JPH08246921A - Method and equipment for detecting fuel injection quantity at time of operation restart of cylinder under state of operation interruption - Google Patents

Method and equipment for detecting fuel injection quantity at time of operation restart of cylinder under state of operation interruption

Info

Publication number
JPH08246921A
JPH08246921A JP5204196A JP5204196A JPH08246921A JP H08246921 A JPH08246921 A JP H08246921A JP 5204196 A JP5204196 A JP 5204196A JP 5204196 A JP5204196 A JP 5204196A JP H08246921 A JPH08246921 A JP H08246921A
Authority
JP
Japan
Prior art keywords
fuel injection
cylinder
injection amount
amount
residual gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5204196A
Other languages
Japanese (ja)
Other versions
JP3955645B2 (en
Inventor
Eberhard Schnaibel
シュナイベル エーベルハルト
Hong Dr Zhang
ツァン ホン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH08246921A publication Critical patent/JPH08246921A/en
Application granted granted Critical
Publication of JP3955645B2 publication Critical patent/JP3955645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting

Abstract

PROBLEM TO BE SOLVED: To improve the comfortableness of a running operation and exhaust gas discharge characteristic by deciding an increased fuel injection amount following to the residual gas in a cylinder, when the fuel injection amount at the operation restart time of the cylinder in the operation interception state is increasingly corrected, in an internal combustion engine. SOLUTION: A real residual gas amount dtirg is calculated through the multiple amount calculation 101 depending on an engine temperature, under the consideration of a real temperature and peripheral pressure at the engine brake operation mode. When the first combustion cycle at the operation restart time of the cylinder under the operation interception state is elapsed and finished, it is transmitted to the adding point 103 through the switch 102 controlled by an operation interception signal B. The correction value is added and piled to a load value t1 at this adding point 103. By division 106 of the obtained amount tlsum by a prescribed air number λ soll, the fuel injection amount tes required in the combustion cycle after the operation restart of the cylinder under the operation interception state of the internal combustion engine is found out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関における
作動遮断状態下のシリンダの作動再開の際の燃料噴射量
検出方法及び装置であって、基本燃料噴射量が増加燃料
噴射量と結合(重畳)されるようにした当該方法及び装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection amount detection method and device when restarting the operation of a cylinder in an internal combustion engine under a cutoff condition, in which a basic fuel injection amount is combined (superposed) with an increased fuel injection amount. ) The method and the device.

【0002】[0002]

【従来の技術】駆動スリップ制御(トラクションコント
ロール)(ASR)又はエンジンブレーキ作動モード中
又は速度制限のため個々のシリンダが時々作動遮断せし
められる。作動遮断状態におかれた(遮断せしめられ
た)シリンダの作動再開の際、初期(当初)の燃料量調
量状態が、走行運転快適性及び排ガス放出特性に対して
規定的である。DE43 28 835 A1から公知のシリ
ンダ選択性の燃料噴射系の場合、作動遮断状態におかれ
た(遮断せしめられた)シリンダの作動再開の際の増加
燃料噴射量は、作動遮断された燃料噴射サイクル数に依
存して決定される。
BACKGROUND OF THE INVENTION Individual cylinders are sometimes deactivated during drive slip control (ASR) or engine braking operating modes or due to speed limitations. At the time of resuming the operation of the cylinder that has been put into the operation cut-off state (shut-off), the initial (initial) fuel amount adjustment state is regular with respect to driving comfort and exhaust emission characteristics. In the case of the cylinder-selective fuel injection system known from DE 43 28 835 A1, the increased fuel injection quantity at the resumption of operation of the cylinder in the deactuated state (disengaged) is equal to the deactuated fuel injection cycle. It depends on the number.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的ないし課
題とするところは、作動遮断状態下の(動作遮断せしめ
られれた)シリンダの作動再開の際、初期(当初)の燃
料量調量状態が、走行運転快適性及び排ガス放出特性に
関して従来技術に対比して改良された技術的手段を提供
することにある。
SUMMARY OF THE INVENTION An object or object of the present invention is to provide an initial (initial) fuel quantity adjustment state when an operation of a cylinder (actuated to be cut off) under an operation cutoff state is restarted. The object of the present invention is to provide an improved technical means with respect to driving comfort and exhaust emission characteristics as compared with the prior art.

