検出値に基づいて前記被検査球
体の表面性状を判定する表面性状判定手段とを備えた球
体表面検査装置において、 前記偏光手段が、第1の焦点と第2の焦点とを有する楕
円の長軸を回転して得られる曲面の少なくとも一部の内
面が鏡面とされた楕円鏡と、回転軸の少なくとも一端面
が傾斜状に形成されて該一端面に平面鏡が設けられると
共に前記回転軸の軸芯が前記長軸上の所定位置に配設さ
れた回転又は揺動可能な回転鏡と、前記光源からの射出
光を前記平面鏡に集光させ且つ該平面鏡からの反射光を
前記光量検出手段に導く集光手段とを備え、 前記被検査球体の球心を前記第2の焦点上に配して前記
被検査球体を自転させる球体駆動手段を有し、前記被検
査球体の全表面積が前記光源からの射出光により前記偏
光手段を介して走査されることを特徴とする球体表面検
査装置。
1. A light source for irradiating the surface of an inspected sphere, a light amount detecting means for detecting an amount of reflected light reflected from the surface of the inspected sphere, and a light source formed between the light source and the light amount detecting means. A spherical surface inspecting device comprising a polarizing means arranged on the optical path, and a surface texture determining means for determining the surface texture of the inspected sphere based on the detection value detected by the light quantity detecting means, The means has an elliptic mirror in which at least a part of an inner surface of a curved surface obtained by rotating the major axis of an ellipse having a first focal point and a second focal point is a mirror surface, and at least one end surface of the rotational axis is inclined. And a rotatable mirror having a flat mirror provided on one end face thereof and an axis of the rotary shaft disposed at a predetermined position on the long axis, and a light emitted from the light source. Focus on the plane mirror and A sphere driving means for arranging the spherical center of the sphere to be inspected on the second focus and rotating the sphere to be inspected. An apparatus for inspecting a surface of a sphere, wherein the entire surface area of the sphere is scanned by the light emitted from the light source through the polarization means.
JP7814595A 1995-03-09 1995-03-09 Inspecting instrument for surface of spherical body Pending JPH08247953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7814595A JPH08247953A (en) 1995-03-09 1995-03-09 Inspecting instrument for surface of spherical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7814595A JPH08247953A (en) 1995-03-09 1995-03-09 Inspecting instrument for surface of spherical body

Publications (1)

Publication Number Publication Date
JPH08247953A true JPH08247953A (en) 1996-09-27

Family

ID=13653731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7814595A Pending JPH08247953A (en) 1995-03-09 1995-03-09 Inspecting instrument for surface of spherical body

Country Status (1)

Country Link
JP (1) JPH08247953A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292218A (en) * 2007-05-23 2008-12-04 Nikon Corp Surface shape measuring device, surface shape measuring method, and microscopic objective optical system
WO2011013627A1 (en) * 2009-07-27 2011-02-03 Suzuki Chihiro Optical unit
KR101399066B1 (en) * 2013-11-05 2014-05-27 주식회사 멥스 Apparatus for inspecting steel ball of high-yield for increasing the productivity
CN112284344A (en) * 2020-09-25 2021-01-29 南京信息职业技术学院 Inclination tester and method based on spherical cavity mercury reflection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292218A (en) * 2007-05-23 2008-12-04 Nikon Corp Surface shape measuring device, surface shape measuring method, and microscopic objective optical system
WO2011013627A1 (en) * 2009-07-27 2011-02-03 Suzuki Chihiro Optical unit
KR101399066B1 (en) * 2013-11-05 2014-05-27 주식회사 멥스 Apparatus for inspecting steel ball of high-yield for increasing the productivity
CN112284344A (en) * 2020-09-25 2021-01-29 南京信息职业技术学院 Inclination tester and method based on spherical cavity mercury reflection
CN112284344B (en) * 2020-09-25 2022-05-10 南京信息职业技术学院 Inclination tester and method based on spherical cavity mercury reflection

Similar Documents

Publication Publication Date Title
US20020005943A1 (en) Method for inspection of an analyzed surface and surface scanning analyzer
US7388712B2 (en) Confocal scanning microscope using two Nipkow disks
JP5489186B2 (en) Surface inspection device
TW200813421A (en) Surface inspection device
US7397553B1 (en) Surface scanning
KR101446061B1 (en) Apparatus for measuring a defect of surface pattern of transparent substrate
JP3709950B2 (en) Sphere surface inspection device
FR2503416A1 (en) DEVICE FOR DETECTING THE POSITION OF AN OBJECT
WO2016054266A1 (en) Wafer edge inspection with trajectory following edge profile
JPH06241758A (en) Flaw inspection device
JPH08247953A (en) Inspecting instrument for surface of spherical body
JP2010271133A (en) Optical scanning type plane inspection device
JP2009008643A (en) Optical scanning type plane inspecting apparatus
US20220291140A1 (en) Defect inspection device and defect inspection method
JP2001296206A (en) Apparatus and method for double refraction measuring
CN110763689B (en) Surface detection device and method
JP3981895B2 (en) Automatic macro inspection device
JP2518171B2 (en) Lighting fiber bundle inspection device
KR100767498B1 (en) Uneveness inspecting apparatus and uneveness inspecting method
JP3554455B2 (en) Pattern reader
JP2001083098A (en) Optical surface inspection mechanism and device
JP2018189517A (en) Measurement device and method for manufacturing articles
JP4946689B2 (en) Shape measuring device
JPH07333157A (en) Inspection device for sphere surface
JPH1048527A (en) Image rotator device and scanning optical microscope