【0004】[0004]

【課題を解決するための手段】本発明では、走行運転快
適性及び排ガス放出特性に関して優れた特性値は、特許
請求の範囲1により次のようにして解決される、即ち、
動作遮断状態におかれた(作動遮断せしめられた)シリ
ンダの動作再開後第一(最初)の噴射に対する増加燃料
噴射量を、当該シリンダにおける残留ガスに依存して決
定するのである。引用請求項2ー7には、本発明の発展形
態が示されている。請求項8の対象は、内燃機関におけ
る作動遮断状態下の(非作動状態におかれた)シリンダ
の作動再開の際の燃料噴射量検出装置である。
According to the present invention, excellent characteristic values relating to driving comfort and exhaust gas emission characteristics are solved as follows according to claim 1, that is,
The increased fuel injection amount with respect to the first (first) injection after the restart of the operation of the cylinder in the operation cut-off state (the operation cut-off state) is determined depending on the residual gas in the cylinder. Claims 2 to 7 show the development of the present invention. The object of claim 8 is a fuel injection amount detection device at the time of resuming the operation of a cylinder (which has been in a non-operation state) under an operation cutoff state in an internal combustion engine.

【0005】[0005]

【実施例】先に、動作遮断状態におかれた(遮断せしめ
られた)シリンダの作動再開の際、当該のシリンダ中に
は、相当量の残留ガスが、存在している。殊に、シリン
ダの比較的長い動作遮断の場合、残留ガスは、専ら、ほ
ぼ、新鮮空気のみから成る。シリンダ中で所定空気数
(λ=1)を達成するため、当該の再開の際、それぞれの
動作遮断状態におかれた(遮断せしめられた)シリンダ
には一度、壁フィルム(膜)作用、効果の補償をなすべ
く、増大燃料量が、噴射され、当該の燃料噴射量は、有
利には、残留ガスと共に化学量論比を成すものである。
EXAMPLE First, when the cylinder which has been put into the operation shut-off state (shut-off) is restarted, a considerable amount of residual gas exists in the cylinder. In particular, in the case of a relatively long shut-off of the cylinder, the residual gas consists almost exclusively of fresh air. In order to achieve the specified number of air (λ = 1) in the cylinder, the wall film (membrane) action and effect are once applied to the cylinders that are in the respective operation interruption states (blocked) at the time of the restart. In order to compensate for this, an increased fuel quantity is injected, which quantity of fuel is advantageously stoichiometric with the residual gas.

【0006】図1中では次のような装置のブロック接続
図が示されている、即ち、壁フィルム(膜)補償及び残
留ガス焼尽のために必要な増大(過剰)燃料量を求める
装置が示されている。本実施例では、ブロック100にお
けるマップ(特性領域)(これは、カムシャフトクロス
オーバー角wnwue及び機関回転数に依存する)か
ら、エンジンブレーキ作動モードにて所定温度及び所定
周囲圧力のもとでの残留ガス量が求められる。エンジン
ブレーキ作動モードにて実際の温度及び実際の周囲圧力
の考慮下で、乗算量fdkh及びtabを介して実際の
残留ガス量dtlrgが算出され、ここで、量fdkh
は、実際の周囲圧力と所定の周囲圧力との比を表し、量
tabは、機関温度及び吸い込み空気温度の関数であ
る。図示の実施例では、分かり易さのため、排ガス温度
に依存する乗算量tabは、ブロック101において機関
温度tmotに依存して算出される。カムシャフトクロ
スオーバー(交差)角wnwueが機関回転数nのみに
依存する場合には、残留ガス量dtlrgoは、回転数
依存のマップ(特性カーブ)をを介しても算出し得る。
残留ガス量dtlrgに相応する補正値dtlrgs
は、次のようなとき(場合)のみスイッチ102を介して
加算点103へ通過伝送される、即ち、内燃機関における
作動遮断状態(非作動状態)におかれたシリンダの作動
再開の際第一(最初)の燃焼サイクルが経過終了したと
きのみ、当該の加算点103へ通過伝送される。スイッチ1
02は、作動遮断信号Bにより制御される。上記作動遮断
信号は、シリンダの作動遮断の際値1をとり、そして、
内燃機関における作動遮断状態(非作動状態)におかれ
たシリンダの作動再開をしようとする場合値0へ移行す
る。遅延回路104及び差動点105は、スイッチ102に対す
る本来の制御信号を形成する。それにより、上記スイッ
チは、作動遮断信号の、1から0への移行の際閉成され
る。再開後最初(第一の燃焼サイクル以外の他のすべて
のサイクルの場合スイッチ102は、0の状態におかれる。
In FIG. 1 a block schematic diagram of the following device is shown, namely, a device for determining the amount of increased (excess) fuel required for wall film compensation and residual gas burnout. Has been done. In the present embodiment, from the map (characteristic region) in block 100 (this depends on the camshaft crossover angle wnwe and the engine speed), in the engine brake operating mode under a predetermined temperature and a predetermined ambient pressure. The amount of residual gas is calculated. The actual residual gas amount dtlrg is calculated via the multiplied amounts fdkh and tab, taking into account the actual temperature and the actual ambient pressure in the engine brake operating mode, where the amount fdkh
Represents the ratio of the actual ambient pressure to a given ambient pressure, the quantity tab being a function of the engine temperature and the intake air temperature. In the illustrated embodiment, for simplicity, the multiplication amount tab depending on the exhaust gas temperature is calculated in block 101 depending on the engine temperature tmot. When the camshaft crossover angle wnwe depends only on the engine speed n, the residual gas amount dtlrgo can also be calculated through a speed-dependent map (characteristic curve).
Correction value dtlrgs corresponding to residual gas amount dtlrgs
Is transmitted through the switch 102 to the addition point 103 only in the following cases (cases), that is, when the operation of the cylinder in the operation cutoff state (non-operation state) of the internal combustion engine is restarted: Only when the (first) combustion cycle has elapsed has passed the transmission to the relevant summing point 103. Switch 1
02 is controlled by the operation cutoff signal B. The operation cutoff signal has a value of 1 when the cylinder is cut off, and
When attempting to restart the operation of a cylinder that has been in the operation cutoff state (non-operation state) in the internal combustion engine, the value shifts to 0. The delay circuit 104 and the differential point 105 form the original control signal for the switch 102. Thereby, the switch is closed on the transition of the deactivation signal from 1 to 0. The first time after resumption (for all other cycles except the first combustion cycle, switch 102 is placed in the 0 state.

【0007】補正値(dtlrgs)は、加算点105に
て負荷値t1に加算的に重畳される。それにより、量t1
sumが得られる。この量t1sumをブロック106にて
所定の空気数λsollにより除算することにより、内燃機
関における作動遮断状態(非作動状態)におかれたシリ
ンダの作動再開後の燃焼サイクルにて必要な燃料噴射量
tesが検出される。
The correction value (dtlrgs) is additively superimposed on the load value t1 at the addition point 105. Thereby, the amount t1
Sum is obtained. By dividing this amount t1sum by the predetermined air number λsoll in block 106, the fuel injection amount tes required in the combustion cycle after the restart of the operation of the cylinder in the operation cutoff state (non-operation state) in the internal combustion engine Is detected.

【0008】先行して計算された噴射量tesは、壁フ
ィルム(膜)効果に基づいてシリンダ内には達しない。
従って、上記計算された噴射量tesには更に加算点10
7を介して増加空気量dtewfが付加されねばならな
い。それにより、実際の噴射量tiが形成され、該噴射
量は、基本噴射量及びシリンダ内の残留ガスに依存する
噴射量の他に付加的に壁フィルム(膜)効果補償のため
の増加空気量を含む。
The previously calculated injection quantity tes does not reach the cylinder due to the wall film effect.
Therefore, an additional point 10 is added to the calculated injection amount tes.
An increased air quantity dtewf must be added via 7. As a result, the actual injection amount ti is formed, which is in addition to the basic injection amount and the injection amount that depends on the residual gas in the cylinder, and additionally the increased air amount for compensating the wall film effect. including.

【0009】増加空気噴射量dtewf(これは、壁フ
ィルム(膜)効果補償に必要である)の検出の様子は、
同様に、図1に示されている。ブロック108におけるマッ
プ(特性領域、特性曲線)及び ブロック109におけるマ
ップ(特性領域、特性曲線)から、定常的な壁フィルム
(膜)量wfo(λ=1のもとでの目標値)が、負荷値t
1、回転数n、及び機関温度tmotに依存して算出さ
れる。壁フィルム(膜)量wfoの目標値は、係数fw
frgと乗算され、該係数は、残留ガスに相応する補正
値(dtlrgs)を負荷値t1で除算すること及びひ
きつづいて値1と加算することにより得られる。壁フィ
ルム(膜)量の実際の目標値wflamを取得するため
には、ブロック111において両量wfo 、fwfrgの
積が、所定の空気数λsollで除算される。
The state of detection of the increased air injection amount dtewf (which is necessary for compensating the wall film effect) is as follows.
Similarly, shown in FIG. From the map (characteristic region, characteristic curve) in block 108 and the map (characteristic region, characteristic curve) in block 109, the steady wall film (film) amount wfo (target value under λ = 1) Value t
It is calculated depending on 1, the engine speed n, and the engine temperature tmot. The target value of the wall film (film) amount wfo is the coefficient fw.
It is multiplied by frg and this factor is obtained by dividing the correction value (dtlrgs) corresponding to the residual gas by the load value t1 and subsequently adding with the value 1. In order to obtain the actual target value wflam of the wall film quantity, in block 111 the product of both quantities wfo and fwfrg is divided by a predetermined air number λ soll.

【0010】壁フィルム(膜)量に対する目標値wfo
は、増加空気噴射量dtewfの後続処理のため次のよ
うな場合のみスイッチ112を介してスイッチング通過
(伝送)される、即ち、作動遮断信号Bがシリンダの再
開を指示する場合のみスイッチング通過(伝送)され
る。そうでない場合、スイッチ12は、値0にセッティン
グされる。メモリ(PTIー素子)113を介して時間依
存性の壁フィルム(膜)wflamtがシミュレーショ
ンされる。上記メモリ113の時定数zfwは、ブロック1
14及び115にて2つのマップ(特性領域、特性曲線)によ
り負荷値t1及び機関温度tmotに依存して設定され
る。作動遮断信号B荷より制御されるスイッチ116は、
通常動作モードに対するブロック114のマップ(特性領
域、特性曲線)からの時定数zfwか、又は、エンジン
ブレーキ時遮断に対するブロック115のマップ(特性領
域、特性曲線)からの時定数をスイッチング通過(伝
送)する。各シリンダに対して時間依存の壁フィルム
(膜)量wflamtが時間ずれを以て算出される。壁
フィルム(膜)の補償に必要な増加空気噴射量dtew
fは、実際のサイクルの計算された壁フィルム(膜)量
遅延素子117及び加算点118は、当該の差を形成する。前
述のように求められた増加空気噴射量dtewfは、加
算点117にて噴射量tesに加算的に重畳される。而し
て、シリンダ中にもたらされた燃料量tiが得られる。
スイッチ119は、作動遮断信号Bにより制御されて次の
ような場合、値0におかれる、即ち、シリンダを遮断し
ようとする場合、値0におかれる。上記スイッチは、シ
リンダの作動再開の際閉じられる。
Target value wfo for the amount of wall film (film)
Is transmitted (transmitted) through the switch 112 only in the following cases due to the subsequent processing of the increased air injection amount dtewf, that is, the switching passage (transmission) is performed only when the operation cutoff signal B indicates the restart of the cylinder. ) Will be done. Otherwise, switch 12 is set to the value 0. A time-dependent wall film (film) wflamt is simulated through the memory (PTI element) 113. The time constant zfw of the memory 113 is the block 1
14 and 115 are set by two maps (characteristic region, characteristic curve) depending on the load value t1 and the engine temperature tmot. The switch 116 controlled by the operation cutoff signal B load is
Switching through (transmission) the time constant zfw from the map of the block 114 (characteristic region, characteristic curve) for the normal operation mode or the time constant from the map of the block 115 (characteristic region, characteristic curve) for the interruption during engine braking. To do. A time-dependent wall film amount wflamt is calculated for each cylinder with a time lag. Increased air injection amount dtew required for wall film compensation
f is the calculated cycle film wall delay element 117 and summing point 118 of the actual cycle form the difference. The increased air injection amount dtewf obtained as described above is additively superimposed on the injection amount tes at the addition point 117. Thus, the fuel quantity ti introduced into the cylinder is obtained.
The switch 119 is controlled by the shutoff signal B and is set to the value 0 in the following cases, that is, the value 0 is set when the cylinder is to be cut off. The switch is closed when the cylinder is restarted.

【0011】図2は、作動遮断されたシリンダの再開の
際の燃料噴射量tiの計算に対する他の変化実施例(実
施形態)を示す。図1により計算された補正値(dtl
rgs)は、ブロック200にて所定の空気数値(設定空
気数)(λsoll)により除算され、そして、それにより
生ぜしめられる補正値(dtlrgs)は、加算点201
にて補正された噴射量tesは、負荷に相応する基本噴
射量teに加算される。それにより形成された補正され
た噴射量tesは、既述のように、増加空気噴射量dt
ewfに重畳され(加えられ)、そして、値tiに移行
変換せしめられる。
FIG. 2 shows another modified embodiment (embodiment) for the calculation of the fuel injection amount ti when the cylinder whose operation has been interrupted is restarted. Correction value calculated by Fig. 1 (dtl
rgs) is divided by a predetermined air numerical value (set air number) (λsoll) in block 200, and the correction value (dtlrgs) thus generated is added point 201.
The injection amount tes corrected in is added to the basic injection amount te corresponding to the load. The corrected injection amount tes thus formed is, as described above, the increased air injection amount dt.
It is superposed on (added to) ewf and then converted into a value ti.

【0012】或1つのシリンダの噴射作動遮断を1度又は
2度より多く相次いで行われる場合、シリンダ中の残留
ガスは、大部分新鮮空気から成るものであって、排気ガ
スから成るものではないということを基礎とすることが
できる。
The injection operation of one cylinder is shut off once or
It can be based that, if carried out more than twice in succession, the residual gas in the cylinder consists mostly of fresh air and not of exhaust gas.

【0013】その場合において、噴射量tesの検出の
ため補正値dtlrgsを、求められた残留ガス量dt
lrgに等しくセッティングできる。但し、1度又は2度
だけシリンダの作動遮断を行う場合には、残留ガス中の
排気ガスは、完全には新鮮空気により置換されない。殊
に、シリンダの振動的(往復的)切り替え動作の場合、
換言すれば、シリンダのサイクリックな作動ーないし作
動遮断、例えば、ASR−EZ(駆動スリップ制御ない
しトラクションコントロール)の際、前述の補正値dt
lrgs(これは、実質的に新鮮空気から成る残留ガス
を基礎とする)を使用できない。従って、図1の回路ブ
ロック119において、補正値dtlrgsに対して変化
された補正値dfgasが下記のプロセス手法に従って
求められる:シリンダ中の残留ガスの排気ガス成分は、
シリンダ作動遮断数の増大と共に減少する。iー番目の
作動遮断の後排気ガス量ΔAbgasは、次のようにし
て得られる。
In this case, the correction value dtlrgs for detecting the injection amount tes is set to the calculated residual gas amount dt.
Can be set equal to lrg. However, when the cylinder is shut off only once or twice, the exhaust gas in the residual gas is not completely replaced by fresh air. Especially in the case of vibration (reciprocal) switching operation of the cylinder,
In other words, when the cylinder is cyclically operated or cut off, for example, when the ASR-EZ (driving slip control or traction control) is performed, the above-mentioned correction value dt is set.
lrgs, which are based on residual gas consisting essentially of fresh air, cannot be used. Therefore, in the circuit block 119 of FIG. 1, the correction value dfgas, which is changed with respect to the correction value dtrlgs, is determined according to the following process procedure: The exhaust gas component of the residual gas in the cylinder is
It decreases as the number of cylinder cutoffs increases. The exhaust gas amount ΔAbgas after the i-th operation interruption is obtained as follows.

【0014】[0014]

【数1】 [Equation 1]

【0015】ここで、t1(i)は、iー番目のサイク
ルの際の負荷であり、dtlrg(i)は、iー番目の
サイクルの後シリンダ中に残留する残留ガス量を表す。
iー番目の作動遮断の後の残留ガス中の新鮮空気df
gasは、次のようにして得られる。
Here, t1 (i) is the load in the i-th cycle, and dtrlg (i) represents the amount of residual gas remaining in the cylinder after the i-th cycle.
Fresh air df in residual gas after i-th shut-off
gas is obtained as follows.

【0016】[0016]

【数2】 [Equation 2]

【0017】シリンダの振動的(往復的)切り替え動作
の場合、残留ガス中の新鮮空気dfgasは、式(1)
及び式(2)から次のように得られる。
In the case of an oscillating (reciprocating) switching operation of the cylinder, the fresh air dfgas in the residual gas is calculated by the equation (1).
And from equation (2),

【0018】[0018]

【数3】 (Equation 3)

【0019】残留ガス量がサイクルごとに殆ど変化しな
いとの仮定のもとで、式(3)は、次のように簡単化さ
れる。
Under the assumption that the residual gas amount changes little from cycle to cycle, equation (3) is simplified as follows.

【0020】[0020]

【数4】 [Equation 4]

【0021】シリンダの比較的長い作動遮断が生じてい
るか、又は、シリンダのシリンダの振動的(往復的)切
り替え動作が起こっているかに応じて、値dtlrg又
はdfgasをスイッチング通過(伝送)できる。上記
スイッチに対する制御信号は、図1に示すように作動遮
断信号Bから導出される。ブロック121は、再開の前の
シリンダの作動遮断数を検出する。シリンダの作動遮断
数が1の場合であって、作動遮断信号Bが同時に再開を
シグナリングする場合には、アンドーゲート122は、ス
イッチ120にスイッチング通過(伝送)のための制御信
号を送出する。その結果、上記スイッチは、値dfga
sに切り替わる。他のすべての場合には値dtlrgが
補正値(dtlrgs)としてスイッチング通過(伝
送)される。
The value dtlrg or dfgas can be switched through depending on whether a relatively long shut-off of the cylinder has occurred or an oscillating (reciprocal) switching action of the cylinder of the cylinder has occurred. The control signal for the switch is derived from the operation cutoff signal B as shown in FIG. Block 121 detects the number of cylinder deactivations before resumption. In the case where the number of cylinder cut-offs is 1, and the cut-off signal B simultaneously signals the restart, the AND gate 122 sends the control signal for the switching passage (transmission) to the switch 120. As a result, the switch has the value dfga.
Switch to s. In all other cases, the value dtlrg is switched (transmitted) as a correction value (dtlrgs).

【0022】前述の実施例(実施形態)では、増加空気
噴射量dtewfは、作動遮断されたシリンダ中の残留
ガスの量に依存して決定されている。しかしながら、増
加空気噴射量dtewfの検出のため他の基準を使用す
ることもできる、例えば、残留ガスの量、密度、又は、
組成を使用することもできる。
In the above-described embodiment (embodiment), the increased air injection amount dtewf is determined depending on the amount of residual gas in the cylinder whose operation has been cut off. However, other criteria can also be used for the detection of the increased air injection quantity dteuf, for example the amount of residual gas, the density, or
Compositions can also be used.

【0023】[0023]

【発明の効果】本発明によれば、動作遮断状態におかれ
た(遮断せしめられた)シリンダの作動再開の際、初期
(当初)の燃料量調量状態が、走行運転快適性及び排ガ
ス放出特性に関して従来技術に対比して改良された技術
的手段を実現できたという効果が奏される。
According to the present invention, at the time of restarting the operation of a cylinder that has been in the operation cut-off state (shut-off), the initial (initial) fuel amount adjustment state is the driving comfort and exhaust gas emission. As a result, it is possible to realize the technical means which is improved as compared with the conventional technology in terms of characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】内燃機関における作動遮断状態(非作動状態)
におかれたシリンダの作動再開の際の燃料噴射量検出装
置のブロック接続図である。
FIG. 1 is an operation cutoff state (non-operation state) in an internal combustion engine.
It is a block connection diagram of the fuel injection amount detection device at the time of resuming the operation of the placed cylinder.

【図2】図1に示されている内燃機関における作動遮断
状態(非作動状態)におかれたシリンダの作動再開の際
の燃料噴射量検出装置のブロック接続図の構成の一部分
の変化実施例(実施形態)の略示図である。
FIG. 2 is a partial modification example of the configuration of the block connection diagram of the fuel injection amount detection device at the time of restarting the operation of the cylinder placed in the operation cutoff state (non-operation state) in the internal combustion engine shown in FIG. It is a schematic diagram of (embodiment).

【符号の説明】[Explanation of symbols]

100 マップ(特性領域) 101 機関温度依存性を含むマップ(特性領域、特
性曲線) 102 スイッチ 103 加算点 104 遅延素子 105 差動点 106 除算を含むブロック 107 加算点
100 Map (Characteristic region) 101 Map including engine temperature dependence (Characteristic region, characteristic curve) 102 Switch 103 Summing point 104 Delay element 105 Differential point 106 Block including division 107 Summing point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ホン ツァン ドイツ連邦共和国 シュヴィーバーディン ゲン リヒャルト−ヴァークナー−シュト ラーセ 14 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hong Zhan Germany Schwieberdingen Richard-Warkner-Strasse 14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関における作動遮断状態(非作動
状態)におかれたシリンダの作動再開の際の燃料噴射量
検出方法であって、基本燃料噴射量が増加燃料噴射量と
結合されるようにした当該方法において、作動遮断状態
下のシリンダの作動再開後第一(最初)の噴射に対する
増加燃料噴射量を、当該シリンダにおける残留ガスに依
存して決定することを特徴とする作動遮断状態下のシリ
ンダの作動再開の際の燃料噴射量検出方法。
1. A method for detecting a fuel injection amount when resuming the operation of a cylinder in an operation cutoff state (non-operation state) of an internal combustion engine, wherein a basic fuel injection amount is combined with an increased fuel injection amount. In this method, the increased fuel injection amount for the first (first) injection after resuming the operation of the cylinder under the operation cutoff state is determined depending on the residual gas in the cylinder. Fuel injection amount detection method when resuming cylinder operation.
【請求項2】 残留ガスに依存する補正値(dtlrg
s)の、内燃機関の負荷値(t1)への加算的重畳によ
り、補正された負荷値(tlsum)を形成し、該負荷
値から、所定の設定空気数(λsoll)での除算により、
当該の所定の設定空気数(λsoll)の調整設定に必要な
燃料噴射量(tes)を求めることを特徴とする請求項
1項記載の方法。
2. A correction value (dtlrg) which depends on the residual gas.
s) is added to the load value (t1) of the internal combustion engine to form a corrected load value (tlsum), and the load value is divided by a predetermined set air number (λsoll),
2. The method according to claim 1, characterized in that a fuel injection amount (tes) required for adjusting and setting the predetermined set air number ([lambda] soll) is obtained.
【請求項3】 当該の所定の設定空気数(λsoll)の調
整設定に必要な燃料噴射量(tes)を、補正量(dt
ewf)と結合(重畳)し、該補正量(dtewf)
は、壁フィルム(膜)量(wflam)の補償に適した
ものであることを特徴とする請求項2記載の方法。
3. The fuel injection amount (tes) required for adjusting and setting the predetermined set air number (λsoll) is set to a correction amount (dt).
ewf) combined (superimposed) with the correction amount (dteuf)
The method of claim 2, wherein is suitable for compensation of wall film (wflam).
【請求項4】 前記補正量(dtewf)を、2つの順
次連続する噴射サイクルに対して求められた壁フィルム
(膜)量の差から検出することを特徴とする請求項3記
載の方法。
4. A method according to claim 3, characterized in that the correction amount (dtewf) is detected from the difference in the amount of wall film determined for two successive injection cycles.
【請求項5】 前記補正量(dtewf)を、所定の
燃料噴射量(tes)と結合し、該所定の燃料噴射量
は、基本燃料噴射量と、残留ガスに依存する補正値(d
tlrgs)との加算的重畳により得られるものであ
り、前記補正値(dtlrgs)は、所定空気数(λso
ll)により除算されて得られるものであることを特徴と
する請求項1から4までのうち何れか1項記載の方法。
5. The correction amount (dtwef) is combined with a predetermined fuel injection amount (tes), and the predetermined fuel injection amount is a correction value (d) depending on the basic fuel injection amount and the residual gas.
tlrgs), and the correction value (dtlrgs) is a predetermined air number (λso).
The method according to any one of claims 1 to 4, characterized in that it is obtained by dividing by (11).
【請求項6】 シリンダの付加作動接続の際補正値(d
fgas)を形成し、該補正値は、負荷、残留ガス、作
動遮断状態におかれる燃料噴射サイクル数に依存するも
のである請求項2項記載の方法。
6. A correction value (d when connecting the cylinder for additional operation).
fgas), the correction value being dependent on the load, the residual gas, and the number of fuel injection cycles in the shut-off state.
【請求項7】 2つの燃料噴射サイクル間でその都度唯
1つの作動遮断の行われるシリンダのサイクリックな作
動遮断及び付加作動投入の際補正値(dfgas)を形
成し、該補正値は、負荷及び残留ガスに依存する請求項
2記載の方法。
7. Each time between two fuel injection cycles
A correction value (dfgas) is formed at the time of cyclic operation interruption and additional operation injection of a cylinder in which one operation interruption is performed, and the correction value is dependent on load and residual gas.
2 Method described.
【請求項8】 内燃機関における作動遮断状態下のシリ
ンダの作動再開の際の燃料噴射量検出装置であって、該
装置によっては、基本燃料噴射量が増加燃料噴射量に結
合(重畳)されるように構成されている当該装置におい
て作動遮断状態下のシリンダの動作再開前に当該シリン
ダ内に存在する残留ガスに依存して燃料噴射量を決定す
る手段が設けられており、更に、前記手段によっては、
作動遮断状態下のシリンダの動作再開後第一(最初)の
噴射に対してのみ当該の燃料噴射量が生成されるように
構成されていることを特徴とする内燃機関における作動
遮断状態下のシリンダの作動再開の際の燃料噴射量検出
装置。
8. A fuel injection amount detection device at the time of restarting the operation of a cylinder under an operation cutoff state in an internal combustion engine, wherein the basic fuel injection amount is combined (superposed) with the increased fuel injection amount depending on the device. In the apparatus configured as described above, there is provided means for determining the fuel injection amount depending on the residual gas existing in the cylinder before restarting the operation of the cylinder under the operation cutoff state. Is
A cylinder in an internal combustion engine in an operation cutoff state, characterized in that the fuel injection amount is generated only for the first (first) injection after the operation of the cylinder in the operation cutoff state is restarted. Fuel injection amount detection device when the operation of the fuel cell is restarted.
JP05204196A 1995-03-10 1996-03-08 Method and apparatus for calculating a fuel injection amount when resuming operation of a cylinder in an operation cut-off state Expired - Fee Related JP3955645B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19508643.0 1995-03-10
DE1995108643 DE19508643B4 (en) 1995-03-10 1995-03-10 Method for determining the fuel injection quantity when a hidden cylinder is reinserted

Publications (2)

Publication Number Publication Date
JPH08246921A true JPH08246921A (en) 1996-09-24
JP3955645B2 JP3955645B2 (en) 2007-08-08

Family

ID=7756310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05204196A Expired - Fee Related JP3955645B2 (en) 1995-03-10 1996-03-08 Method and apparatus for calculating a fuel injection amount when resuming operation of a cylinder in an operation cut-off state

Country Status (4)

Country Link
JP (1) JP3955645B2 (en)
DE (1) DE19508643B4 (en)
FR (1) FR2731469B1 (en)
SE (1) SE520797C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005001046B4 (en) * 2005-01-07 2014-11-06 Volkswagen Ag A method of operating a hybrid vehicle and hybrid vehicle having a multi-cylinder internal combustion engine coupled to an electric machine
JP6120019B2 (en) 2015-02-19 2017-04-26 トヨタ自動車株式会社 Control device for internal combustion engine
DE102015005688B3 (en) * 2015-05-06 2016-05-19 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for determining the proportion of residual gas in the cylinder of an internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59538A (en) * 1982-06-23 1984-01-05 Honda Motor Co Ltd Fuel supply control method for internal-combustion engine
JPS59185833A (en) * 1983-04-06 1984-10-22 Honda Motor Co Ltd Fuel feed control method of internal-combustion engine
JPH0833125B2 (en) * 1987-01-30 1996-03-29 日産自動車株式会社 Fuel supply control device for internal combustion engine
GB9004190D0 (en) * 1990-02-23 1990-04-18 Lucas Ind Plc Method and apparatus for controlling engine torque and wheel spin
DE4115211C2 (en) * 1991-05-10 2003-04-30 Bosch Gmbh Robert Method for controlling fuel metering in an internal combustion engine
DE4328835C2 (en) * 1993-08-27 2002-09-05 Bosch Gmbh Robert Cylinder-selective injection system

Also Published As

Publication number Publication date
SE520797C2 (en) 2003-08-26
FR2731469A1 (en) 1996-09-13
DE19508643A1 (en) 1996-09-12
SE9600920L (en) 1996-09-11
SE9600920D0 (en) 1996-03-08
JP3955645B2 (en) 2007-08-08
FR2731469B1 (en) 1999-01-22
DE19508643B4 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
US5934249A (en) Engine control system and the method thereof
US20020099495A1 (en) Failure determination system, failure determination method and engine control unit for variable-cylinder internal combustion engine
JPS6411812B2 (en)
JPH04500107A (en) Method and apparatus for controlling air-fuel mixture
JPS6165038A (en) Air-fuel ratio control system
JP2569586B2 (en) Electronic control unit for internal combustion engine
JP2003527527A (en) Operating method of multi-cylinder internal combustion engine
JPH08246921A (en) Method and equipment for detecting fuel injection quantity at time of operation restart of cylinder under state of operation interruption
JP4401635B2 (en) Control device for internal combustion engine
JPS60204938A (en) Fuel feed control method for internal-combustion engine
JPH11173185A (en) Fuel injection control device of internal combustion engine
JPS6183461A (en) Throttle valve controller for engine
EP0161611B1 (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JPH0451654B2 (en)
JP2901612B2 (en) Engine intake system failure detection device
JPH0319370B2 (en)
JPS59162333A (en) Control method of fuel injection in multi-cylinder internal-combustion engine
JP3397584B2 (en) Electric throttle type internal combustion engine
JPS62218640A (en) Engine idling control device
JPH04365943A (en) Fuel injection amount control device for internal combustion engine
JP2528279B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH06272601A (en) Control of engine
JPS6183470A (en) Control device of throttle valve in engine
JPH0192547A (en) Electronically controlled fuel injection device for multi-cylinder internal combustion engine
JPS63129139A (en) Fuel supply amount control device for electronic fuel injection engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061107

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees